Method for temporal dispersion correction for seismic simulation, RTM and FWI

Information

  • Patent Grant
  • 10185046
  • Patent Number
    10,185,046
  • Date Filed
    Thursday, March 26, 2015
    10 years ago
  • Date Issued
    Tuesday, January 22, 2019
    6 years ago
Abstract
Method for correcting seismic simulations, RTM, and FWI for temporal dispersion due to temporal finite difference methods in which time derivatives are approximated to a specified order of approximation. Computer-simulated seismic data (51) are transformed from time domain to frequency domain (52), and then resampled using a mapping relationship that maps, in the frequency domain, to a frequency at which the time derivative exhibits no temporal dispersion (53), or to a frequency at which the time derivative exhibits a specified different order of temporal dispersion. Alternatively, measured seismic data from a field survey (61) may have temporal dispersion of a given order introduced, by a similar technique, to match the order of approximation used to generate simulated data which are to be compared to the measured data.
Description
FIELD OF THE INVENTION

The invention relates generally to the field of geophysical prospecting for hydrocarbons and, more particularly, to seismic data processing. Specifically, the invention relates to the technical fields of seismic simulation, reverse time depth migration, and full waveform inversion of seismic data to infer a subsurface model of velocity or other physical property. In addition, many other useful industrial simulators for doing electromagnetic propagation, reservoir simulation and heat flow may match the form needed for this invention to apply. As will be explained later in the invention disclosure, the necessary form corresponds to that of a stationary differential operator equation including mixed or non-mixed terms of spatial and temporal derivatives with coefficients that may vary with space but do not vary in time.


BACKGROUND OF THE INVENTION

A seismic simulator used to compute either a forward simulation of a source or the adjoint simulation of a recorded wave field is typically implemented using a time stepping algorithm based upon a selected finite difference approximation to either a first or a second time derivative. Most historical implementations have been for 2nd order time stepping (error is proportional to (Δt)2, where Δt is the time step) because that is easy and efficient to implement and requires fewer resources. Using 2nd order time stepping provides a result with temporal dispersion artifacts. Higher-order approximations are better, because the error for approximation of order n is proportional to (Δt)n which→0 as n→∞ for Δt<1. But any finite-order approximation suffers from some degree of temporal dispersion. If the temporal dispersion is not corrected, the application of this type of simulator for forward simulation or to compute Reverse Time Depth Migration (RTM) images and Full Waveform Inversion (FWI) gradients and Hessians will have errors that degrade the value of these products for petroleum exploration and geophysical prospecting.


SUMMARY OF THE INVENTION

In one embodiment, the invention is a method for prospecting for hydrocarbons. Measured seismic data are obtained. Corresponding simulated seismic data are computer-generated using a finite-difference, time-stepping algorithm that approximates a time derivative operator to a selected order of approximation. The simulated seismic data are used to perform full-waveform inversion or reverse-time migration of the measured seismic data, wherein temporal numerical dispersion corresponding to the selected order of approximation is (i) removed from the simulated seismic data or (ii) introduced into the measured seismic data by steps including performing a Fourier transform in time on (i) the simulated or (ii) the measured seismic data, then resampling the transformed seismic data in frequency domain, and then performing an inverse Fourier transform from frequency domain back to time domain. The resampling utilizes a property of a class of stationary finite-difference operators whereby, in frequency domain, an aspect of the temporal numerical dispersion is that a desired numerical solution for a given frequency is computed at an incorrect frequency, and the resampling uses a mapping relationship that maps the incorrect frequency to the given frequency. The full-waveform-inverted seismic data or the reverse-time-migrated seismic data may then be used in known methods to prospect for hydrocarbons. The resampled frequency-domain seismic data may be scaled with a frequency-dependent scaling factor before performing the inverse Fourier transform back to time domain.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention and its advantages will be better understood by referring to the following detailed description and the attached drawings, in which:



FIG. 1 shows a simple two-dimensional earth model for a homogeneous half space with a free surface boundary on top;



FIG. 2 shows simulated seismic data generated using the earth model of FIG. 1 and using a finite difference algorithm that is 2nd order in time and 14th order in space;



FIG. 3 shows simulated seismic data for the same earth model in FIG. 1 but with a much smaller time step for the finite difference in time than the simulation in FIG. 2;



FIG. 4 shows the simulated data from FIG. 2 after applying the present inventive method to correct for temporal numerical dispersion;



FIG. 5 is a flow chart giving basic steps in an embodiment of the present invention that removes temporal numerical dispersion from simulated seismic data by resampling and scaling the transform of the simulated data in the frequency domain;



FIG. 6 is a flow chart giving basic steps in an embodiment of the present invention that applies temporal numerical dispersion to field seismic data, by resampling and scaling the transform of the seismic data in the frequency domain, so that the field data match the simulator data used in RTM or FWI gradient computations;



FIG. 7 shows an example, taken from Stork (2013), of how applying numerical temporal dispersion to the recorded seismic data improves the RTM image when the RTM image is computed using very long spatial derivative operators with an order of accuracy in the range from 24 to 30;



FIG. 8 shows the effects of temporal numerical dispersion on a broadband wavelet after wave propagation, causing the high-frequencies to propagate faster with a larger amount of dispersion visible at later times, which temporal dispersion can be removed by a correction operator;



FIG. 9 is a plot of relative phase speed versus normalized frequency for time differencing for the second order approximation for the temporal second derivative (Tong Fei, 1994);



FIG. 10 is a plot of relative phase speed versus normalized wavenumber for spatial differencing for the second order approximation for the spatial second derivative, showing that the dispersion due to the spatial operator approximately cancels the dispersion due to the temporal operator when the operators are of the same order of accuracy (Tong Fei, 1994);



FIGS. 11A-11E show results of a test example showing the temporal dispersion effects on the seismic wavelet due to finite difference simulation, then applying the present inventive method to remove or add temporal dispersion effects;



FIGS. 12A-12D show an example of how temporal dispersion corrections made with the present inventive method improve the broadband FWI results; and



FIGS. 13A-13C show another example of how temporal dispersion corrections made with the present inventive method improve the broadband FWI results.





The invention will be described in connection with example embodiments. However, to the extent that the following detailed description is specific to a particular embodiment or a particular use of the invention, this is intended to be illustrative only, and is not to be construed as limiting the scope of the invention. On the contrary, it is intended to cover all alternatives, modifications and equivalents that may be included within the scope of the invention, as defined by the appended claims.


DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

To illustrate the problem that the present invention solves, consider an earth model consisting of a simple two-dimensional half-space with a free surface boundary on top as shown in FIG. 1. The p-wave velocity is 2000 m/s. The source is located at x=800 m and z=800 m. The receivers are located on a line at a depth of 1000 m. The only reflector in the model is the free surface boundary. An impulsive source is simulated at zero time and the simulated receiver data due to a finite difference algorithm is shown in FIG. 2. The acoustic finite difference algorithm applied to the model is second order in time and 14th order in space. The vertical axis is time in seconds. The horizontal axis is trace number and there is a 10 m increment between trace locations. A large time step is used in the simulation and the events are distorted by temporal numerical dispersion. High-frequency energy arrives early. Very low-frequency energy arrives at roughly the correct time. The different wave propagation speeds for different frequencies is called dispersion. The exact acoustic wave equation in this case should provide a solution where all frequency components propagate at the same speed. The numerical solution has dispersion because the temporal finite difference operator is inexact. The temporal numerical dispersion is a larger effect for higher frequencies and later times.



FIG. 3 shows simulated seismic data for the same earth model in FIG. 1, but with a much smaller time step for the finite difference in time than the simulation in FIG. 2. These simulated data have less temporal numerical dispersion than shown in FIG. 2 but cost 1.5 times as much to simulate. This is the conventional way of minimizing temporal dispersion. FIG. 4 shows the simulated data from FIG. 2 after applying the present invention to correct for temporal numerical dispersion. The seismic events in FIG. 4 show much more accurate simulations compared to FIG. 2, and compare favorably to the results in FIG. 3. The cost associated with making this correction is very small compared to the cost of the simulation so the cost is almost the same as that for the data in FIG. 2. The invention enables accurate seismic simulation with a large time-step increment and lower cost to match or improve upon the accuracy of a costly seismic simulation with a very small time-step increment.


As stated above, a finite difference operator used for computing a temporal derivative has approximations that create numerical errors when used to solve partial differential equations. It is a realization of the present invention that for certain types of stationary differential operators that incorporate approximate temporal derivative operators, the correct solution is computed by the approximate equation, but at the wrong frequency. The invention uses this feature to correct an approximate solution into a more correct solution by a resampling operation in the frequency domain.


Virtually all of the time-domain forward and adjoint wave simulation algorithms used for seismic simulation, seismic migration and seismic full waveform inversion correspond to the type of stationary differential operators to which this invention applies. Electromagnetic equations and heat flow problems can also be formulated in a way such that the theory developed here applies. Thus, a wide range of time simulation processes may be able to use this method.


The form necessary for the invention to apply corresponds to that of a stationary differential operator equation including mixed or non-mixed terms of spatial and temporal derivatives with coefficients that may vary with space but do not vary in time. The differential operators for time stepping can be either explicit or implicit. For seismic simulation, RTM, and FWI applications, the basic import of this is that the earth model properties do not change during one seismic simulation. Alternatively, this assumption would be violated if the earth model were to change during the simulation. One example of a violation of this assumption would be if moving water waves on the air-water boundary were to make the earth model properties change with time during the simulation.


The present invention differs from Stork (2013) in many ways: (a) how the temporal numerical dispersion is corrected or applied (The invention uses Fourier-domain resampling instead of Stork's choice of time-domain filter banks to implement temporal numerical dispersion corrections.); (b) by extending the application to FWI objective function, gradient and Hessian computations; (c) by modifying dispersion from approximate derivative operators of any order of accuracy to any other order of accuracy and thereby enabling the match of temporal operator order to spatial operator, which enables (d) the application of temporal dispersion correction operators or their inverse to less perfect spatial operators. Shorter spatial operators enable more efficient halo exchanges for parallel domain-decomposed computations. The combination of all of these aspects can lead to improved efficiencies for a given level of accuracy for simulators, RTM applications and FWI applications.


The present invention differs from the patent application by Zhang et al. (2012) because the key step in the process is resampling in the frequency domain rather than filtering in the frequency domain. Filtering typically implies convolution but this invention is instead based upon resampling to change variables. The invention also has a more general range of applicability to a specific class of stationary differential operator equations. As a result the present invention applies to time-stepping differential equations in other fields, e.g. heat flow and reservoir simulation, in addition to seismic simulation and seismic migration. Zhang does not teach us to apply his method to FWI or other seismic applications.


Computing ωapprox (ω) for an Example Finite Difference Operator


A finite difference solution applies approximate derivative operators to solve a problem. The approximate derivative operators in the time domain can be Fourier transformed to the frequency domain and compared to the exact form of the derivative, which is iω.


The Fourier transform F(ω) of an explicit finite difference operator with coefficients fj at times tj is the Fourier transform of a digital filter. It is computed by the following equation.










F


(
ω
)


=




j
=
0


N
-
1










f
j



(

t
j

)




e


-
i






ω






t
j









(
1.1
)








On a regular grid, a second derivative finite difference operator is a symmetric digital filter.


Consider for example the explicit convolutional centered second derivative in time finite difference operator with norder+1 coefficents. Here, the coefficients aj represent the zero lag and positive lags of a symmetric filter used to approximate the second derivative operator. Those coefficients can be Taylor series coefficients or be optimized coefficients designed to fit a specified bandwidth with high accuracy. The exact operator in the Fourier domain would be −ω2. On a regular grid, a second derivative finite difference operator is a symmetric digital filter. The Fourier transform of a symmetric digital filter is a cosine transform










-


ω
approx
2



(


n
order

,
ω
,

Δ





t


)



=



a
0

+

2





j
=
1



n
order

/
2









a
j



cos


(

ω





j





Δ





t

)







Δ






t
2







(
1.2
)








where norder is the order of the finite difference approximation and Δt is the finite time step. Comparing the exact operator in the Fourier domain to the approximate finite difference operator in the Fourier domain leads to the following relationship between approximate angular frequency and true angular frequency.











ω
approx



(


n
order

,
ω
,

Δ





t


)


=




-

a
0


-

2





j
=
1



n
order

/
2









a
j



cos


(

j





ωΔ





t

)








Δ





t






(
1.3
)








The error for this order of approximation will be proportional to (Δt)norder when equation (1.3) applies to explicit temporal derivative operators derived from Taylor series expansions.


The second order approximation for the angular frequency made while doing a finite difference temporal second derivative corresponds to the following in the frequency domain as a function of the true angular frequency ω and the time step increment Δt.











ω
approx



(

2
,
ω
,

Δ





t


)


=




2
-

2






cos


(

ωΔ





t

)






Δ





t


=


2

Δ





t




sin


(


ψΔ





t

2

)








(
1.4
)








The inverse mapping from approximate angular frequency to true angular frequency can also be made.










ω


(


ω
approx

,

Δ





t


)


=



1

Δ





t





cos

-
1




(

1
-



(


ω
approx

,

Δ





t


)

2

2


)



=


2

Δ





t





sin

-
1




(



ω
approx


Δ





t

2

)








(
1.5
)








The examples above have been for explicit convolutional-style temporal derivative operators. This type of mapping can also be done for implicit operators as described by Crank and Nicolson (1947) that could be designed to have properties of unconditional stability for time stepping with large time increments. The most common Crank-Nicolson approach as implemented by Claerbout (1985) for a wave equation would use the second-order bilinear Z transform. For that case, this mapping would apply:











ω
approx



(

ω
,

Δ





t


)


=


2

Δ





t





tan


(


ωΔ





t

2

)


.






(
1.6
)








Comparing Solutions for Stationary Differential Operator Equations


Consider a differential operator L operating on a function u equal to a broad band source term s(x,t). Choose L to be a linear sum of terms, each scaled by the spatially varying coefficients and/or by spatial derivatives to any order and/or by mixed spatial derivatives to any order and/or by time derivatives to any order. The operator varies spatially with the kth operator coefficient term ck optionally a function of position x. However the operator is stationary with respect to time in that operator coefficients ck are not time dependent. The operator L may be dependent upon temporal derivatives of any order but not on time explicitly.











L


(



c
k



(
x
)


,





x
i



,




t



)




u


(

x
,
t

)



=

s


(

x
,
t

)






(
1.7
)








If the operator L contains time derivatives of any order but no coefficients that vary with time, then the frequency-domain equivalent operator {tilde over (L)} retains a similar form with each time derivative replaced by iω. Such an operator L is of the type of stationary differential operator to which the present inventive method applies.


Then if U(x,ω) is the temporal Fourier transform of the solution wavefield u(x,t) and S(x,ω) is the temporal Fourier transform of the source term s(x,t),












L
~



(



c
k



(
x
)


,





x
i



,
ω

)




U


(

x
,
ω

)



=


S


(

x
,
ω

)


.





(
1.8
)








The Helmholtz equation (Morse and Feschbach, 1953) is an example of a differential equation with the form given in equation 1.8.


The following two operator equations have identical solutions for ω21. Mathematically, this is a trivial statement since the two equations are identical except that the variables have been renamed. The key point is that ω1 and ω2 can represent different temporal derivative operators. This is how one can recognize that the approximate solution contains within it the true solution at the wrong frequency.












L
~



(



c
k



(
x
)


,





x
i



,

ω
1


)




U


(

x
,

ω
1


)



=

S


(

x
,

ω
1


)






(
1.9
)









L
~



(



c
k



(
x
)


,





x
i



,

ω
2


)




U


(

x
,

ω
2


)



=

S


(

x
,

ω
2


)






(
1.10
)







In practice, the solution U1(x,ω1) to the operator ω21) is usually computed for the following equation.












L
~



(



c
k



(
x
)


,





x
i



,


ω
2



(

ω
1

)



)





U
1



(

x
,

ω
1


)



=

S


(

x
,

ω
1


)






(
1.11
)








If ω1exact and ω21) is the Fourier transform of a temporal finite difference operator, then U1(x,ω1) would represent the solution to a specific temporal finite difference approximation. That solution can be mapped by a resampling and scaling operator in the frequency domain into a solution U2(x,ω2) with exact temporal derivatives consistent with equation (1.12) as follows.











U
2



(

x
,

ω
2


)


=



U
1



(

x
,


ω
2



(

ω
1

)



)





S


(

x
,


ω
2



(

ω
1

)



)



S


(

x
,

ω
1


)








(
1.12
)








Basic steps in this embodiment of the present inventive method are shown in the flow chart in FIG. 5. Note that U1(x,ω1) and U2(x,ω2) could be solutions to different operator equations if the meaning of ω1 and ω2 are different in the context of approximate and exact temporal derivative operators. Then the same mapping given in equation (1.12) still applies but in a different context. Basic steps in a second embodiment of the present inventive method suitable to be used for RTM and FWI applications are given in the flow chart in FIG. 6.


Equation 1.12 is quite general. However, one limitation is that if multiple seismic sources are being simultaneously simulated in a single simulation, as in simultaneous-source FWI or simultaneous source RTM (see, for example, U.S. Pat. No. 8,121,823 to Krebs, et al.), then the simultaneous sources need to have the same source time functions to within a scale factor. They can vary by scale factors of +1 and −1. They may be in multiple spatial locations.


In summary, the invention applies to correcting or modifying temporal numerical dispersion characteristics associated with solutions to stationary differential operator equations of the style discussed above. In one of its FIG. 5 embodiments, the present inventive method comprises the following basic steps:

  • (1) Begin with a solution u1(x,t1) to a stationary differential operator equation Lu1(x,t1)=s(x,t1) using a known approximate or true temporal derivative operator. This solution is the simulated seismic data 51 in the flow chart of FIG. 5.
  • (2) In step 52, do a temporal Fourier transform from time t1 to angular frequency ω1 converting u1(x,t1) into U1(x,ω1).











U
1



(

x
,

ω
1


)


=




-








u
1



(

x
,

t
1


)




e


-
i







ω
1



t
1








d






t
1







(
1.13
)







  • (3) Take ω1(ω) to be a bijective function over some range of ω that relates the approximate or true temporal derivative operator associated with ω1 used for solution U1(x,ω1) to the true ω used for the exact solution U(x,ω). This can be readily computed by taking a Fourier transform of the approximate operator and comparing that to the Fourier transform of an exact operator as discussed in a prior section. Likewise, take ω2(ω) to be a bijective function over some range of ω that relates the approximate or true temporal derivative operator ω2 used for solution U2(x,ω2) to the true ω used for the exact solution U(x,ω). The invention converts an available solution U1(x,ω1) with the temporal numerical dispersion characteristics of temporal derivative operators associated with ω1(ω) to match a desired solution U2(x,ω2) with the temporal numerical dispersion characteristics of temporal derivative operators associated with ω2(ω) by finding the bijective relationship ω21) and resampling U1(x,ω1) to get the desired values of U2(x,ω2) via equation (1.12). This is step 53.

  • (4) In step 54, perform an inverse temporal Fourier transform of U2(x,ω2) to get the temporal dispersion corrected or modified result u2(x,t2) in the time domain (55).












u
2



(

x
,

t
2


)


=


1

2

π











-








U
2



(

x
,

ω
2


)




e

i






ω
2



t
2








d






ω
2








(
1.14
)







Next, some aspects of the invention are described in more detail. The embodiment of the present invention implementing temporal numerical dispersion corrections, via resampling in the temporal Fourier domain, to simulated seismic data can be applied as a post-processing single-seismic-trace-at-a-time process applied either within the seismic simulator or as a separate seismic processing application. A flow chart showing basic steps in this embodiment of the present inventive method is given in FIG. 5. The associated computation time is negligible compared to the computation time needed for the simulator. The simulation time step and the source excitation time are required parameters and therefore incorporating this correction within the simulator application can be very convenient. If the application is done by a separate application, the simulation time step must be known in the separate application.


For a second embodiment of the present invention that applies temporal numerical dispersion via resampling in the temporal Fourier domain to field data to be input to RTM or FWI gradient or Hessian computation, this may be done as a preprocessing step. Basic steps in this embodiment are shown in FIG. 6, and it can be seen that the steps are the same as in FIG. 5, except that they are applied to the measured data 61 instead of the simulated data. However a different mapping relationship (not shown in the flow charts) will be used in the resampling step in the embodiment of FIG. 6, mapping frequency to a different ω2 than would typically be used in the embodiment of FIG. 5. Because the time step of the simulator used internally in the RTM or FWI application is required to be known, this step is most conveniently done as part of the RTM or FWI application, but can be done as separate pre-processing single-seismic-trace-at-a-time filter application. FIG. 7 taken from Stork (2013) shows the impact on an RTM image of applying temporal numerical dispersion to the input field data. It should be noted that Stork does this by method that is different from the present invention.


It may be noted that full waveform inversion can be corrected for temporal dispersion using either embodiment of the present inventive method, i.e. that of FIG. 5 or FIG. 6. In other words, the simulated data can be corrected to remove dispersion, or dispersion can be applied to the measured data to match the degree of dispersion introduced by whatever order of approximation the simulation time-stepping algorithm used to compute the time derivatives. As long as the simulated data and measured data have the same order of dispersion, the dispersion will cancel out when the objective function is computed to use for the model update.


The present invention can be used to either apply or remove all temporal numerical dispersion as shown in FIG. 8. The input has a broadband wavelet. After wave propagation, temporal numerical dispersion causes the high-frequencies to propagate faster with a larger amount of dispersion visible at later times. The temporal dispersion can be removed by a correction operator.


The present invention can be applied to change the temporal numerical dispersion characteristics of field or synthetic seismic data from any operator order to any other operator order. Equation 1.3 gives the relationship between true frequency and approximate frequency for explicit centered temporal finite difference operators on a regular grid. This relationship is objective over the specific range of frequency and time increment parameters of interest. Therefore the inverse relationship can be found. Therefore one can map any operator to the true operator and then back to another approximate operator. A general expression for the inverse may be difficult to write for some operator choices, but a computer can easily tabulate these and then look up values in the table to solve the inverse relationship.


The effect of a second order temporal finite difference operator on phase velocity has been described by Fei (1994) and is shown in FIG. 9. The compensating errors for the same order of spatial operator are shown by Fei (1994) in FIG. 10. The error compensation is exact in one dimensional wave propagation but only approximate for two-dimensional and three-dimensional wave propagation. Accuracy is often improved by matching time derivative operators to the same order of accuracy as chosen for the spatial derivative operators. The logic behind making this choice is discussed by Aldridge and Haney (2008) where they recommend always matching the order of approximation for time derivatives and spatial derivatives. This choice can be made for either forward simulation or for RTM and FWI gradient and Hessian applications.


A key aspect of the methods disclosed herein, as indicated by equation (1.12), is that the seismic data can be advantageously modified from one form of ω operator to another form by resampling in the frequency domain. The input and output ω operators can be exact or approximate, and if approximate, they can be explicit or implicit.


A test of the present invention is shown in FIGS. 11A-11E, mapping temporal numerical dispersion from one order of accuracy to another. FIG. 11A shows three input spikes at periodic intervals for a finite difference computer simulation. FIG. 11B shows what they look like due to temporal numerical dispersion after time steps with the time derivative approximated at order 2. The dispersion was added using the FIG. 6 embodiment of the present invention. FIG. 11C shows how the result of FIG. 11B is corrected to change the temporal numerical dispersion from order 2 to order 8 using the present inventive method. This might be done to match eighth-order spatial operators for a code that had spatial numerical dispersion. FIG. 11D shows the result after mapping of 11C back to 2nd order. The almost exact duplication of FIG. 11B shows how invertible the present inventive method is. To generate FIG. 11E, the present invention is applied to correct dispersion from order 2 to exact, i.e. the result in 11B (or 11D) is mapped to exact—all temporal numerical dispersion is removed.


An ideal simulation result with no temporal dispersion would be three spikes, i.e. this would be the ideal result for FIG. 11B. However, a simulator with time derivative operators that are second order accurate is used and creates data with temporal dispersion high frequency components that arrive early and the waveform shape varies with time. The dispersive simulated data with second order accuracy in time are converted into data with eighth order accuracy in time. These data can be mapped back to second order accuracy in time or back to data with no temporal numerical dispersion.


Low-frequency FWI is less affected by temporal numerical dispersion than broad-band FWI because temporal numerical dispersion is less important at low frequencies. High resolution images of the subsurface require broad band FWI, and temporal numerical dispersion corrections become more important. Temporal numerical dispersion corrections become very important when making accurate ties between inverted FWI earth model parameters and well logs.



FIGS. 12A-12D provide an example of how temporal dispersion corrections improve broadband FWI results. The initial model input to a first iteration of FWI, shown in FIG. 12A, is a very smooth representation of the subsurface and lacks detail. The true layered model for this simulation and inversion is given in FIG. 12B. The estimated FWI model doing FWI without including temporal numerical dispersion corrections is given in FIG. 12C. It may be noted how the layer boundaries are fuzzy and that some high-wavenumber events appear within the blocky layers. When temporal numerical dispersion corrections (made by the present inventive method) are included in the FWI earth model estimation process, the result, shown in FIG. 12D, is much closer to the true model.



FIGS. 13A-13C provide an example of how temporal dispersion corrections improve the broadband FWI results for another earth model, one with a more realistic “true” velocity model. Comparisons are made between synthetic well data (gray) versus the earth model. In FIG. 13A, the smooth initial earth model is compared to the true earth model. In FIG. 13B, the inverted FWI model without dispersion corrections is compared to the true earth model. In FIG. 13C, the FWI model with temporal numerical dispersion corrections are compared with the true earth model. Note that the improved result in 13C was generated by first applying temporal numerical dispersion to the true data, using the embodiment of the invention illustrated in FIG. 6, prior to running FWI with pre-defined simulation time-step of 0.001 sec and spatial finite difference order fourteen. Inaccuracies in the phase of the inverted model shown in FIG. 13B relative to the true model have been corrected using the invention. Computational costs for both 13B and 13C are similar. A geologist with expertise in well-log interpretation would note that the inverted FWI result with temporal numerical dispersion correction included would provide a significantly different interpretation of potential reservoir properties than the FWI result without the correction.


The foregoing description is directed to particular embodiments of the present invention for the purpose of illustrating it. It will be apparent, however, to one skilled in the art, that many modifications and variations to the embodiments described herein are possible. All such modifications and variations are intended to be within the scope of the present invention, as defined by the appended claims.


REFERENCES



  • Aldridge, David F., and Matthew M. Haney, “Numerical dispersion for the conventional-staggered-grid finite-difference elastic wave propagation algorithm,” Sandia National Laboratories, SAND2008-4991 (2008).

  • Claerbout, J., Imaging the Earth's Interior, Blackwell Scientific Publications, 96-99, 104, 116, 126, 141, 256-257, 265, 284, 305-307 (1985); this book may be viewed online at Stanford.edu/data/media/public/sep//prof/index.

  • Crank, J., and P. Nicolson, “A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type”. Proc. Camb. Phil. Soc. 43 (1), 50-67(1947).

  • Fei, Tong, “Elimination of numerical dispersion in finite difference modeling and migration by flux-corrected transport,” Ph.D. thesis, Colorado School of Mines (1994), particularly FIGS. 3.1 and 3.2; cwp.mines/edu/researchpublications/CWPresearchreports.

  • Morse, P. M. and Feshbach, H., Methods of Theoretical Physics, Part I., New York, McGraw-Hill, pp. 125-126, 271, and 509-510 (1953).

  • Stork, Christof, “Eliminating nearly all dispersion error from FD modeling and RTM with minimal cost increase,” EAGE expanded abstracts (2013).

  • Zhang, Linbin, Guojian Shan, Yue Wang, United States Patent Application Publication US 2012/0243371 A1(Sep. 27, 2012).


Claims
  • 1. A method for prospecting for hydrocarbons, comprising: obtaining measured seismic data;generating, with a computer, simulated seismic data using a finite-difference, time-stepping algorithm that approximates a time derivative operator to a selected order of approximation;performing, with the computer, full waveform inversion or reverse time migration of the measured seismic data with the simulated seismic data, wherein temporal numerical dispersion corresponding to the selected order of approximation is (i) removed from the simulated seismic data or (ii) introduced into the measured seismic data by steps including, performing, with the computer, a Fourier transform in time on (i) the simulated or (ii) the measured seismic data,then resampling the transformed seismic data in frequency domain, and then performing an inverse Fourier transform from frequency domain back to time domain,wherein said resampling utilizes a property of a class of stationary finite-difference operators,wherein in frequency domain, an aspect of the temporal numerical dispersion is that a desired numerical solution for a given frequency is computed at an incorrect frequency, and said resampling uses a mapping relationship that maps the incorrect frequency to the given frequency; andprospecting for hydrocarbons with the full-waveform-inverted seismic data or the reverse-time-migrated seismic data.
  • 2. The method of claim 1, further comprising scaling the resampled frequency-domain seismic data with a frequency-dependent scaling factor before performing the inverse Fourier transform back to time domain.
  • 3. The method of claim 2, wherein simulation of the seismic data comprises a wave propagation equation with a stationary, finite-difference differential operator and a source term S in frequency domain, and wherein the scaling factor can be expressed as
  • 4. The method of claim 1, wherein the time derivative being approximated by the finite-difference algorithm is a centered second derivative, the given frequency is true frequency, and the mapping relationship can be expressed as
  • 5. The method of claim 1, wherein said class of stationary finite-difference operators includes any differential operator that operates on a function of spatial position and time to equate to a source term, where the differential operator includes at least one spatial derivative of any order, at least one time derivative of any order, and may vary with position but is constant with time.
  • 6. The method of claim 1, wherein temporal numerical dispersion is removed from simulated seismic data by using a mapping relationship that maps the incorrect frequency to a true frequency, being a frequency at which the simulation generates a solution for the incorrect frequency with no temporal numerical dispersion.
  • 7. The method of claim 6, wherein spatial derivatives in the finite difference time stepping algorithm are approximated to order at least 20.
  • 8. The method of claim 1, wherein temporal numerical dispersion is removed from simulated seismic data by using a mapping relationship that maps the incorrect frequency to a frequency at which the simulation generates a solution having temporal numerical dispersion of a same order of approximation as a spatial derivative approximation in the finite-difference algorithm.
  • 9. The method of claim 1, wherein temporal numerical dispersion corresponding to the selected order of approximation in the algorithm is introduced into the measured seismic data to match the temporal numerical dispersion present in the simulated seismic data, said introduction of temporal numerical dispersion into the measured seismic data using a mapping relationship that is an inverse of a frequency mapping relationship that would remove all temporal numerical dispersion from the simulated seismic data.
  • 10. The method of claim 1, wherein prospecting for hydrocarbons comprises causing a well to be drilled at a location identified using the full-waveform-inverted seismic data or the reverse-time-migrated seismic data.
  • 11. A method for prospecting for hydrocarbons, comprising: obtaining measured seismic data;simulating, with a computer, seismic data to correspond to the measured seismic data using a finite-difference, time-stepping algorithm programmed on a computer, which algorithm approximates a time derivative operator to a selected order of approximation;removing, with the computer, temporal numerical dispersion caused by the approximation from the simulated seismic data using steps including, Fourier transforming, with the computer, the simulated seismic data to frequency domain, wherein a time variable is transformed to a frequency variable,resampling, with the computer, the simulated seismic data in the frequency domain, andinverse-transforming, with the computer, the resampled simulated seismic data back to time domain;reverse-time migrating, with the computer, the measured seismic data with the resampled data in time domain, or inverting, with the computer, full-wavefield inversion the measured seismic data with the resampled data in time domain;generating a subsurface image from the reverse-time migration or a subsurface model from the full-wavefield inversion; andprospecting for hydrocarbons with the subsurface image or the subsurface model.
  • 12. The method of claim 11, wherein the resampling maps the simulated seismic data for a given frequency to a different frequency at which the temporal numerical dispersion is removed.
  • 13. The method of claim 11, wherein prospecting for hydrocarbons comprises causing a well to be drilled at a location identified using the subsurface image or the subsurface model.
  • 14. A method for prospecting for hydrocarbons, comprising: obtaining measured seismic data;simulating, with a computer, seismic data to correspond to the measured seismic data using a finite-difference, time-stepping algorithm programmed on a computer, which algorithm approximates a time derivative operator to a selected order of approximation;introducing, with the computer, temporal numerical dispersion into the measured seismic data to match temporal numerical dispersion caused in the simulated seismic data by the selected order of approximation, using steps comprising: Fourier transforming, with the computer, the measured seismic data to frequency domain, wherein a time variable is transformed to a frequency variable;resampling, with the computer, the measured seismic data in the frequency domain;inverse-transforming, with the computer, the resampled measured seismic data back to time domain;reverse-time migrating or full-wavefield inverting the time domain resampled measured seismic data with the simulated seismic data;generating a subsurface image from the reverse-time migration or a subsurface model from the full-wavefield inversion; andprospecting for hydrocarbons with the subsurface image or the subsurface model.
  • 15. The method of claim 14, wherein the resampling maps the measured seismic data for a given frequency to a different frequency at which temporal numerical dispersion corresponding to the order of approximation in the algorithm is introduced into the measured seismic data.
  • 16. The method of claim 14, wherein prospecting for hydrocarbons comprises causing a well to be drilled at a location identified using the subsurface image or the subsurface model.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application 62/009,593, filed Jun. 9, 2014, entitled A Method for Temporal Dispersion Correction for Seismic Simulation, RTM and FWI, the entirety of which is incorporated by reference herein.

US Referenced Citations (222)
Number Name Date Kind
3812457 Weller May 1974 A
3864667 Bahjat Feb 1975 A
4159463 Silverman Jun 1979 A
4168485 Payton et al. Sep 1979 A
4545039 Savit Oct 1985 A
4562650 Nagasawa et al. Jan 1986 A
4575830 Ingram et al. Mar 1986 A
4594662 Devaney Jun 1986 A
4636957 Vannier et al. Jan 1987 A
4675851 Savit et al. Jun 1987 A
4686654 Savit Aug 1987 A
4707812 Martinez Nov 1987 A
4715020 Landrum, Jr. Dec 1987 A
4766574 Whitmore et al. Aug 1988 A
4780856 Becquey Oct 1988 A
4823326 Ward Apr 1989 A
4924390 Parsons et al. May 1990 A
4953657 Edington Sep 1990 A
4969129 Currie Nov 1990 A
4982374 Edington et al. Jan 1991 A
5260911 Mason et al. Nov 1993 A
5469062 Meyer, Jr. Nov 1995 A
5583825 Carrazzone et al. Dec 1996 A
5677893 de Hoop et al. Oct 1997 A
5715213 Allen Feb 1998 A
5717655 Beasley Feb 1998 A
5719821 Sallas et al. Feb 1998 A
5721710 Sallas et al. Feb 1998 A
5790473 Allen Aug 1998 A
5798982 He et al. Aug 1998 A
5822269 Allen Oct 1998 A
5838634 Jones et al. Nov 1998 A
5852588 de Hoop et al. Dec 1998 A
5878372 Tabarovsky et al. Mar 1999 A
5920838 Norris et al. Jul 1999 A
5924049 Beasley et al. Jul 1999 A
5999488 Smith Dec 1999 A
5999489 Lazaratos Dec 1999 A
6014342 Lazaratos Jan 2000 A
6021094 Ober et al. Feb 2000 A
6028818 Jeffryes Feb 2000 A
6058073 VerWest May 2000 A
6125330 Robertson et al. Sep 2000 A
6219621 Hornbostel Apr 2001 B1
6225803 Chen May 2001 B1
6311133 Lailly et al. Oct 2001 B1
6317695 Zhou et al. Nov 2001 B1
6327537 Ikelle Dec 2001 B1
6374201 Grizon et al. Apr 2002 B1
6381543 Guerillot et al. Apr 2002 B1
6388947 Washbourne et al. May 2002 B1
6480790 Calvert et al. Nov 2002 B1
6522973 Tonellot et al. Feb 2003 B1
6545944 de Kok Apr 2003 B2
6549854 Malinverno et al. Apr 2003 B1
6574564 Lailly et al. Jun 2003 B2
6593746 Stolarczyk Jul 2003 B2
6662147 Fournier et al. Dec 2003 B1
6665615 Van Riel et al. Dec 2003 B2
6687619 Moerig et al. Feb 2004 B2
6687659 Shen Feb 2004 B1
6704245 Becquey Mar 2004 B2
6714867 Meunier Mar 2004 B2
6735527 Levin May 2004 B1
6754590 Moldoveanu Jun 2004 B1
6766256 Jeffryes Jul 2004 B2
6826486 Malinverno Nov 2004 B1
6836448 Robertsson et al. Dec 2004 B2
6842701 Moerig et al. Jan 2005 B2
6859734 Bednar Feb 2005 B2
6865487 Charron Mar 2005 B2
6865488 Moerig et al. Mar 2005 B2
6876928 Van Riel et al. Apr 2005 B2
6882938 Vaage et al. Apr 2005 B2
6882958 Schmidt et al. Apr 2005 B2
6901333 Van Riel et al. May 2005 B2
6903999 Curtis et al. Jun 2005 B2
6905916 Bartsch et al. Jun 2005 B2
6906981 Vauge Jun 2005 B2
6927698 Stolarczyk Aug 2005 B2
6944546 Xiao et al. Sep 2005 B2
6947843 Fisher et al. Sep 2005 B2
6970397 Castagna et al. Nov 2005 B2
6977866 Huffman et al. Dec 2005 B2
6999880 Lee Feb 2006 B2
7046581 Calvert May 2006 B2
7050356 Jeffryes May 2006 B2
7069149 Goff et al. Jun 2006 B2
7027927 Routh et al. Jul 2006 B2
7072767 Routh et al. Jul 2006 B2
7092823 Lailly et al. Aug 2006 B2
7110900 Adler et al. Sep 2006 B2
7184367 Yin Feb 2007 B2
7230879 Herkenoff et al. Jun 2007 B2
7271747 Baraniuk et al. Sep 2007 B2
7330799 Lefebvre et al. Feb 2008 B2
7337069 Masson et al. Feb 2008 B2
7373251 Hamman et al. May 2008 B2
7373252 Sherrill et al. May 2008 B2
7376046 Jeffryes May 2008 B2
7376539 Lecomte May 2008 B2
7400978 Langlais et al. Jul 2008 B2
7436734 Krohn Oct 2008 B2
7480206 Hill Jan 2009 B2
7584056 Koren Sep 2009 B2
7599798 Beasley et al. Oct 2009 B2
7602670 Jeffryes Oct 2009 B2
7616523 Tabti et al. Nov 2009 B1
7620534 Pita et al. Nov 2009 B2
7620536 Chow Nov 2009 B2
7646924 Donoho Jan 2010 B2
7649805 Bose Jan 2010 B2
7672194 Jeffryes Mar 2010 B2
7672824 Dutta et al. Mar 2010 B2
7675815 Saenger et al. Mar 2010 B2
7679990 Herkenhoff et al. Mar 2010 B2
7684281 Vaage et al. Mar 2010 B2
7710821 Robertsson et al. May 2010 B2
7715985 Van Manen et al. May 2010 B2
7715986 Nemeth et al. May 2010 B2
7725266 Sirgue et al. May 2010 B2
7791980 Robertsson et al. Sep 2010 B2
7835072 Izumi Nov 2010 B2
7840625 Candes et al. Nov 2010 B2
7940601 Ghosh May 2011 B2
7941273 Thomsen May 2011 B2
8121823 Krebs et al. Feb 2012 B2
8248886 Neelamani et al. Aug 2012 B2
8428925 Krebs et al. Apr 2013 B2
8437998 Routh et al. May 2013 B2
8451684 Lee May 2013 B2
8456952 Tang Jun 2013 B2
8547794 Gulati et al. Oct 2013 B2
8688381 Routh et al. Apr 2014 B2
8781748 Laddoch et al. Jul 2014 B2
20020099504 Cross et al. Jul 2002 A1
20020120429 Ortoleva Aug 2002 A1
20020183980 Guillaume Dec 2002 A1
20040199330 Routh et al. Oct 2004 A1
20040225438 Okoniewski et al. Nov 2004 A1
20060235666 Assa et al. Oct 2006 A1
20070036030 Baumel et al. Feb 2007 A1
20070038691 Candes et al. Feb 2007 A1
20070274155 Ikelle Nov 2007 A1
20080175101 Saenger et al. Jul 2008 A1
20080306692 Singer et al. Dec 2008 A1
20090006054 Song Jan 2009 A1
20090067041 Krauklis et al. Mar 2009 A1
20090070042 Birchwood et al. Mar 2009 A1
20090083006 Mackie Mar 2009 A1
20090164186 Haase et al. Jun 2009 A1
20090164756 Dokken et al. Jun 2009 A1
20090187391 Wendt et al. Jul 2009 A1
20090248308 Luling Oct 2009 A1
20090254320 Lovatini et al. Oct 2009 A1
20090259406 Khadhraoui et al. Oct 2009 A1
20100008184 Hegna et al. Jan 2010 A1
20100018718 Krebs et al. Jan 2010 A1
20100039894 Abma et al. Feb 2010 A1
20100054082 McGarry et al. Mar 2010 A1
20100088035 Etgen et al. Apr 2010 A1
20100103772 Eick et al. Apr 2010 A1
20100118651 Liu et al. May 2010 A1
20100142316 Keers et al. Jun 2010 A1
20100161233 Saenger et al. Jun 2010 A1
20100161234 Saenger et al. Jun 2010 A1
20100185422 Hoversten Jul 2010 A1
20100208554 Chiu et al. Aug 2010 A1
20100212902 Baumstein et al. Aug 2010 A1
20100246324 Dragoset, Jr. et al. Sep 2010 A1
20100265797 Robertsson et al. Oct 2010 A1
20100270026 Lazaratos et al. Oct 2010 A1
20100286919 Lee et al. Nov 2010 A1
20100299070 Abma Nov 2010 A1
20110000678 Krebs et al. Jan 2011 A1
20110040926 Donderici et al. Feb 2011 A1
20110051553 Scott et al. Mar 2011 A1
20110090760 Rickett et al. Apr 2011 A1
20110131020 Meng Jun 2011 A1
20110134722 Virgilio et al. Jun 2011 A1
20110182141 Zhamikov et al. Jul 2011 A1
20110182144 Gray Jul 2011 A1
20110191032 Moore Aug 2011 A1
20110194379 Lee et al. Aug 2011 A1
20110222370 Downton et al. Sep 2011 A1
20110227577 Zhang et al. Sep 2011 A1
20110235464 Brittan et al. Sep 2011 A1
20110238390 Krebs et al. Sep 2011 A1
20110246140 Abubakar et al. Oct 2011 A1
20110267921 Mortel et al. Nov 2011 A1
20110267923 Shin Nov 2011 A1
20110276320 Krebs et al. Nov 2011 A1
20110288831 Tan et al. Nov 2011 A1
20110299361 Shin Dec 2011 A1
20110320180 Al-Saleh Dec 2011 A1
20120010862 Costen Jan 2012 A1
20120014215 Saenger et al. Jan 2012 A1
20120014216 Saenger et al. Jan 2012 A1
20120051176 Liu Mar 2012 A1
20120073824 Routh Mar 2012 A1
20120073825 Routh Mar 2012 A1
20120082344 Donoho Apr 2012 A1
20120143506 Routh et al. Jun 2012 A1
20120215506 Rickett et al. Aug 2012 A1
20120218859 Soubaras Aug 2012 A1
20120243371 Zhang Sep 2012 A1
20120275264 Kostov et al. Nov 2012 A1
20120275267 Neelamani et al. Nov 2012 A1
20120290214 Huo et al. Nov 2012 A1
20120314538 Washbourne et al. Dec 2012 A1
20120316790 Washbourne et al. Dec 2012 A1
20120316844 Shah et al. Dec 2012 A1
20130060539 Baumstein Mar 2013 A1
20130081752 Kurimura et al. Apr 2013 A1
20130238246 Krebs et al. Sep 2013 A1
20130279290 Poole Oct 2013 A1
20130282292 Wang et al. Oct 2013 A1
20130311149 Tang Nov 2013 A1
20130311151 Plessix Nov 2013 A1
20140350861 Wang et al. Nov 2014 A1
20140358504 Baumstein et al. Dec 2014 A1
20140372043 Hu et al. Dec 2014 A1
Foreign Referenced Citations (21)
Number Date Country
2 796 631 Nov 2011 CA
1 094 338 Apr 2001 EP
1 746 443 Jan 2007 EP
2 390 712 Jan 2004 GB
2 391 665 Feb 2004 GB
WO 2006037815 Apr 2006 WO
WO 2007046711 Apr 2007 WO
WO 2008042081 Apr 2008 WO
WO 2008123920 Oct 2008 WO
WO 2009067041 May 2009 WO
WO 2009117174 Sep 2009 WO
WO 2010085822 Jul 2010 WO
WO 2011040926 Apr 2011 WO
WO 2011091216 Jul 2011 WO
WO 2011093945 Aug 2011 WO
WO 2012024025 Feb 2012 WO
WO 2012041834 Apr 2012 WO
WO 2012083234 Jun 2012 WO
WO 2012134621 Oct 2012 WO
WO 2012170201 Dec 2012 WO
WO 2013081752 Jun 2013 WO
Non-Patent Literature Citations (174)
Entry
Anderson et al., “Numerical Temporal Dispersion Corrections for Broadband Temporal Simulation, RTM and FWI”, SEG New Orleans Annual Meeting, Oct. 2015, pp. 1096-1100.
Li et al., “3D weak-dispersion reverse time migration using a stereo-modeling operator”, Geophysics, vol. 80, No. 1, Feb. 2015, pp. 519-530.
Liang et al., “Comparison of numerical dispersion for finite-difference algorithms in transversely isotropic media with a vertical symmetry axis”, J. Geophysics Eng., vol. 12, Dec. 2015, pp. 108-113.
Anderson et al., “Time-reversal checkpointing methods of RTM and FWI”, Geophysics, vol. 77, No. 4, Aug. 2012, pp. 93-103.
Bunks et al., “Multiscale seismic waveform inversion”, Geophysics, vol. 60, No. 5, Oct. 1995, pp. 1457-1473.
Baysal et al., “Reverse Time Migration”, Geophysics, vol. 48, No. 11, Nov. 1983, pp. 1514-1524.
Jones, “Tutorial: migration imaging conditions”, www.firstbreak.org, vol. 32, Dec. 2014, pp. 45-55.
Fontana et al., “Past, Present and Future Advancements in Methods for Detecting Hydrocarbon Seepage after 75 Years*”, Jul. 2014, AAPG Rocky Mountain Section Meeting, Denver, CO, Jul. 2014, 49 pages.
Abt, D.L. et al. (2010), “North American lithospheric discontinuity structured imaged by Ps and Sp receiver functions”, J. Geophys. Res., 24 pgs.
Akerberg, P., et al. (2008), “Simultaneous source separation by sparse radon transform,” 78th SEG Annual International Meeting, Expanded Abstracts, pp. 2801-2805.
Aki, K. et al. (1980), “Quantitative Seismology: Theory and Methods vol. I—Chapter 7—Surface Waves in a Vertically Heterogenous Medium,” W.H. Freeman and Co., pp. 259-318.
Aki, K. et al. (1980), “Quantitative Seismology: Theory and Methods vol. I,” W.H. Freeman and Co., p. 173.
Aki et al. (1980), “Quantitative Seismology, Theory and Methods,” Chapter 5.20, W.H. Freeman & Co., pp. 133-155.
Amundsen, L. (2001), “Elimination of free-surface related multiples without need of the source wavelet,” Geophysics 60(1), pp. 327-341.
Anderson, J.E. et al. (2008), “Sources Near the Free-Surface Boundary: Pitfalls for Elastic Finite-Difference Seismic Simulation and Multi-Grid Waveform Inversion,” 70th EAGE Conf. & Exh., 4 pgs.
Barr, F.J. et al. (1989), “Attenuation of Water-Column Reverberations Using Pressure and Velocity Detectors in a Water-Bottom Cable,” 59th Annual SEG meeting, Expanded Abstracts, pp. 653-656.
Baumstein, A. et al. (2009), “Scaling of the Objective Function Gradient for Full Wavefield Inversion,” SEG Houston 2009 Int'l. Expo and Annual Meeting, pp. 224-2247.
Beasley, C. (2008), “A new look at marine simultaneous sources,” The Leading Edge 27(7), pp. 914-917.
Beasley, C. (2012), “A 3D simultaneous source field test processed using alternating projections: a new active separation method,” Geophsyical Prospecting 60, pp. 591-601.
Beaty, K.S. et al. (2003), “Repeatability of multimode Rayleigh-wave dispersion studies,” Geophysics 68(3), pp. 782-790.
Beaty, K.S. et al. (2002), “Simulated annealing inversion of multimode Rayleigh wave dispersion waves for geological structure,” Geophys. J. Int. 151, pp. 622-631.
Becquey, M. et al. (2002), “Pseudo-Random Coded Simultaneous Vibroseismics,” SEG Int'l. Exposition and 72th Annl. Mtg., 4 pgs.
Ben-Hadj-Ali, H. et al. (2009), “Three-dimensional frequency-domain full waveform inversion with phase encoding,” SEG Expanded Abstracts, pp. 2288-2292.
Ben-Hadj-Ali, H. et al. (2011), “An efficient frequency-domain full waveform inversion method using simultaneous encoded sources,” Geophysics 76(4), pp. R109-R124.
Benitez, D. et al. (2001), “The use of the Hilbert transform in ECG signal analysis,” Computers in Biology and Medicine 31, pp. 399-406.
Berenger, J-P. (1994), “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. of Computational Physics 114, pp. 185-200.
Berkhout, A.J. (1987), “Applied Seismic Wave Theory,” Elsevier Science Publishers, p. 142.
Berkhout, A.J. (1992), “Areal shot record technology,” Journal of Seismic Exploration 1, pp. 251-264.
Berkhout, A.J. (2008), “Changing the mindset in seismic data acquisition,” The Leading Edge 27(7), pp. 924-938.
Beylkin, G. (1985), “Imaging of discontinuities in the inverse scattring problem by inversion of a causal generalized Radon transform,” J. Math. Phys. 26, pp. 99-108.
Biondi, B. (1992), “Velocity estimation by beam stack,” Geophysics 57(8), pp. 1034-1047.
Bonomi, E. et al. (2006), “Wavefield Migration plus Monte Carlo Imaging of 3D Prestack Seismic Data,” Geophysical Prospecting 54, pp. 505-514.
Boonyasiriwat, C. et al. (2010), 3D Multisource Full-Waveform using Dynamic Random Phase Encoding, SEG Denver 2010 Annual Meeting, pp. 1044-1049.
Boonyasiriwat, C. et al. (2010), 3D Multisource Full-Waveform using Dynamic Random Phase Encoding, SEG Denver 2010 Annual Meeting, pp. 3120-3124.
Bunks, C., et al. (1995), “Multiscale seismic waveform inversion,” Geophysics 60, pp. 1457-1473.
Burstedde, G. et al. (2009), “Algorithmic strategies for full wavefoiin inversion: 1D experiments,” Geophysics 74(6), pp. WCC17-WCC46.
Chavent, G. et al. (1999), “An optimal true-amplitude least-squares prestack depth-migration operator,” Geophysics 64(2), pp. 508-515.
Choi, Y. et al. (2011), “Application of encoded multisource waveform inversion to marine-streamer acquisition based on the global correlation,” 73rd EAGE Conference, Abstract, pp. F026.
Choi, Y et al. (2012), “Application of multi-source waveform inversion to marine stream data using the global correlation naim,” Geophysical Prospecting 60, pp. 748-758.
Clapp, R.G. (2009), “Reverse time migration with random boundaries,” SEG International Exposition and Meeting, Expanded Abstracts, pp. 2809-2813.
Dai, W. et al. (2010), “3D Multi-source Least-squares Reverse Time Migration,” SEG Denver 2010 Annual Meeting, pp. 3120-3124.
Delprat-Jannuad, F. et al. (2005), “A fundamental limitation for the reconstruction of impedance profiles from seismic data,” Geophysics 70(1), pp. R1-R14.
Dickens, T.A. et al. (2011), RTM angle gathers using Poynting vectors, SEG Expanded Abstracts 30, pp. 3109-3113.
Donerici, B. et al. (1005), “Improved FDTD Subgridding Algorithms Via Digital Filtering and Domain Overriding,” IEEE Transactions on Antennas and Propagation 53(9), pp. 2938-2951.
Downey, N. et al. (2011), “Random-Beam Full-Wavefield Inversion,” 2011 San Antonio Annual Meeting, pp. 2423-2427.
Dunkin, J.W. et al. (1973), “Effect of Noimal Moveout on a Seismic Pluse,” Geophysics 38(4), pp. 635-642.
Dziewonski A. et al. (1981), “Preliminary Reference Earth Model”, Phys. Earth Planet. Int. 25(4), pp. 297-356.
Ernst, F.E. et al. (2000), “Tomography of dispersive media,” J. Acoust. Soc. Am 108(1), pp. 105-116.
Ernst, F.E. et al. (2002), “Removal of scattered guided waves from seismic data,” Geophysics 67(4), pp. 1240-1248.
Esmersoy, C. (1990), “Inversion of P and SV waves from multicomponent offset vertical seismic profiles”, Geophysics 55(1), pp. 39-50.
Etgen, J.T. et al. (2007), “Computational methods for large-scale 3D acoustic finite-difference modeling: A tutorial,” Geophysics 72(5), pp. SM223-SM230.
Fallat, M.R. et al. (1999), “Geoacoustic inversion via local, global, and hybrid algorithms,” Journal of the Acoustical Society of America 105, pp. 3219-3230.
Fichtner, A. et al. (2006), “The adjoint method in seismology I. Theory,” Physics of the Earth and Planetary Interiors 157, pp. 86-104.
Forbriger, T. (2003), “Inversion of shallow-seismic wavefields: I. Wavefield transformation,” Geophys. J. Int. 153, pp. 719-734.
Gao, H. et al. (2008), “Implementation of perfectly matched layers in an arbitrary geometrical boundary for leastic wave modeling,” Geophysics J. Int. 174, pp. 1029-1036.
Gibson, B. et al. (1984), “Predictive deconvolution and the zero-phase source,” Geophysics 49(4), pp. 379-397.
Godfrey, R. J. et al. (1998), “Imaging the Foiaven Ghost,” SEG Expanded Abstracts, 4 pgs.
Griewank, A. (1992), “Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation,” 1 Optimization Methods and Software, pp. 35-54.
Griewank, A. (2000), Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Society for Industrial and Applied Mathematics, 49 pgs.
Griewank, A. et al. (2000), “Algorithm 799: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation,” 26 ACM Transactions on Mathematical Software, pp. 19-45.
Griewank, a. et al. (1996), “Algorithm 755: A package for the automatic differentiation of algorithms written in C/C++,” ACM Transactions on Mathematical Software 22(2), pp. 131-167.
Haber, E. et al. (2010), “An effective method for parameter estimation with PDE constraints with multiple right hand sides,” Preprint—UBC http://www.math.ubc.ca/˜haber/pubs/PdeOptStochV5.pdf.
Hampson, D.P. et al. (2005), “Simultaneous inversion of pre-stack seismic data,” SEG 75th Annual Int'l. Meeting, Expanded Abstracts, pp. 1633-1637.
Heinkenschloss, M. (2008), :“Numerical Solution of Implicity Constrained Optimization Problems,” CAAM Technical Report TR08-05, 25 pgs.
Helbig, K. (1994), “Foundations of Anisotropy for Exploration Seismics,” Chapter 5, pp. 185-194.
Hellmann, F.J. (2010), “Randomized dimensionality reduction for full-wavefami inversion,” EAGE abstract G001, EAGE Barcelona meeting, 5 pgs.
Holschneider, J. et al. (2005), “Characterization of dispersive surface waves using continuous wavelet transfolins,” Geophys. J. Int. 163, pp. 463-478.
Hu, L.Z. et al. (1987), “Wave-field transformations of vertical seismic profiles,” Geophysics 52, pp. 307-321.
Huang, Y. et al. (2012), “Multisource least-squares migration of marine streamer and land data with frequency-division encoding,” Geophysical Prospecting 60, pp. 663-680.
Igel, H. et al. (1996), “Waveform inversion of marine reflection seismograms for P impedance and Poisson's ratio,” Geophys. J. Int. 124, pp. 363-371.
Ikelle, L.T. (2007), “Coding and decoding: Seismic data modeling, acquisition, and processing,” 77th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 66-70.
Jackson, D.R. et al. (1991), “Phase conjugation in underwater acoustics,” J. Acoust. Soc. Am. 89(1), pp. 171-181.
Jing, X. et al. (2000), “Encoding multiple shot gathers in prestack migration,” SEG International Exposition and 70th Annual Meeting Expanded Abstracts, pp. 786-789.
Kennett, B.L.N. (1991), “The removal of free surface interactions from three-component seismograms”, Geophys. J. Int. 104, pp. 153-163.
Kennett, B.L.N. et al. (1988), “Subspace methods for large inverse problems with multiple parameter classes,” Geophysical J. 94, pp. 237-247.
Krebs, J.R. (2008), “Fast Full-wavefield seismic inversion using encoded sources,” Geophysics 74(6), pp. WCC177-WCC188.
Krohn, C.E. (1984), “Geophone ground coupling,” Geophysics 49(6), pp. 722-731.
Kroode, F.T. et al. (2009), “Wave Equation Based Model Building and Imaging in Complex Settings,” OTC 20215, 2009 Offshore Technology Conf., Houston, TX, May 4-7, 2009, 8 pgs.
Kulesh, M. et al. (2008), “Modeling of Wave Dispersion Using Continuous Wavelet Transforms II: Wavelet-based Frequency-velocity Analysis,” Pure Applied Geophysics 165, pp. 255-270.
Lancaster, S. et al. (2000), “Fast-track ‘colored’ inversion,” 70th SEG Ann. Meeting, Expanded Abstracts, pp. 1572-1575.
Lazaratos, S. et al. (2009), “Inversion of Pre-migration Spectral Shaping,” 2009 SEG Houston Int'l. Expo. & Ann. Meeting, Expanded Abstracts, pp. 2383-2387.
Lazaratos, S. (2006), “Spectral Shaping Inversion for Elastic and Rock Property Estimation,” Research Disclosure, Issue 511, pp. 1453-1459.
Lazaratos, S. et al. (2011), “Improving the convergence rate of full wavefield inversion using spectral shaping,” SEG Expanded Abstracts 30, pp. 2428-2432.
Lecomte, I. (2008), “Resolution and illumination analyses in PSDM: A ray-based approach,” The Leading Edge, pp. 650-663.
Lee, S. et al. (2010), “Subsurface parameter estimation in full wavefield inversion and reverse time migration,” SEG Denver 2010 Annual Meeting, pp. 1065-1069.
Levanon, N. (1988), “Radar Principles,” Chpt. 1, John Whitey & Sons, New York, pp. 1-18.
Liao, Q. et al. (1995), “2.5D full-wavefield viscoacoustic inversion,” Geophysical Prospecting 43, pp. 1043-1059.
Liu, F. et al. (2007), “Reverse-time migration using one-way wavefield imaging condition,” SEG Expanded Abstracts 26, pp. 2170-2174.
Liu, F. et al. (2011), “An effective imaging condition for reverse-time migration using wavefield decomposition,” Geophysics 76, pp. S29-S39.
Maharramov, M. et al. (2007) , “Localized image-difference wave-equation tomography,” SEG Annual Meeting, Expanded Abstracts, pp. 3009-3013.
Malmedy, V. et al. (2009), “Approximating Hessians in unconstrained optimization arising from discretized problems,” Computational Optimization and Applications, pp. 1-16.
Marcinkovich, C. et al. (2003), “On the implementation of perfectly matched layers in a three-dimensional fourth-order velocity-stress finite difference scheme,” J. of Geophysical Research 108(B5), 2276.
Martin, G.S. et al. (2006), “Marmousi2: An elastic upgrade for Marmousi,” The Leading Edge, pp. 156-166.
Meier, M.A. et al. (2009), “Converted wave resolution,” Geophysics, 74(2):doi:10.1190/1.3074303, pp. Q1-Q16.
Moghaddam, P.P. et al. (2010), “Randomized full-waveform inversion: a dimenstionality-reduction approach,” 80th SEG Ann. Meeting, Expanded Abstracts, pp. 977-982.
Mora, P. (1987), “Nonlinear two-dimensional elastic inversion of multi-offset seismic data,” Geophysics 52, pp. 1211-1228.
Mora, P. (1987), “Elastic Wavefield Inversion,” PhD Thesis, Stanford University, pp. 22-25.
Mora, P. (1989), “Inversion = migration + tomography,” Geophysics 64, pp. 888-901.
Nazarian, S. et al. (1983), “Use of spectral analysis of surface waves method for determination of moduli and thickness of pavement systems,” Transport Res. Record 930, pp. 38-45.
Neelamani, R., (2008), “Simultaneous sourcing without compromise,” 70th Annual Int'l. Conf. and Exh., EAGE, 5 pgs.
Neelamani, R. (2009), “Efficient seismic forward modeling using simultaneous sources and sparsity,” SEG Expanded Abstracts, pp. 2107-2111.
Nocedal, J. et al. (2006), “Numerical Optimization, Chapt. 7—Large-Scale Unconstrained Optimization,” Springer, New York, 2nd Edition, pp. 165-176.
Nocedal, J. et al. (2000), “Numerical Optimization-Calculating Derivatives,” Chapter 8, Springer Verlag, pp. 194-199.
Ostmo, S. et al. (2002), “Finite-difference iterative migration by linearized waveform inversion in the frequency domain,” SEG Int'l. Expo. & 72nd Ann. Meeting, 4 pgs.
Park, C.B. et al. (1999), “Multichannel analysis of surface waves,” Geophysics 64(3), pp. 800-808.
Park, C.B. et al. (2007), “Multichannel analysis of surface waves (MASW)—active and passive methods,” The Leading Edge, pp. 60-64.
Pica, A. et al. (2005), “3D Surface-Related Multiple Modeling, Principles and Results,” 2005 SEG Ann. Meeting, SEG Expanded Abstracts 24, pp. 2080-2083.
Plessix, R.E. et al. (2004), “Frequency-domain finite-difference amplitude preserving migration,” Geophys. J. Int. 157, pp. 975-987.
Porter, R.P. (1989), “Generalized holography with application to inverse scattering and inverse source problems,” In E. Wolf, editor, Progress in Optics XXVII, Elsevier, pp. 317-397.
Pratt, R.G. et al. (1998), “Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion,” Geophys. J. Int. 133, pp. 341-362.
Pratt, R.G. (1999), “Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model,” Geophysics 64, pp. 888-901.
Rawlinson, N. et al. (2008), “A dynamic objective function technique for generating multiple solution models in seismic tomography,” Geophys. J. Int. 178, pp. 295-308.
Rayleigh, J.W.S. (1899), “On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Phil. Mag. 47, pp. 375-384.
Romero, L.A. et al. (2000), Phase encoding of shot records in prestack migration, Geophysics 65, pp. 426-436.
Ronen S. et al. (2005), “Imaging Downgoing waves from Ocean Bottom Stations,” SEG Expanded Abstracts, pp. 963-967.
Routh, P. et al. (2011), “Encoded Simultaneous Source Full-Wavefield Inversion for Spectrally-Shaped Marine Streamer Data,” SEG San Antonio 2011 Ann. Meeting, pp. 2433-2438.
Ryden, N. et al. (2006), “Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra,” Geophysics 71(4), pp. R49-R58.
Sambridge, M.S. et al. (1991), “An Alternative Strategy for Non-Linear Inversion of Seismic Waveforms,” Geophysical Prospecting 39, pp. 723-736.
Schoenberg, M. et al. (1989), “A calculus for finely layered anisotropic media,” Geophysics 54, pp. 581-589.
Schuster, G.T. et al. (2010), “Theory of Multisource Crosstalk Reduction by Phase-Encoded Statics,” SEG Denver 2010 Ann. Meeting, pp. 3110-3114.
Sears, T.J. et al. (2008), “Elastic full waveform inversion of multi-component OBC seismic data,” Geophysical Prospecting 56, pp. 843-862.
Sheen, D-H. et al. (2006), “Time domain Gauss-Newton seismic waveform inversion in elastic media,” Geophysics J. Int. 167, pp. 1373-1384.
Shen, P. et al. (2003), “Differential semblance velocity analysis by wave-equation migration,” 73rd Ann. Meeting of Society of Exploration Geophysicists, 4 pgs.
Sheng, J. et al. (2006), “Early arrival waveform tomography on near-surface refraction data,” Geophysics 71, pp. U47-U57.
Sheriff, R.E.et al. (1982), “Exploration Seismology”, pp. 134-135.
Shih, R-C. et al. (1996), “Iterative pre-stack depth migration with velocity analysis,” Terrestrial, Atmospheric & Oceanic Sciences 7(2), pp. 149-158.
Shin, C. et al. (2001), “Waveform inversion using a logarithmic wavefield,” Geophysics 49, pp. 592-606.
Simard, P.Y. et al. (1990), “Vector Field Restoration by the Method of Convex Projections,” Computer Vision, Graphics and Image Processing 52, pp. 360-385.
Sirgue, L. (2004), “Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies,” Geophysics 69, pp. 231-248.
Soubaras, R. et al. (2007), “Velocity model building by semblance maximization of modulated-shot gathers,” Geophysics 72(5), pp. U67-U73.
Spitz, S. (2008), “Simultaneous source separation: a prediction-subtraction approach,” 78th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 2811-2815.
Stefani, J. (2007), “Acquisition using simultaneous sources,” 69th Annual Conf. and Exh., EAGE Extended Abstracts, 5 pgs.
Symes, W.W. (2007), “Reverse time migration with optimal checkpointing,” Geophysics 72(5), pp. P.SM213-SM221.
Symes, W.W. (2009), “Interface error analysis for numerical wave propagation,” Compu. Geosci. 13, pp. 363-371.
Tang, Y. (2008), “Wave-equation Hessian by phase encoding,” SEG Expanded Abstracts 27, pp. 2201-2205.
Tang, Y. (2009), “Target-oriented wave-equation least-squares migration/inversion with phase-encoded Hessian,” Geophysics 74, pp. WCA95-WCA107.
Tang, Y. et al. (2010), “Preconditioning full waveform inversion with phase-encoded Hessian,” SEG Expanded Abstracts 29, pp. 1034-1037.
Tarantola, A. (1986), “A strategy for nonlinear elastic inversion of seismic reflection data,” Geophysics 51(10), pp. 1893-1903.
Tarantola, A. (1988), “Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation,” Pure and Applied Geophysics 128, pp. 365-399.
Tarantola, A. (2005), “Inverse Problem Theory and Methods for Model Parameter Estimation,” SIAM, pp. 79.
Tarantola, A. (1984), “Inversion of seismic reflection data in the acoustic approximation,” Geophysics 49, pp. 1259-1266.
Trantham, E.C. (1994), “Controlled-phase acquisition and processing,” SEG Expanded Abstracts 13, pp. 890-894.
Tsvankin, I. (2001), “Seismic Signatures and Analysis of Reflection Data in Anisotropic Media,” Elsevier Science, p. 8.
Valenciano, A.A. (2008), “Imaging by Wave-Equation Inversion,” A Dissertation, Stanford University, 138 pgs.
van Groenestijn, G.J.A. et al. (2009), “Estimating primaries by sparse inversion and application to near-offset reconstruction,” Geophyhsics 74(3), pp. A23-A28.
van Manen, D.J. (2005), “Making wave by time reversal,” SEG International Exposition and 75th Annual Meeting, Expanded Abstracts, pp. 1763-1766.
Verschuur, D.J. (2009), Target-oriented, least-squares imaging of blended data, 79th Annual Int'l. Meeting, SEG Expanded Abstracts, pp. 2889-2893.
Verschuur, D.J. et al. (1992), “Adaptive surface-related multiple elimination,” Geophysics 57(9), pp. 1166-1177.
Verschuur, D.J. (1989), “Wavelet Estimation by Prestack Multiple Elimination,” SEG Expanded Abstracts 8, pp. 1129-1132.
Versteeg, R. (1994), “The Marmousi experience: Velocity model determination on a synthetic complex data set,” The Leading Edge, pp. 927-936.
Vigh, D. et al. (2008), “3D prestack plane-wave, full-waveform inversion,” Geophysics 73(5), pp. VE135-VE144.
Wang, Y. (2007), “Multiple prediction through inversion: Theoretical advancements and real data application,” Geophysics 72(2), pp. V33-V39.
Wang, K. et al. (2009), “Simultaneous full-wavefoim inversion for source wavelet and earth model,” SEG Int'l. Expo. & Ann. Meeting, Expanded Abstracts, pp. 2537-2541.
Weglein, A.B. (2003), “Inverse scattering series and seismic exploration,” Inverse Problems 19, pp. R27-R83.
Wong, M. et al. (2010), “Joint least-squares inversion of up- and down-going signal for ocean bottom data sets,” SEG Expanded Abstracts 29, pp. 2752-2756.
Wu R-S. et al. (2006), “Directional illumination analysis using beamlet decomposition and propagation,” Geophysics 71(4), pp. S147-S159.
Xia, J. et al. (2004), “Utilization of high-frequency Rayleigh waves in near-surface geophysics,” The Leading Edge, pp. 753-759.
Xie, X. et al. (2002), “Extracting angle domain infoimation from migrated wavefield,” SEG Expanded Abstracts21, pp. 1360-1363.
Xie, X.-B. et al. (2006), “Wave-equation-based seismic illumination analysis,” Geophysics 71(5), pp. S169-S177.
Yang, K. et al. (2000), “Quasi-Orthogonal Sequences for Code-Division Multiple-Access Systems,” IEEE Transactions on Information Theory 46(3), pp. 982-993.
Yoon, K. et al. (2004), “Challenges in reverse-time migration,” SEG Expanded Abstracts 23, pp. 1057-1060.
Young, J. et al. (2011), “An application of random projection to parameter estimation in partial differential equations,” SIAM, 20 pgs.
Zhang, Y. (2005), “Delayed-shot 3D depth migration,” Geophysics 70, pp. E21-E28.
Ziolkowski, A. (1991), “Why don't we measure seismic signatures?,” Geophysics 56(2), pp. 190-201.
U.S. Appl. No. 14/329,431, filed Jul. 11, 2014, Krohn et al.
U.S. Appl. No. 14/330,767, filed Jul. 14, 2014, Tang et al.
Aldridge, D.F. et al. (2008), “Numerical dispersion for the conventional-staggered-grid finite-difference elastic wave propagation algorithm,” Sandia National Laboratories, SAND2008-4991, pp. 1-45.
Aldridge, D.F. et al. (2008), “Numerical dispersion for the conventional-staggered-grid finite-difference elastic wave propagation algorithm,” Sandia National Laboratories, SAND2008-4991, pp. 46-91.
Claerbout, J. (1985), “Imaging the Earth's Interior,” Blackwell Scientific Publications, pp. 96-99, 104, 116, 126, 141, 256-257, 265, 284, 305-307.
Crank, J. et al. (1947), “A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type”. Proc. Camb. Phil. Soc. 43(1), pp. 50-67.
Etgen, J.T. et al. (2009), “The pseudo-analytical method: application of pseudo-Laplacians to acoustic and acoustic anisotropic wave propagation,” SEG Houston 2009 Int'l Exposition and Annual Meeting, pp. 2552-2556.
Fei, T. (1993), “Elimination of numerical dispersion in finite difference modeling and migration by flux-corrected transport,” Ph.D. thesis, Colorado School of Mines, 39 pgs.
Morse, P.M. et al. (1953) “Methods of Theoretical Physics, Part I,” New York, McGraw-Hill, pp. 125-126, 271, and 509-510.
Stork, C. (2013), “Eliminating nearly all dispersion error from FD modeling and RTM with minimal cost increase,” EAGE Expanded Abstracts, 5 pgs.
Related Publications (1)
Number Date Country
20150355356 A1 Dec 2015 US
Provisional Applications (1)
Number Date Country
62009593 Jun 2014 US