The invention relates to access networks for broadband user connection. Further to a Method for switching IP packets between client networks and IP provider networks by way of an access network.
While the network architecture for ATM-based access networks has already been defined in the DSL Forum, work relating to IP- and Ethernet-based access networks is still in the initial stages.
The architecture for ATM-based broadband access networks with QoS support is described for example in the DSL Forum specifications TR-058 and TR-059. These networks are based on permanently established ATM virtual connections (PVC) between the user connection and a central IP network-access node (Broadband Access Server, BAS). The BAS (Broadband Access Server) performs the access control and authentication of the users and also service selection.
An object of the invention is to improve the transportation of IP packets between a client router and an IP network service provider.
Future access networks for broadband user connection must provide higher bandwidths at lower costs than is possible with the ATM-based connection networks common today. For this reason, the aim is to base future networks more heavily on IP and Ethernet technology which is currently establishing itself in the market as an attractive solution for metro networks.
While the network architecture for ATM-based access networks has already been defined in the DSL Forum, work relating to IP- and Ethernet-based access networks is still in the initial stages. What is required is a new network architecture for the IP- and Ethernet-based aggregation of broadband user connections which satisfies the following requirements in an optimum fashion:
This invention relates to a new type of aggregation solution for use particularly in Ethernet-oriented broadband access networks. The aim of the invention is to enable simultaneous IP sessions by an end client using an Ethernet access network to a plurality of different IP networks of independent IP service providers without requiring PPPoE for this. Independent IP network service providers are not required to coordinate their IP address spaces with one another; the address spaces of different IP network service providers can also overlap or be identical. The intention of the invention is to make it possible to establish cost-effective networks using IP over Ethernet and a DHCP based Session Control while a plurality of independent IP network service providers can be simultaneously supported through an access network.
The object of the invention is achieved by a method for switching the data packets using the data assigned to an IP session. Specifically this means:
In addition to the stated object of the invention, in many networks there results a further related object which is also referred to in the following as an additional object.
For business clients, network service providers often offer global network services on Layer 2. Examples are ATM services (e.g. Permanent Virtual Circuit (PVC) services), TDM Leased Line Services (e.g. E1/T1 services) and recently Metro Ethernet services, as specified for example by the Metro Ethernet Forum (MEF). With regard to these services, Layer 2 frames or cells of the protocols in question are generally transported unchanged between the handover points of the business client through the network of the service provider.
For private clients, these Layer 2 based services are often not necessary because with private clients it is usually a case of Internet access services or access services to applications based on the IP protocol such as for example VoIP or to video applications. These applications require the transportation of IP packets of the private client to one or more IP network service providers, and where applicable also simultaneous access to a plurality of IP network service providers. For these services, the transportation of IP packets between the client network and the IP network service providers in question is sufficient. Although a Layer 2 based service is adequate for this purpose, it is not however required. Since both scaling problems (only 4096 VLAN tags, for example) and also various security risks are associated particularly with the use of Ethernet as Layer 2 (for example MAC address spoofing, MAC address flooding), it is advantageous particularly for private clients to terminate the Layer 2 in the access node and to transport the IP packets themselves to the IP network service provider. Solutions which do not transport the complete Ethernet frames from the client network to the IP network service provider but only their Layer 3 content, namely the IP packet, are thus particularly advantageous.
Above stated objects can be solved in different ways:
a) The architecture for ATM-based broadband access networks with QoS support is described for example in the DSL Forum specifications TR-058 and TR-059. These networks are based on permanently established ATM virtual connections (PVC) between the user connection and a central IP network-access node (Broadband Access Server, BAS). The BAS (Broadband Access Server) performs the access control and authentication of the users and also service selection. This architecture has various disadvantages:
b) One method which partially neutralizes the security problem for Ethernet access networks has been disclosed in the IETF Draft draft-melsen-mac-forced-fwd-02.txt under the title “MAC Forced Forwarding: An ARP proxy method for ensuring traffic separation between hosts sharing an Ethernet Access Network” by T. Melsen and S. Blake. With regard to this method, the access node checks the MAC destination address used on the user side in the Ethernet frames for validity. An ARP proxy in the access node additionally returns only valid MAC addresses in the case of user-side ARP requests. This method does not solve the problem of simultaneous access to different independent IP networks.
c) Another method has the name “(Virtual) MAC Address Translation”. (See for example ITU Contribution COM 13-D 447-E from the ZTE Corporation, dated February 2004). With this approach, the MAC addresses of the user-side Layer 2 end points are converted by the access node reversibly unambiguously into “virtual” MAC addresses which the access network service provider determines. The MAC addresses of the network-side Layer 2 end points remain unchanged when the Ethernet frames pass through the access node. The particular disadvantage of this approach to a solution is the fact that an additional virtual MAC address is required in the network for each user-side MAC address. This method also fails to solve the problem of simultaneous access to different independent IP networks.
d) In a further method, an IP router function in the access node terminates the Layer 2 and routes the IP packets of Layer 3 on the basis of the IP addresses (IP routing). The following disadvantages result with this solution:
e) A further solution uses the PPPoE or PPPoA protocol between client network and IP network service provider. In this case, PPP tunnels to the relevant IP network are set up, in which the IP packets are transported. The disadvantages associated with this solution are the high costs for terminating PPPoE/PPPoA in a broadband access server (BAS) as well as security problems in Ethernet based access networks.
An example of a network scenario in which this invention can be used to great advantage is shown in
In the example, the task consists in transporting IP packets between client router 111 and the IP network service provider 150 by way of the access network for the duration of an IP session, to which end the network service provider must first assign an IP address (Ia1 in the example) to the client router. To this end the network service provider 150 must use known protocols, such as DHCP for example, and further tools, such as a DHCP server 151 for example.
Accordingly, in the example the network service provider 170 must be able to assign an IP address b2 to the client router 121 in the client network 120 similarly for the duration of an IP session, and IP packets must be transported by way of the access network 160 between the client router 121 and the network service provider 170. In this situation, it must be possible to allocate the IP addresses Ia1 and Ib2 totally independently of one another.
It must also be possible for a plurality of IP addresses to be simultaneously assigned to a client network by different IP network service providers. An example is shown for the client network 130. This contains two client routers 131 and 132 which are both connected for example by way of an Ethernet network to the same network terminator 133. Here, the IP network service provider 150 must be able to assign an IP address Ic1 to the router 131 while the IP network service provider 170 must be able to simultaneously assign an IP address Ic2 to the second router 132 in the same client network. It must be possible to transport IP packets simultaneously by way of the access network 160 on the one hand between router 131 and IP network service provider 150 and on the other hand between router 132 and IP network service provider 170.
In the simplest case, IP service connections are given only by a Layer 2 destination address of the interface in the access network to an IP edge router of the relevant IP network service provider. In the example shown in
For reasons of security and in order to be able to more simply guarantee specific qualities of service in the access network, it is often advantageous to employ additional Layer 2 attributes in order to implement IP service connections. In Ethernet networks, the VLAN technology as per IEEE Standard 802.1q can advantageously be used for this purpose, for example. To this end, the IP service switch 240 in the example shown in
In addition,
In the example of the access line 235 it is assumed that IP packets of the two different IP sessions are transported between the client routers 231 and 232 on the one hand and the access node 240 on the other hand for example by way of an Ethernet VLAN, different in each case, (“1001” and “1002” for example) in accordance with IEEE Standard 802.1q or for example by way of different ATM PVCs. Incoming IP packets in Layer 2 frames from access line 235 with source Layer 2 address M3 and out of VLAN “1001” belong to one IP session and are switched onto IP service connection 242 and incoming IP packets from access line 235 with source Layer 2 address M4 and out of VLAN “1002” are switched onto IP service connection 243. Conversely, incoming IP packets from the access node on IP service connection 242 with IP address Ic1 are packed in Layer 2 frames with VLAN “1001” and destination Layer 2 address M3 and switched onto the access line 235. Incoming IP packets on IP service connection 243 with IP address Ic2 are switched to the access line 235 in Layer 2 frames with VLAN “1002” and destination Layer 2 address M4.
Characteristic of an IP session within the meaning of this invention are
In most cases it is advantageous for the purposes of identifying an IP session to additionally add one or more physical ports of the network element according to the invention by way of which the aforementioned device can be accessed in the aforementioned client network. By way of example, different devices can thus use the same Layer 2 addresses if these are accessible by way of different physical ports.
The specifications relating to the session-based IP switching can be held in tabular form by the access node. An example is shown in
IP sessions are defined in the example by a client-side physical port on the IP service switch (in the example a, b, or c) and by a client-side Layer 2 address and the assigned IP address. In addition, further attributes can define an IP session. These include, for example, a client-side VLAN tag (in
IP-service connections are defined in the example by a network-side Layer 2 address of the end point of the IP service connection. In the example shown in
With the aid of the switching specifications predefined by the table in
In an advantageous embodiment of the invention,
In contrast to the known approach to a solution 1d), in this advantageous embodiment of the method according to the invention different user-side MAC addresses M1 to M4 can be mapped to the same network address M6. In the example shown in
The scalability is increased as a result because the access network does not need to learn the user-side MAC addresses M1 to M4. At the same time, attacks on the access network such as “MAC address flooding” are averted. In the reverse direction, the network-side MAC addresses M7 and M8 of the edge routers 250 and 270 are not forwarded to the users but are replaced by a MAC address M5 of the IP service switch. The network security is also increased by this means because the addresses of the edge routers hereby remain hidden from the users.
It is also advantageous if a VLAN tag (in the example shown in
In a further advantageous embodiment,
The following advantages can result from the invention:
a) Session-based IP switching instead of IP routing in the IP service switch. This means that the network access provider does not simultaneously need to be the IP network service provider, in other words it does not require any separate IP addresses for the users. At the same time, a plurality of IP network service providers can be supported in the same access network. A user can also simultaneously maintain a plurality of IP sessions with different IP network service providers. The situation is also prevented whereby the number of IP nodes increases by one to two orders of magnitude when compared with IP networks commonly encountered today.
b) The invention makes possible a network architecture for IP/Ethernet-based access networks which shifts the function of the BAS into the access network and modifies it such that the access control can be effected using IP/Ethernet-based methods. On the one hand, this dispenses with the need for a separate BAS, which results in significant cost savings. On the other hand, the access control is shifted closer to the user, resulting in a high level network security and enabling enhanced QoS support.
The termination of Layer 2 can also be an advantage of the invention. Particularly when using Ethernet as Layer 2, a large number of possible attacks on network function and integrity are known. By terminating Layer 2 in the IP service switch, these attacks are largely averted for the network nodes lying behind the IP service switch.
Number | Date | Country | Kind |
---|---|---|---|
04019739.4 | Aug 2004 | EP | regional |
This application is the US National Stage of International Application No. PCT/EP2005/053964, filed Aug. 11, 2005 and claims the benefit thereof. The International Application claims the benefits of European application No. 04019739.4 EP filed Aug. 19, 2004, both of the applications are incorporated by reference herein in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/53964 | 8/11/2005 | WO | 2/15/2007 |