1. Field of the Invention
The present invention relates to a method for surface-treating a mirror-finish stainless steel workpiece, particularly to a method using a series of grinding steps to polish and mirror-finish the surface of a stainless steel workpiece.
2. Description of the Related Art
Some mirror-finish stainless steel workpieces, such as an electric elevator, are unlikely to be fabricated in form of an integral one-piece body but are usually assembled piece by piece with welding. The irregularities caused by welding degrade appearance esthetics and thus need to be finished with grinding, coarse polishing, fine polishing, etc. In the conventional grind-polish technology, tool marks, such as grinding marks and polishing marks, still remain on the fine-polished surface. Further, over-grinding may cause over-heating and distortion on the surface of the mirror-finish stainless steel workpiece. Besides, the conventional grind-polish technology cannot indeed achieve a mirrorlike surface.
On the other side, the stainless steel workpieces, which have been installed in a building, usually have scribed marks, abrasion, corrosion, pollution, etc., on the surface thereof. However, the conventional grind-polish technology is hard to maintain or repair the surface of an electric elevator in situ.
Accordingly, the present invention proposes an innovative method for surface-treating a mirror-finish stainless steel workpiece, which can overcome the conventional problems, and which can promote the esthetics of the polished surface and facilitate in-situ polishing.
Based on many years' experience in the related field and with persistent research and experiment, the Inventor has been devoted to improving the surface treatment technology and thus proposes a method for surface-treating a mirror-finish stainless steel workpiece of the present invention.
The primary objective of the present invention is to provide a method for surface-treating a mirror-finish stainless steel workpiece, which uses both mechanical and chemical methods to promote the appearance esthetics of a workpiece and achieve a mirrorlike surface.
Another objective of the present invention is to provide a method for surface-treating a mirror-finish stainless steel workpiece, which uses both mechanical and chemical methods to prevent from distortions or recessions caused by over grinding.
A further objective of the present invention is to provide a method for surface-treating a mirror-finish stainless steel workpiece, which can perform surface polishing in situ without dismounting the workpiece.
To achieve the abovementioned objectives, the present invention proposes a method for surface-treating a mirror-finish stainless steel workpiece, which comprises at least the following steps: (1) dividing the surface of a mirror-finish stainless steel workpiece into different grinding areas according to the depths of the scratches; (2) selecting a sand paper having an appropriate grit size for one grinding area, and using a grinder and the sand paper to grind the grinding area; (3) examining whether all the scratches on the grinding area have been eliminated; undertaking Step (5) if the answer is yes; undertaking Step (4) if the answer is no; (4) selecting a sand paper having a greater grit size, and using a grinder and the sand paper to grind the grinding area again, and then undertaking Step (3); (5) examining whether the scratches of all the grinding areas have been eliminated; undertaking Step (6) if the answer is yes; undertaking Step (2) if the answer is no; (6) applying a first polishing agent to all the grinding areas; (7) using a grinder and a first grinding material to eliminate the sand abrasions from all the grinding areas; (8) applying a second polishing agent to all the grinding areas; (9) using a grinder and a second grinding material to eliminate all the marks scribed by the first grinding material from all the grinding areas; (10) applying a third polishing agent to all the grinding areas; (11) using a grinder and a third grinding material to perform a final grinding on all the grinding areas; (12) applying an abrasive paste to all the grinding areas, and letting the abrasive paste stay still on all the grinding areas for a given period of time; (13) using a fourth grinding material to perform mirror-finishing on all the grinding areas.
To achieve the abovementioned objectives and efficacies, the Inventor has persistently improved the conventional technologies and thus proposes a method for surface-treating a mirror-finish stainless steel workpiece, which uses a plurality of polishing agents, grinding materials, and abrasive pastes to enhance the polishing effect. Below, two embodiments are used to demonstrate the technical principles and process of the present invention.
Refer to
In the first embodiment, the first polishing agent adopted in Step 106 is of a BRIGHT-CUT grade, which can fast cut various metals and generates medium brightness. The first grinding material used in Step 107 is a sisal buff, which cooperates with the BRIGHT CUT agent to smooth all the sand abrasions on all the grinding areas. The second polishing agent adopted in Step 108 is of a FASTCUT grade, which has high grinding efficiency and can fast remove the scratches on the surface of a metal, generating lower brightness. The second grinding material used in Step 109 is a cotton buff, which cooperates with the FASTCUT agent to remove the marks scribed on all the grinding areas by the first grinding material. The third polishing agent adopted in Step 110 is of a WHITE CUTTER P2 grade, which can fast cut various metals, contains less wax, and generates a very clean surface having medium brightness. The third grinding material used in Step 111 is a wool buff, which cooperates with the WHITE CUTTER P2 agent to perform a final grinding on all the grinding areas.
In the first embodiment, the abrasive paste used in Step 112 contains at least diluted nitric acid, alumina powder, xanthan gum, water, bentonite, and essence. After applied to all the grinding areas, the abrasive paste stays still on the surface of the workpiece for 30-60 minutes. Then, the process proceeds to Step 113. The fourth grinding material used in Step 113 is a high-density and tough sponge, which cooperates with the abrasive paste to perform mirror-finishing on all the grinding areas. Thus is achieved a highly reflective mirrorlike surface on a stainless steel workpiece.
Refer to
Refer to
In the second embodiment, the first polishing agent adopted in Step 308 is of a BRIGHT-CUT grade, which can fast cut various metals and generates medium brightness. The first grinding material used in Step 309 is a sisal buff, which cooperates with the BRIGHT CUT agent to smooth all the sand abrasions on all the grinding areas. The second polishing agent adopted in Step 310 is of a FASTCUT grade, which has high grinding efficiency and can fast remove the scratches on the surface of a metal, generating lower brightness. The second grinding material used in Step 311 is a cotton buff, which cooperates with the FASTCUT agent to remove the marks scribed on all the grinding areas by the first grinding material. The third polishing agent adopted in Step 312 is of a WHITE CUTTER P2 grade, which can fast cut various metals, contains less wax, and generates a very clean surface having medium brightness. The third grinding material used in Step 313 is a wool buff, which cooperates with the WHITE CUTTER P2 agent to perform a final grinding on all the grinding areas.
In the second embodiment, the abrasive paste used in Step 314 contains at least diluted nitric acid, alumina powder, xanthan gum, water, bentonite, and essence. After applied to all the grinding areas, the abrasive paste stays still on the surface of the workpiece for 30-60 minutes. Then, the process proceeds to Step 315. The fourth grinding material used in Step 315 is a high-density and tough sponge, which cooperates with the abrasive paste to perform mirror-finishing on all the grinding areas. Thus is achieved a highly reflective mirrorlike surface on a stainless steel workpiece.
From the above description, it is known that the present invention has the following advantages:
The embodiments described above are only to demonstrate the technical contents and characteristics of the present invention to enable the persons skilled in the art to understand, make, and use the present invention. However, these embodiments are not intended to limit the scope of the present invention. Therefore, any equivalent modification or variation according to the spirit of the present invention is to be also included within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
099115728 | May 2010 | TW | national |