The present application claims the benefit under 35 U.S.C.§ 119 of German Patent Application No. DE 102019209534.8 filed on Jun. 28, 2019, which is expressly incorporated herein by reference in its entirety.
The present invention relates to a computer-implemented method for testing a vehicle system.
An important component for the development of highly automated or autonomous vehicles is the validation of the driving functions for a preferably large number of situations and scenarios. The validation in this case is to ensure that vehicle systems fulfill certain requirements, in particular, safety requirements, in the respective situations and thus ensure a desired setpoint behavior of the vehicle.
Among the previous methods, there are, for example, rigid scenario catalogs, which describe a fixed set of exemplary, mostly country-specific, sequences. On this basis, however, the determination of a cover profile for the validation is hardly possible, even among users of ontologies. Very long lists of scenarios quickly also become necessary in order to even achieve a minimal cover profile.
Other measures for validation include evaluations of accident databases or endurance tests using security drivers. In both methods, a cover highly subject to chance takes place, the latter method in particular is also very complex and cost-intensive.
A variation of primarily physical parameters of a given simulation scenario may take place via fuzzing or optimization-based testing (for example, search-based testing). No systematic abstraction of prevailing traffic situations takes place, however, as a result of which here, too, a cover profile may be determined only with great difficulty.
A method and device for creating and providing a highly accurate map are described in German Patent Application No. DE 10 2017 207257 A1. A device for validating diagnostic commands to a control unit is described in German Patent Application No. DE 10 2018 214999 A1. German Patent Application No. DE 10 2017 216801 A1 describes a method for monitoring at least one component of a motor vehicle, which is used for the trajectory planning.
In accordance with an example embodiment of the present invention, a computer-implemented method for testing a vehicle system is provided, including the steps:
The digital road map in this case may be a detailed road map, but may also be provided by data of an abstract road scheme. It may contain, in particular, pieces of information about at least one road or open space, for example, about roadway width, roadway boundaries, positions or extensions of the road or the open space, curve radii, roadway markings, intersections, traffic lights and traffic signs.
The example methods are carried out in a first preferred embodiment of the present invention in a vehicle during a driving operation. In this way an online monitoring of vehicle functions is possible. Thus, for example, a substitute response may be carried out, a switch to a redundant vehicle system may be made or a driver alert may be output if an error or a weakness is detected in the vehicle system. In this way, it is possible to significantly increase the safety of the monitored vehicle.
Alternatively, the example methods may also be carried out in a development environment, for example, in a simulation environment or on a test stand for a vehicle system.
In preferred embodiments of the present invention, the determined zones include at least one static zone, the size of which results from static elements of the digital road map, and at least one dynamic zone, the size of which is a function of a characteristic of at least one additional road user, in particular, of a dynamic state of the additional road user, or of a characteristic of a vehicle that includes the vehicle system, in particular, of a dynamic state of the vehicle. The characteristic of the at least one additional road user in this case is ascertained preferably from a behavior model relating to the road user, in particular, from a physical movement model relating to the road user.
In preferred embodiments of the present invention, the determined zones abstracted from the digital map are determined as logical zones and a zone graph relating to the determined zones of the digital map is ascertained, as a function of which the possible sequences are ascertained. The possible sequences in this case may be subdivided into equivalence classes, those sequences of the possible sequences in which an identical setpoint behavior for the vehicle system is applicable being assigned to the same equivalence class. A phase graph may also be generated as a function of the zone graph and of the equivalence classes, as a function of which the possible sequences are ascertained. A cover profile for the test of the vehicle system is preferably determined as a function of the assignment to the equivalence classes.
In one preferred embodiment of the present invention, zones for which a cover is critical are identified as a function of the digital map, of the determined zones and of the possible sequences. An error or a weakness may be detected if a possible coverage for the identified zones is determined based on input variables. The input variables in this case may include pieces of information about external influences, in particular, weather data, pieces of road information, in particular, pieces of development information, pieces of information about additional road users, in particular, their size, pieces of information about an object that impedes an intended behavior of a vehicle that includes the vehicle system, or pieces of information about sensors of the vehicle system. Requirements for a perception of the vehicle system or of a vehicle that includes the vehicle system may, in particular, also be created as a function of the identified zones, or training data or test data for a perception of the vehicle system of a vehicle of the vehicle system that includes the vehicle system or a cover profile for training data or test data for a perception of the vehicle system of a vehicle of the vehicle system that includes the vehicle system may be determined.
In preferred embodiments of the present invention, an error message is output or the vehicle system is deactivated or the vehicle system is transferred to a safe state if an error or weakness in the vehicle system is detected. Alternatively or in addition, the vehicle system may also be automatically improved if an error or a weakness in the vehicle system is detected.
The example methods in accordance with the present invention are preferably used for a vehicle system that includes a computer program, which prompts actuator interventions as a function of sensor values, in particular, by undertaking a behavior planning for a vehicle as a function of the sensor values, and prompts actuator interventions for the implementation thereof.
In preferred embodiments of the present invention, the ascertainment of the possible sequences is a function of pieces of information about at least one additional road user, in particular, about a vehicle or a pedestrian, or of pieces of information about an object, which impedes an intended behavior of the vehicle that includes the vehicle system. The ascertainment of additional input variables may also be a function, in particular, of pieces of information about external influences, of pieces of information about additional road users, of pieces of information about an existing or planned route of the vehicle system or of a vehicle that includes the vehicle system or pieces of information about the vehicle system or about a vehicle that includes the vehicle system.
The predetermined requirement advantageously includes a traffic regulation, a safety requirement for a movement behavior of the vehicle or of a vehicle that includes the vehicle system or a comfort requirement according to the specification of the vehicle system or of a vehicle that includes the vehicle system.
To ascertain the possible sequences for a digital map, it is possible in preferred embodiments of the present invention to use the results of an already-completed ascertainment of the digital map segment. In this case, a new ascertainment of the possible sequences takes place, in particular, for a transition between the segments.
The example methods according to the present invention may be carried out, in particular, on computers of a simulation environment, of a test stand or online in the vehicle. For this purpose, a computer program is executed, which is configured to carry out the methods and is stored for processing in a machine-readable memory.
The example methods according to the present invention allow for a structured derivation of desired behaviors and of test cases for validating a vehicle system. In this case, the guarantee of a completeness with respect to known influence factors, in particular, also becomes possible, preferably via a structured definition of equivalence classes on the basis of known features and effects that occur in road traffic. An automated redundancy analysis and gap analysis is just as possible as a definition and ascertainment of cover profiles.
The example methods according to the present invention also achieve a significant reduction of the description complexity of the scenarios to be validated, the scope of the description may be exponentially reduced.
The example methods according to the present invention are very flexible and modular. Important influence factors may be added in an additive manner, existing scenarios are maintained, but may also be automatically expanded by the new influence factors. The model-based approach allows for simple transferability to other countries. A modular description of the individual effects that contribute to a complex behavior decision (for example, consideration of a pedestrian crosswalk separate from an intersection at which it is located) is enabled by an abstraction of traffic situations into logical zones. This results in a high reduction of the complexity and a high degree of reusability.
A structured, largely automated derivation of complete test suites for autonomous vehicles (auto, robot, autonomous industrial truck, etc.) is achieved based on generic traffic segments and subject populations, which enable a validation of the HAD systems of vehicles.
Specific embodiments of the present invention are explained in greater detail below with reference to the figures.
The example methods according to the present invention are described below with reference to a vehicle system of an at least semi-autonomous or highly automated vehicle. A vehicle system in this case may, in particular, be a sub-system of the vehicle. In particularly preferred embodiments, the vehicle system includes at least one computer program, which prompts actuator interventions as a function of sensor values, in particular, by undertaking a behavior planning for a vehicle as a function of the sensor values and prompts actuator interventions for the implementation thereof. Thus, for example, pieces of surroundings information may be detected by sensors and a steering, acceleration or brake application may be prompted as a function of the detected sensor values.
Possible vehicle systems of such a vehicle may include a perception layer or sensor layer, a layer for situation analysis and prediction, a layer for selecting and/or monitoring a desired vehicle behavior from potential behavior patterns and/or a layer for controlling actuators for achieving the desired vehicle behavior.
When validating such a vehicle system, it may be checked whether these certain requirements, in particular, safety requirements, are fulfilled, in particular, whether actually correct or safe driving behavior is prompted in response to particular situation analyses or predictions.
The following possible input variables 101 through 106 are shown in the first column of the diagram:
Method steps 111, 121, 131, 132, 141, 151, 152, 161, 162, 171 and 172 are shown in the additional columns of the diagram in
In step 111, on the basis of particular input variables, in particular, as a function of digital map 102, of route information 103 and of vehicle information 104, for example, of the vehicle length, static zones for the digital map are derived. The static zones may be calculated automatically from such pieces of information. The logical zones thus calculated are, in particular, fixed and may be mapped onto the corresponding physical elements of the map (i.e., the roads or road lanes, the pedestrian crosswalks, etc.). The static zones may be joined together to form a static zone graph.
Static zones in this case are, in particular, zones that include a variable separate from the speed of the vehicle under consideration such as, for example, a given pedestrian crosswalk or an intersection area. They may be derived automatically from the map.
In step 121, an expansion to include dynamic zones takes place, in particular, the static zone graph may be expanded to include the dynamic zones to form a dynamic zone graph. Dynamic zones are automatically calculated preferably on the basis of models of the individual subjects, on the basis of requirements of the allowable maneuvering of the vehicle and on the pieces of vehicle information. This calculation advantageously expands automatically by the use of models to other road users to be considered and is applicable to arbitrary types of roads (urban, expressway, etc.). The models such as behavior models in particular, are used, in particular, for calculating, coming from which areas (zones), other road users must still be taken into account for a (possible) later decision of the vehicle under consideration.
Dynamic zones in this case are, in particular, zones including a speed-dependent variable such as, for example, the zone before a traffic light, in which the vehicle under consideration is just able or is just no longer able to stop at a comfortable deceleration before the stop line when the traffic light switches to “yellow.” The dynamic zones are, in particular, a function of position, speed and behavior models of the vehicle under consideration and/or of the positions, speeds and behavior models of other subjects or road users. The behavior models are, in particular, (physical) behavior models for the respective objects. The dynamic zones may optionally also be a function of external influences such as, for example, the weather, for example, due to an extended braking distance in the case of icy conditions.
There are zones, whose location is relative to the position of the vehicle under consideration such as, for example, the required open space ahead of the vehicle under consideration and zones that have an absolute location such as, for example, a given intersection zone on a real map.
The zones in the zone graphs, and thus the zone graphs, represent abstractions of the respective situations in such a way that they are separate from specific structures of the digital map, such as curve radii or angles of an intersection. These logical zones may be mapped as physical zones onto the map.
Cover zones may be derived in a step 132. Cover zones thus refer, in particular, to defined zones, that are partially or wholly covered by sensor systems such as cameras, radar, etc. of the vehicle under consideration. The ascertainment of which of the previously identified or derived zones are cover zones may be derived, in particular, as a function of pieces of information of the digital map, of pieces of information about external influences (visibility, snow on the road) and/or of the vehicle position). A comparison, in particular, may be made between zones that are (potentially) relevant for a scenario and the zones that are covered in a scenario, in order to derive a weakness of the vehicle system therefrom.
A cover in this case may result, for example, from external influences (for example, weather such as fog), roadside development, other road users, etc.
In a step 131, a set of possible subspaces or zone states may be determined per each identified or derived zone. The states free, occupied and threatened are preferably defined as possible zone states. Occupied means, in particular, that a subject other than the vehicle under consideration is located there, i.e., for example, a road user. Threatened means, in particular, that another subject, in particular, a road user, potentially occupies the zone on the basis of its assigned model, if the vehicle under consideration wishes to pass this zone. Free means, in particular, that the zone is not occupied and is not threatened. The set of potential subspaces or zone states is determined preferably via a Zwicky box, which combines all relevant characteristics of the existing subjects and all manifestations allowable for the characteristics, among which the zone is either free or occupied or threatened.
With a behavior analysis, it is then possible to analyze systematically and fully the scope of the possible scenarios and to fully and consistently divide them into equivalence classes. An equivalence class in this case includes all situations, in which the vehicle under consideration behaves identically or should behave identically.
For this purpose, the complete set of possible sequences or scenarios for the existing combination made up of digital map, vehicle under consideration, subject behavior and additional input variables is ascertained in a step 141 from the determined, dynamic zone graphs and using the ascertained subspaces, and is subdivided into equivalence classes. In this case, each combination of influence factors, among which the vehicle under consideration is intended to show or shows a particular identical behavior in a determined zone, is placed in the same equivalence class.
Each equivalence class is assigned the relevant requirements in a step 151. The requirement therefor is present in a machine-readable form. They may be present, for example, as “permitted behavior,” “behavior not permitted” or “obligatory behavior.”Obligatory, damage-reducing behaviors may also be stored as requirements.
In a step 161, monitors are automatically generated for each equivalence class, which monitor whether the vehicle under consideration is in the corresponding equivalence class and whether the vehicle system fulfills the requirements assigned to this equivalence class, i.e., in particular, behaves in accordance with the test specifications.
In this case, the monitors may be generated specifically to monitor the ODD (operative design domain), i.e., for the class of scenarios or requirements for which the vehicle system is to be designed or tested.
The monitors in this case may run at another, in particular, slower clocking than possible regulators in the vehicle under consideration.
In a step 152, a phase graph may be automatically generated on the basis of the zone graph and of the defined equivalence classes.
The phase graph enables in step 162 the ascertainment of a cover profile for the performed tests via a systematic detection of all possible behavior processes for the vehicle under consideration and via the adjustment using the variants tested thereby.
A particular process in the phase graph corresponds in this case to a sequence of determined zones in a particular order with a respectively defined equivalence class per zone. In this way, it may be automatically ensured using a cover profile (for example, path cover) that a specific, in particular, complete cover of the possible sequences is fulfilled.
In a step 172, a complete test suite may then be generated on the basis of the cover profile and of possible subject populations. In the process, the processes enumerated in step 162 may be expanded once again by possible populations of the individual zones including specific subjects. In this way a complete test suite is obtained for the scenarios in the digital map under consideration, which the vehicle under consideration must control. The starting point and starting states (i.e., speeds, etc.) may be automatically calculated on the basis of the models and of the definition of the equivalence classes.
In addition, automatically continuous parameters (so-called continuous sub-spaces within the equivalence classes), which may be potentially varied in later test steps (for example, with structured test methods such as search-based testing), are derived from the pieces of information contained in the equivalence classes about the vehicle and about the other subjects, in particular, road users. Examples of such continuous parameters are, for example, frictional coefficients, speeds or curve radii.
In addition, the monitors assigned to the equivalence classes here may be associated with the individual test cases of the test suite, so that for each test case, it may be automatically checked whether the vehicle system passed the test.
The output in step 171 is then preferably a test suite, i.e., a set of defined tests for the vehicle system, in which each test case, for example,
The testing of the vehicle system may include deriving critical visibility ranges of a perception of the vehicle system from the physical zones and comparing them with the actual perception of the vehicle system. For this purpose, it may be ascertained, in particular, whether or not the seeing of a particular zone for fulfilling requirements of the vehicle system is necessary. From this, it is possible in turn to derive requirements of a sensor architecture of the vehicle system or of the vehicle. Distance-dependent metrics may also be used in the process, i.e., the dependency of a perception on the distance of the vehicle under consideration to a particular zone to be seen is taken into account.
Two zone graphs derived with respect to the scenario shown in
Forming the behavior space are then sequences, which are a function, for example, of the following variables and their possible manifestations:
The adaptation distance in this case refers to the previously described deceleration distance, in which a, in particular, safe and comfortable deceleration is still possible.
On the basis of such a listing, it is possible to systematically consider all possible scenarios. The complexity of the scenarios is significantly reduced by the abstraction into logical zones, by the selection of relevant parameters and by the division into relative parameter ranges. By selecting the parameters and parameter ranges in mutually exclusive alternatives, it is possible to determine scenarios independent of one another, which completely cover the scope of possible scenarios.
Such behavior models preferably take traffic regulations, dynamic constraints, system constraints and comfort constraints into account. The specific form of the model is largely irrelevant. The behavior analysis completed on the basis of the zone graphs, including the concepts used therein, such as particular distances, speeds, accelerations and comfort variables such as a quiet ride, is to be carried out preferably in such a way that it remains stable in wide areas even when the model parameters of the behavior models are changed. As a result, the behavior analysis is applicable largely independent of the specific parameters of the behavior model and thus to many different situations. Prerequisite therefor is the suitable selection of the abstractions in the behavior analysis.
The generic behavior for “following an empty lane including static constraints” depicted in
The corresponding behavior spaces are preferably hierarchically structured. The basic behavior for each road segment is provided, in particular, by the longitudinal behavior “following an empty lane with static constraints.” Empty in this case means empty of other subjects or road users. Static constraints may, for example, be speed limits, lane narrowing, curves, etc., which result in another maximum speed for the next road segment. Due to the distance to the future constraint and the instantaneous speed, the vehicle under consideration must adapt the speed accordingly, if necessary.
Relevant zones 600, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611 for the behavior analysis outlined in the following images of
The following static zones result:
The following dynamic zones also result:
In the associated behavior analysis, only the specifics of “turning right in a four-way intersection including pedestrian crosswalks,” for example, are considered. Thus, it is then presupposed that the behavior of “turning right at a green light, with no pedestrians and with no additional other road users,” which corresponds to the “following an empty lane including static constraints,” is already controlled and is therefore no longer explicitly described. The static constraints are provided here essentially by the generally permitted maximum speed, the lane widths, lane gradients (longitudinal or transverse) and the curve radius of the required turning trajectory.
A phase graph is depicted in
In this case, preferably parameter combinations for parameters, such as speed, acceleration, position in the lane of the vehicle under consideration, are defined as equivalence classes, which result in an identical setpoint behavior of the vehicle under consideration. Monitors are generatable for each equivalence class, which check the behavior of the vehicle under consideration or vehicle system observed in a simulation and thus predicted as to whether the specifications of the equivalence classes are complied with.
A projection of the equivalence classes on the zones for an observed analyzed road segment including a potential subject population and a predefined intention (mission) of the vehicle under consideration provides the phases of the movement of the vehicle under consideration through the zones of the road segment, while taking the behavior of the observed subject population into account.
A phase is formed by the subset of the equivalence classes of the behavior analysis of the road segment, which may occur in the relevant zone. Depending on the size of the zone, the vehicle under consideration may switch back and forth within the zone and between the equivalence classes of the phase as well, for example, in a large zone in stop-and-go traffic, with multiple switches between starting, rolling, stopping, waiting.
The succession of the phases when driving through the road segment forms a phase graph. The vehicle under consideration is always located in one phase and in each phase in exactly one of the equivalence classes that form this phase.
More complex phase graphs may form dynamically if, for example, the intended route of the vehicle under consideration is permanently blocked, for example, by an accident. A new route may then be calculated, which typically results in a locally different intention of the vehicle under consideration and, therefore, to new phases, zones, etc. This may be controlled by the vehicle under consideration if the necessary maneuvers (for example, turning around or backing up in the lane and turning at the earliest point possible) are controlled and the road segments to be expected on the substitute route are also controlled by the vehicle under consideration.
The phases provide the basis of the compositionality for the behavior of the vehicle under consideration. Provided that each analysis of a road segment possesses an entry zone and an exit zone, and thus an input phase and an output phase, compositionality is possible on the topological level of the road segments and on the behavior level of the phases. In this case, the entry zone of the following segment, in particular, includes the exit zone of the preceding segment.
The exit zone of a road segment may preferably fully accommodate the vehicle under consideration, but should not be much larger so that the departure from the respective segment becomes possible under minimal conditions. The entry zone of a road segment is normally a zone far removed from the vehicle under consideration with respect to the relevant portion of the road segment (intersection, traffic circle, etc.).
Analyses are preferably carried out for particular, generic road segments (simple road segments, simple intersections, simple traffic circle, simple parking lot, etc.) and stored as models in a corresponding model library. Relatively few such generic models are sufficient for covering a large portion of all possible or actually existing road segments. With a selection of the relevant characteristics of such generic road segments, it is thus possible to create a small configurable and parameterizable model library, on the basis of which more complex road maps may then be easily calculated. Thus, for example, T-intersections of different types may be produced from the generic model of a four-way intersection by omitting one branch of the intersection. The angles between the branches of the intersection, the lane widths, the number of lanes, the placement of yield signs and traffic signals may, in particular, be parameters in the models.
Two road map segments are shown in
Intended maneuvers are marked with arrows.
If two or multiple road map segments have already been tested, then it is sufficient for a more complex road map, which is constructed from the road map segments including transitions, if only the unknown transitions are considered once again. Apart from that, it is possible to resort to the previously completed tests.
By automatically abstracting a given map into a logical zone graph for the possible maneuver on the map, it is possible to ascertain exact pieces of information about which components of the map may already be controlled by the existing test suites generated with the method and which must still be considered.
With the selected abstractions (zones, equivalence classes, phases), a structural compositionality and a behavior compositionality are achieved. The structural compositionality makes the connection of multiple base elements (for example, straight road and curve) possible on the basis of the zones. With the behavior compositionality, made possible by the definition of phases, the certainty that a consideration of individual elements in the analysis is sufficient for correct behavior on complex maps is obtained.
Number | Date | Country | Kind |
---|---|---|---|
102019209534.8 | Jun 2019 | DE | national |