This application claims priority to an application entitled “Method for Supporting Various Multi-antenna Schemes in BWA System Using Multiple Antenna” filed in the Korean Intellectual Property Office on Nov. 9, 2004 and assigned Serial No. 2004-91120, the contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to a Broadband Wireless Access (BWA) system, and more particularly to a method for supporting various multiple antenna schemes in a system using an Orthogonal Frequency Division Multiple Access (OFDMA) scheme.
2. Description of the Related Art
In the current wireless mobile communication system, extensive research is being conducted into a high quality multimedia service capable of transmitting mass storage data at a high speed. Different from wire channel environments, wireless channel environments are subject to a distortion of the actual transmission signals due to various factors such as multi-path interference, shadowing, wave attenuation, time-varying noise and interference. Fading due to the multi-path interference is closely related to the mobility of a reflector or a user terminal. Accordingly, the actual transmission signals are mixed with interference signals and mixed signals are received. Because the received signals already represent a serious distortion of the actual transmission signals, the entire performance of a mobile communication system may deteriorate.
Fading may also distort the amplitude and phase of the received signals, and may become a main factor that disrupts the high speed data communication in wireless channel environments. Therefore, extensive research is being conducted in order to solve the fading problem. In order to transmit data at a high speed in a mobile communication system, it is necessary to minimize loss and any user-by-user interference resulting from the characteristics of a mobile communication channel. One of the technologies proposed in order to solve the afore-described problems is a Multiple Input Multiple Output (MIMO) technology.
The MIMO technology may be classified according to the data transmission schemes used and whether the channel information is fedback.
First, the MIMO technology may be classified into a Spatial Multiplexing (SM) technique and a Spatial Diversity (SD) technique according to the data transmission schemes. The SM technique is a technique for simultaneously transmitting different data by means of multiple antennas in a transmitter and a receiver, thereby transmitting data at a higher speed without increasing the bandwidth of the system. The SD technique is a technique for transmitting the identical data through multiple transmit (Tx) antennas, thereby achieving the Transmit Diversity (TD).
The MIMO technology may also be classified into a closed-loop scheme, in which channel information is fedback from a receiver to a transmitter, and an open loop scheme, in which channel information is not fedback from a receiver to a transmitter.
Referring to the current standard documents 802.16-REVd&D5, REVe/D5-2004 of the Institute of Electrical and Electronics Engineers (IEEE) 802.16e standard, only a scheme for supporting the MIMO technology using the open loop scheme has been proposed.
Accordingly, the present invention has been made to solve at least the above-mentioned problems occurring in the prior art, and it is an object of the present invention to provide a method for supporting various multiple antenna schemes based on MIMO technology in a BWA system using multiple antennas.
It is another object of the present invention to provide a method for supporting various multiple antenna schemes by constructing an MAP message for classifying MIMO technology in a BWA system using multiple antennas.
It is a further object of the present invention to provide a method for supporting various multiple antenna schemes by constructing a downlink MAP message for efficiently providing multiple antenna technology, precoding or antenna grouping technology, antenna selection technology, etc., which have feedback from a mobile station.
In order to accomplish the aforementioned objects, according to one aspect of the present, there is provided a method for supporting various Multiple Input Multiple Output (MIMO) and precoding technologies in a Broadband Wireless Access (BWA) system employing an antenna technique of a MIMO scheme, the method including configuring a downlink MAP message that includes basic information fields for indicating the MIMO technology and information fields for indicating various precoding technologies; and applying the MIMO technology to a mobile station by means of the downlink MAP message.
The above and other objects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
Hereinafter, preferred embodiments according to the present invention will be described with reference to the accompanying drawings. In the below description, many particular items, such as detailed elements, are shown, but these are provided for helping the general understanding of the present invention, and it is apparent to those skilled in the art that the particular items can be modified or varied within the scope of the present invention.
The present invention provides a method for using various Multiple Input Multiple Output (MIMO) schemes in a Broadband Wireless Access (BWA) communication system using multiple antennas. Particularly, the present invention proposes a new downlink (DL)-MAP message in order to use a closed-loop MIMO scheme in a BWA communication system. The new DL-MAP message provides a method for selecting a transmission matrix corresponding to both the number of layers determined by the number of modulators and the number Mt of streams output from a Space Time Coding (STC) encoder. The STC encoder can be realized by a serial-to-parallel (S/P) converter. The transmission matrix has already been defined the IEEE 802.16 standard according to a transmit diversity scheme, a vertical encoding scheme and a horizontal encoding scheme.
When MIMO technology using the new DL-MAP message is applied to a BWA communication system, it is possible to make the closed-loop MIMO technology using the Channel Quality Information (CQI) fedback from a mobile station, i.e., a receiver, compatible with an exiting open loop MIMO technology having no feedback of the CQI. When the closed-loop MIMO technology is used, it is possible to perform a precoding.
Referring to
Because the transmitter includes one coder 102 and one modulator 103 as described above, the number of layers becomes one (L=1) and the STC encoder 104 outputs the Mt number of streams. Herein, MIMO technology for causing the Mt number of streams to acquire a diversity gain for common transmission signals corresponds to transmit diversity technology. Further, MIMO technology for causing the Mt number of streams to acquire a gain for two or more separate transmission signals in view of a data rate will be referred to Vertical Encoding (VE) Spatial Multiplexing (SM) technology.
The preceding block 105 receives the Mt number of streams and performs an Mt×Nt matrix operation. The Nt represents the number of transmit antennas.
The transmitter having the construction as described above receives channel feedback information and generates a matrix value of the precoding block 105, thereby operating by applying various MIMO algorithms such as feedback precoding (e.g., SVD precoding, beamforming preceding, etc), antenna grouping precoding, and antenna selection preceding.
The STC encoder 104 receives one input sequence so as to generate the Mt number of streams. When beamforming-precoding technology is applied, the STC encoder 104 can output the Mt number of streams without performing STC encoding.
Referring to
Herein, MIMO transmission technology applied to the transmitter having a plurality of layers will be referred to as a Horizontal Encoding (HE) spatial multiplexing technology.
The STC encoder 204 receives L number of input sequences so as to generate Mt number of streams. When beamforming-precoding technology is applied, the STC encoder 204 can output the Mt number of streams without performing STC encoding.
Referring to
Equations 1 and 2 below represent sequential input symbol matrices of the STC encoders 104 and 204 of transmit diversity and spatial multiplexing when the Mt is 2.
Equations 3 to 5 below represent sequential input symbol matrices of the STC encoders 104 and 204 of the transmit diversity, a hybrid of the transmit diversity and the spatial multiplexing, and the spatial multiplexing when the Mt is 3.
Equations 6 to 8 below represent sequential input symbol matrices of the STC encoders 104 and 204 of the transmit diversity, a hybrid of the transmit diversity and the spatial multiplexing, and spatial multiplexing when the Mt is 4.
Tables 1 to 3 below represent data formats of a MIMO_Compact_DL-MAP message proposed as one example in order to efficiently provide all MIMO-based technologies in a BWA system according to an embodiment of the present invention.
Table 2 below represents a message field subsequent to Table 1.
Table 3 below represents a message field subsequent to Table 2.
In Table 1, the initial 8 bits of an MAP information element for providing MIMO-based control information represent a type of a MAP information element of 3 bits and a sub-type of 5 bits, and a length field of 4 bits represents length of the MIMO-based control information, which is located in the next field.
The construction of the control information will be described. The field ‘MIMO type’ of 2 bits represents a MIMO mode. That is, when the field ‘MIMO type’ has a value of ‘00’, it indicates an open loop MIMO mode. When the field ‘MIMO type’ has a value of ‘01’, it indicates an antenna grouping MIMO mode. When the field ‘MIMO type’ has a value of ‘10’, it indicates an antenna selection MIMO mode. When the field ‘MIMO type’ has a value of ‘11’, it indicates a MIMO mode in which closed-loop precoding is performed.
The field ‘Num-layer’ is a field for indicating the number of layers, which is the number of signal branches input to the STC encoder.
The field ‘Mt’ is a field for indicating the number of streams output from the STC encoder. The transmitter determines the transmission matrices expressed by A, B and C in
The field ‘Mode_Change’ is a field for indicating if the MIMO mode has changed. For example, when the ‘Mode_Change’ has a value of ‘1’, it means the use of a MIMO mode different from the previous MIMO mode. However, when the ‘Mode_Change’ has a value of ‘0’, it means the current MIMO mode is identical to the previous MIMO mode. In this case, there is no changed information, it is not necessary to include the previous MIMO type information. Accordingly, it is possible to reduce the size of the Compact_DL-MAP message.
When the field ‘MIMO type’ in Table 1 is designated to ‘00’ or ‘11’, it indicates a matrix index used in an open loop or a preceding matrix index used in a closed-loop.
Table 4 below or
When the ‘MIMO type’ in Table 1 has a value of ‘01’ and antenna grouping technology is designated, it may indicate an antenna precoding matrix through an antenna grouping index of 4 bits in Table 2.
Table 5 below represents matrix combinations that may be indicated by the antenna grouping index of 4 bits in Table 2. Herein, the MIMO technologies in
As described above, STC encoding technology to be applied of the STC encoders 104 and 204 can be determined by the single field ‘antenna grouping index of 4 bits’, and matrix values of the precoding blocks 105 and 205 can be similarly understood. Accordingly, it is possible to efficiently reduce overhead of the control information message.
When the ‘MIMO type’ in Table 1 has a value of ‘10’ and antenna selection technology is designated, it may indicate a precoding matrix through the field ‘antenna selection index of 4 bits’ in Table 2. This indicates an antenna selected by performing an operation identical to that for the antenna grouping index.
The field including the Nep or the Downlink Interval Usage Code (DIUC) in table 2 indicates coding rates and modulation schemes for sets of encoders and modulators, which correspond to the number of layers, through a value of 4 bits. That is, when a plurality of layers exists, the field indicates a coding rate and a modulation scheme by a Nep scheme in a Hybrid Automatic Request (H-ARQ) supplementary information retransmission (that is, Incremental Redundancy) mode. Further, when at least one layer includes an error in a mobile station, a non acknowledgement (NACK) is generated and combination data for coding gain increases for data of all layers are retransmitted. Further, when the Channel Quality Information Channel (CQICH) is assigned, the last field indicates CQICH channel allocation information in order to load single CQI feedback information on each layer. Because each layer uses different encoding and modulation schemes as described above, each layer requires CQI feedback information.
Table 3 illustrates the fields that a mobile station must refer to in order to feedback the CQI in a structure having multiple antennas or multiple layers. The field ‘CQICH-NUM’ representing the number of feedback channels denotes the number of feedback channels to be simultaneously transmitted by the mobile station. The field ‘CQI Feedback type’, which indicates the type of feedback information to be transmitted from each feedback channel, enables the mobile station to transmit different feedback information according to each allocated feedback channel. This enables the mobile station to transmit various feedback information required by a base station, thereby leading to more efficient operation of the MIMO technology.
As described above, the transmitter, i.e., the base station, determines at least one matrix from among a plurality of transmission matrices by considering information fedback from the receiver, i.e., the mobile station, thereby performing STC encoding or precoding by means of the determined matrix and transmitting information for the determined matrix to the mobile station through a MIMO Compact DL-MAP message newly proposed by the present invention. Herein, the mobile station can understand the information for the matrix with reference to information for the layer values and the Mt values transmitted from the base station. Accordingly, the mobile station can perform decoding by using the transmission matrix corresponding to the information for the layer values and the Mt values while having already recognized the information as described in
According to the present invention as described above, it is possible to efficiently notify a mobile station of various basic technologies for a MIMO and various MIMO precoding technologies using only a small quantity of data through downlink MAP message in a BWA system, thereby improving performance of the BWA system and increasing its cell capacity.
While the present invention has been shown and described with reference to certain preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2004-0091120 | Nov 2004 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
7103325 | Jia et al. | Sep 2006 | B1 |
7120199 | Thielecke et al. | Oct 2006 | B2 |
7120395 | Tong et al. | Oct 2006 | B2 |
7197084 | Ketchum et al. | Mar 2007 | B2 |
7315577 | Shao | Jan 2008 | B2 |
RE40056 | Heath et al. | Feb 2008 | E |
7397804 | Dulin et al. | Jul 2008 | B2 |
7430243 | Giannakis et al. | Sep 2008 | B2 |
7440510 | Sandhu et al. | Oct 2008 | B2 |
7486739 | Hottinen et al. | Feb 2009 | B2 |
7505529 | Kwak et al. | Mar 2009 | B2 |
7567621 | Sampath et al. | Jul 2009 | B2 |
7573806 | Ihm et al. | Aug 2009 | B2 |
7587172 | Kim et al. | Sep 2009 | B2 |
20040057530 | Tarokh et al. | Mar 2004 | A1 |
20050041622 | Dubuc et al. | Feb 2005 | A1 |
20050128966 | Yee | Jun 2005 | A1 |
20050135284 | Nanda et al. | Jun 2005 | A1 |
20050135295 | Walton et al. | Jun 2005 | A1 |
20050135318 | Walton et al. | Jun 2005 | A1 |
20050180315 | Chitrapu et al. | Aug 2005 | A1 |
20050259629 | Oliver et al. | Nov 2005 | A1 |
20060013328 | Zhang et al. | Jan 2006 | A1 |
20060035643 | Vook et al. | Feb 2006 | A1 |
20060093057 | Zhang et al. | May 2006 | A1 |
20060109923 | Cai et al. | May 2006 | A1 |
20080039107 | Ma et al. | Feb 2008 | A1 |
20080069031 | Zhang et al. | Mar 2008 | A1 |
20080187136 | Zhang et al. | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
2003-018127 | Jan 2003 | JP |
1020040039849 | May 2004 | KR |
1020040083787 | Oct 2004 | KR |
WO 0178254 | Oct 2001 | WO |
WO 03084092 | Oct 2003 | WO |
WO 03085875 | Oct 2003 | WO |
WO 2004039011 | May 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060098568 A1 | May 2006 | US |