1. Field of the Disclosure
This invention relates generally to electrostatographic reproduction machines, and more particularly, to a fuser adapted to handle multiple paper widths and is especially useful in center registered machines.
2. Description of Related Art
In electrostatographic printing, commonly known as xerographic or printing or copying, an important process step is known as “fusing”. In the fusing step of the xerographic process, dry marking making material, such as toner, which has been placed in imagewise fashion on an imaging substrate, such as a sheet of paper, is subjected to heat and/or pressure in order to melt and otherwise fuse the toner permanently on the substrate. In this way, durable, non-smudging images are rendered on the substrates.
The most common design of a fusing apparatus as used in commercial printers includes two rolls, typically called a fuser roll and a pressure roll, forming a nip therebetween for the passage of the substrate therethrough. Typically, the fuser roll further includes, disposed on the interior thereof, one or more heating elements, which radiate heat in response to a current being passed therethrough. The heat from the heating elements passes through the surface of the fuser roll, which in turn contacts the side of the substrate having the image to be fused, so that a combination of heat and pressure successfully fuses the image. As shown in U.S. Pat. No. 7,193,180 B2, for example, a resistive heater is disclosed that is adapted for heating a fuser belt with the heater comprising a substrate, a first resistive trace formed over the substrate, and a second resistive trace formed so as to at least partially overlap the first trace.
Provisions can be made in fusers to take into account the fact that sheets of different sizes may be passed through the fusing apparatus, ranging from postcard-sized sheets to sheets which extend the full length of the rolls. Further, it is known to control the heating element or elements inside the fuser roll to take into account the fact that a sheet of a particular size is being fed through the nip. For example, in U.S. Pat. No. 6,353,718 B1 a fuser roll is shown with two parallel lamps or heating elements therein that in each case include a relatively long major portion of heating-producing material along with a number of smaller portions of heat-producing material with all being connected in series. Within each lamp, a major portion is disposed toward one particular end of the fuser roll, while the relatively smaller portions are disposed toward the opposite end of the fuser roll. This particular configuration of heating elements within each lamp will have a relatively hot and relatively cold end. That is, when electrical power is applied to either lamp, one end of the lamp will largely generate more heat that the other end of the lamp.
U.S. Pat. No. 7,228,082 B1 discloses printing machine that includes a fuser for fusing an image onto a sheet. The fuser includes an endless belt having a plurality of predefined sized fusing areas that are selectively activatable and the plurality of predefined sized fusing areas are arranged in a substantially parallel manner along a process direction of the belt. A means is included for activating one or more of the plurality of predefined sized fusing areas to correspond to one of the selected predefined sized sheets. Multi-tap series controlled ceramic heaters of this design have a flaw in that a conductor interface to the heat-producing materials creates a cold spot which reduces the heater temperature locally and creates a radial cold area in the fuser roll causing image quality issues.
Current center registered solid heaters either require multiple heating traces or a relay to switch between multiple taps on one trace as shown, for example, in U.S. Pat. Nos. 5,171,969; 6,423,941 B1; 6,580,883 and 7,193,181. Multiple heating traces have been shown to hurt heat transfer performance and thus extendibility since only one heating trace can be in optimal position for heat transfer. Configurations with inter heating trace conductive taps have cold spot that effect and hurt latitudes and require bigger drawer connections with extra pins. Current single heating traces with multiple tap designs require an extra drawer connector pin as compared to multiple trace designs and require either serial control or perfect knowledge of media widths.
In answer to the above-mentioned shortcomings of previous solid heaters, an improved fuser is disclosed that includes a center registered heater which provides uniformity at the surface of the fuser that contacts an imaged sheet by configuring the heater to include a single resistive heating trace with multiple taps for heating different media widths. A tap is placed right at the center of the heating trace. This line can then serve as a dedicated common when firing the different heating zones.
The disclosed printer and fuser system may be operated by and controlled by appropriate operation of conventional control systems. It is well known and preferable to program and execute imaging, printing, paper handling, and other control functions and logic with software instructions for conventional or general purpose microprocessors, as taught by numerous prior patents and commercial products. Such programming or software may, of course, vary depending on the particular functions, software type, and microprocessor or other computer system utilized, but will be available to, or readily programmable without undue experimentation from, functional descriptions, such as, those provided herein, and/or prior knowledge of functions which are conventional, together with general knowledge in the software of computer arts. Alternatively, any disclosed control system or method may be implemented partially or fully in hardware, using standard logic circuits or single chip VLSI designs.
The term ‘printer’ or ‘reproduction apparatus’ as used herein broadly encompasses various printers, copiers or multifunction machines or systems, xerographic or otherwise, unless otherwise defined in a claim. The term ‘sheet’ herein refers to any flimsy physical sheet or paper, plastic, or other useable physical substrate for printing images thereon, whether precut or initially web fed. A compiled collated set of printed output sheets may be alternatively referred to as a document, booklet, or the like. It is also known to use interposers or inserters to add covers or other inserts to the compiled sets.
As to specific components of the subject apparatus or methods, or alternatives therefor, it will be appreciated that, as normally the case, some such components are known per se' in other apparatus or applications, which may be additionally or alternatively used herein, including those from art cited herein. For example, it will be appreciated by respective engineers and others that many of the particular components mountings, component actuations, or component drive systems illustrated herein are merely exemplary, and that the same novel motions and functions can be provided by many other known or readily available alternatives. All cited references, and their references, are incorporated by reference herein where appropriate for teachings of additional or alternative details, features, and/or technical background. What is well known to those skilled in the art need not be described herein.
Several of the above-mentioned and further features and advantages will be apparent to those skilled in the art from the specific apparatus and its operation or methods described in the example(s) below, and the claims. Thus, they will be better understood from this description of these specific embodiment(s), including the drawing figures (which are approximately to scale) wherein:
Referring now to
At the transfer zone 30, the print sheet 24 is brought into contact or at least proximity with a surface 12 of photoreceptor 10, which at this point is carrying toner particles thereon. A corotron or other charge source 32 at transfer zone 30 causes the toner image on photoreceptor 10 to be electrostatically transferred to the print sheet 24. The print sheet 24 is then forwarded to subsequent stations, as is familiar in the art, including the fusing station having a high precision-heating and fusing apparatus 200 of the present disclosure, and then to an output tray 60. Following such transfer of a toner image from the surface 12 to the print sheet 24, any residual toner particles remaining on the surface 12 are removed by a toner image baring surface cleaning apparatus 44 including a cleaning blade 46, for example.
As further shown, the reproduction machine 8 includes a controller or electronic control subsystem (ESS), indicated generally by reference numeral 90 which is preferably a programmable, self-contained, dedicated mini-computer having a central processor unit (CPU), electronic storage 102, and a display or user interface (UI) 100. At UI 100, a user can select one of the pluralities of different predefined sized sheets to be printed onto. The conventional ESS 90, with the help of sensors, a look-up table 202 and connections, can read, capture, prepare and process image data such as pixel counts of toner images being produced and fused. As such, it is the main control system for components and other subsystems of machine 8 including the fusing apparatus 200 of the present disclosure.
Referring now to
In
Turning now to
R=Ω(L/A)
where,
R=resistance;
Ω=bulk resistivity of the ink or resistance per unit volume;
L=length of resistor ink; and
A=cross sectional area of the resistor ink.
The cross-sectional area of the resistor ink in turn equals the product of the print thickness (T) and the width (W) of the resistor ink. Substituting these parameters yields the following formula for the resistance of a printed resistor:
R=Ω(L/TW)
Thus, the resistance of a printed resistor is a function of the bulk resistivity of the ink used to print the resistor, the length (L) of the resistor ink, the thickness (T) of the printed resistor ink and the width (W) of the printed resistor ink. Resistors having different resistances can thus be formulated by varying any of these parameters (L, T, or W).
The heater configuration 90A shown in
In
An alternative heater configuration 90A is shown in
In
In recapitulation, the embodiments of the present disclosure address a problem of center registered solid heaters either requiring multiple heating traces or a relay to switch between multiple taps on one trace. Multiple heating traces have been shown to negatively affect heat transfer performance and thus extendibility. Single heating trace configurations with multiple tap designs require an extra drawer connector pin as compared to multiple trace designs. Also, cold spots on a segmented ceramic fuser heater at the point of contact between a resistive trace and a conductor trace is a problem. An electrical contact to heater segments is needed within the image area and prior heater designs exhibit a cold spot at that point due to cooling. The present disclosure solves these problem by providing a single resistive heating trace with multiple taps for heating different media widths and places a tap right at the center of the heating trace. This provides a single line that can then serve as a dedicated common when firing the different heating zones. In addition, reductions are placed in the heating trace near the taps to mitigate the cool zones created by the taps. As a result, a single dedicated common line is accomplished along with one less pin drawer connector than prior single trace designs.
The claims, as originally presented and as they may be amended, encompass variations, alternatives, modifications, improvements, equivalents, and substantial equivalents of the embodiments and teachings disclosed herein, including those that are presently unforeseen or unappreciated, and that, for example, may arise from applicants/patentees and others. Unless specifically recited in a claim, steps or components of claims should not be implied or imported from the specification or any other claims as to any particular order, number, position, size, shape, angle, color, or material.
Number | Name | Date | Kind |
---|---|---|---|
5171969 | Nishimura et al. | Dec 1992 | A |
5204723 | Hanada | Apr 1993 | A |
6353718 | Roxon et al. | Mar 2002 | B1 |
6423941 | Kanari et al. | Jul 2002 | B1 |
6580883 | Suzumi | Jun 2003 | B2 |
7193180 | Cook et al. | Mar 2007 | B2 |
7193181 | Makihira et al. | Mar 2007 | B2 |
7228082 | Davidson et al. | Jun 2007 | B1 |
20120051807 | Tress | Mar 2012 | A1 |