The present disclosure relates generally to machine learning. More particularly, the present disclosure relates to computing systems, methods, and platforms that use generative sequence processing models to rank documents.
Machine learning is a field of computer science that includes the building and training (e.g., via application of one or more learning algorithms) of analytical models that are capable of making useful predictions or inferences on the basis of input data. Machine learning is based on the idea that systems can learn from data, identify patterns, and make decisions with minimal human intervention.
Generative sequence processing models, such as large language models, are machine learning models that are trained on large amounts of data to perform various tasks, such as language understanding tasks. Generative sequence processing models can be used to rank documents by inputting a query and candidate documents into the prompt of a generative sequence processing model.
However, ranking documents poses a challenge for generative sequence processing models because, with the existing methods, ranking requires generative sequence processing models to output calibrated prediction probabilities before sorting, which is very difficult and not supported by generation only APIs, or the generative sequence processing models can generate conflicting or useless outputs. Therefore, improved techniques are desired to rank documents efficiently with generative sequence processing models.
Aspects and advantages of embodiments of the present disclosure will be set forth in part in the following description, or can be learned from the description, or can be learned through practice of the embodiments.
According to another example embodiment of the present disclosure, a computer-implemented method for prompt-based ranking can be performed by one or more computing devices and can include generating a prompt comprising a query, a first set of text associated with a first candidate result, and a second set of text associated with a second candidate result. The computer-implemented method can further include prompting a generative sequence processing model with the prompt. The computer-implemented method can further include performing, by the generative sequence processing model, one or more pairwise comparisons between the first set of text and the second set of text based on the query. The computer-implemented method can further include generating, by the generative sequence processing model based on the one or more pairwise comparisons, an output comprising generated text identifying the first set of text or the second set of text as a higher ranked set of text in response to the query.
According to another example embodiment of the present disclosure, a computer-implemented method for prompt-based ranking can be performed by one or more computing devices and can include generating a prompt comprising a query and a plurality of sets of text, each set of text of the plurality of sets of text associated with a candidate result of a plurality of candidate results. The computer-implemented method can further include inputting the prompt into a ranking system configured to initiate a generative sequence processing model. The computer-implemented method can further include performing, by the generative sequence processing model, a plurality of pairwise comparisons between the sets of text of the plurality of sets of text based on the query. The computer-implemented method can further include generating, by the generative sequence processing model based on the plurality of pairwise comparisons, an output comprising an ordered list of the plurality of sets of text in response to the query.
According to one example embodiment of the present disclosure, a computing system for prompt-based ranking can include one or more processors. The computing system can further include one or more non-transitory computer-readable media that collectively store instructions that, when executed by the one or more processors, cause the computing system to perform operations. The operations can include generating a prompt comprising a query, a first set of text associated with a first candidate result, and a second set of text associated with a second candidate result. The operations can further include prompting a generative sequence processing model with the prompt. The operations can further include performing one or more pairwise comparisons between the first set of text and the second set of text based on the query. The operations can further include generating, based on the one or more pairwise comparisons, an output comprising generated text identifying the first set of text or the second set of text as a higher ranked set of text in response to the query.
According to another example embodiment of the present disclosure, one or more non-transitory computer-readable media can collectively store instructions that, when executed by one or more processors of a computing system, cause the computing system to perform operations. The operations can include generating a prompt comprising a query, a first set of text associated with a first candidate result, and a second set of text associated with a second candidate result. The operations can further include prompting a generative sequence processing model with the prompt. The operations can further include performing one or more pairwise comparisons between the first set of text and the second set of text based on the query. The operations can further include generating, based on the one or more pairwise comparisons, an output comprising generated text identifying the first set of text or the second set of text as a higher ranked set of text in response to the query.
These and other features, aspects, and advantages of various embodiments of the present disclosure will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate example embodiments of the present disclosure and, together with the description, serve to explain the related principles.
Detailed discussion of implementations directed to one of ordinary skill in the art is set forth in the specification, which makes reference to the appended figures, in which:
Reference numerals that are repeated across plural figures are intended to identify the same features in various implementations.
Generally, the present disclosure is directed to computing systems, methods, and platforms that rank text with pairwise ranking prompting using generative sequence processing models. Current pointwise approaches, such as the relevance generation method and the query generation method, may require the model to output calibrated pointwise predictions to be used for comparisons in sorting, which is very difficult to achieve across prompts and unnecessary for ranking which only requires relative ordering, and do not work for a generation API since it requires the log probability of the desired predictions to perform sorting. Existing listwise approaches, which directly insert the query and list of documents into a prompt, result in frequent prediction failures for severely types of patterns, such as outputting only a few documents, an ordered list based on ID, or text that is not parseable, they can only use a generation API, and calculating the log probability of all listwise permutations is prohibitively expensive. Example computing systems, methods, and platforms of the present disclosure can instead use a query and a pair of documents as the prompt for a generative sequence processing model, such as a large language model, to perform ranking tasks with reduced task complexity.
In particular, the computing systems, methods, and platforms can compare each pair of documents input into the generative sequence processing model. The generative sequence processing model can be prompted again after swapping the order of the pair of documents input into the generative sequence processing model. This pairwise prompting can serve as the basic computation unit in variations of pairwise ranking prompting.
Both a generation mode, where the generative sequence processing model can output text indicating which is the higher ranked or more relevant document, and a scoring mode, where a probability score of the document being the higher ranked or more relevant document is output, can be supported by the computing systems, methods, and platforms of the present disclosure.
In an implementation of pairwise ranking prompting, all pairs of documents can be enumerated, and a global aggregation can be performed to generate a score for each document. A document that is consistently preferred over another document by the generative sequence processing model can receive one point, while a document gets a half of a point when the generative sequence processing model is not sure by producing conflicting or irrelevant results. In some implementations, a sliding window approach can include receiving an initial ranking of the documents and starting from the bottom of a list of documents to compare and swap document pairs based on the outputs of the generative sequence processing model. In another implementation, the pairwise preferences from the generative sequence processing models can be used as the comparator for sorting algorithms, such as a heapsort algorithm.
Technical effects of the example computing systems, methods, and platforms of the present disclosure include reducing the task complexity for generative sequence processing models, such as large language models, and resolving the calibration issues present in current methods of ranking documents with large language models. Both generation APIs and scoring APIs for large language models are supported by the example computing systems, methods, and platforms of the present disclosure, and the pairwise ranking prompting of the present disclosure is also insensitive to the ordering of the input to the large language model. The example computing systems, methods, and platforms of the present disclosure achieve increased ranking performance by using moderate-sized, open-sourced large language models on standard benchmark datasets, and are effective for zero-shot ranking with large language models.
With reference now to the Figures, example implementations of the present disclosure will be discussed in greater detail.
The generative sequence processing model 202 can generate an output (e.g., output data 208, 210) that identifies which of the first set of text or the second set of text is a higher ranked set of text that is more relevant to the query based on the pairwise comparisons that were performed. The output data 208 may be generated text that identifies which of the first set of text or the second set of text (e.g., passage 1 or passage 2) is higher ranked, such as the string “Passage 1” when the first set of text is higher ranked. The output data 210 may be a score associated with the set of text, such as a probability, confidence score, or log-likelihood of the generative sequence processing model 202 generating target text corresponding to the higher ranked set of text such as the string “Passage 1” or “Passage 2.” For instance, the higher score or the lower score, depending on the type of score, may identify which of the sets of text is the higher ranked set of text in response to the query (e.g., input data 204). In some examples, a user may specify whether the generative sequence processing model 202 is to output the generated text (e.g., output data 208) and/or the score (e.g., output data 210).
In some examples, the generative sequence processing model 202 can be prompted with the query (e.g., input data 204) and the first set of text followed by the second set of text, and then prompted with the query and the second set of text followed by the first set of text. When the first prompt with the first set of text followed by the second set of text and the second prompt with the second set of text followed by the first set of text result in consistent decisions by the generative sequence processing model 202, then the local ordering is d1>d2 when the first set of text, d1, is consistently ranked higher and the local ordering is d2>d1 when the second set of text, d2, is consistently ranked higher, otherwise d1=d2.
In some implementations, the generative sequence processing model 202 can perform the one or more pairwise comparisons between the first set of text (e.g., passage 1) and the second set of text (e.g., passage 2) based on the query by comparing the first set of text and the second set of text and generating a score for the first set of text and a score for the second set of text based on the comparison. For instance, the set of text that is rated higher may receive a higher score, which may be a probability, confidence score, or a log-likelihood of the generative sequence processing model 202 generating the generated text that identifies the set of text that is more relevant to the query, as non-limiting examples. When a set of text is preferred over the other set of text by the generative sequence processing model 202, the preferred set of text can receive one point, while a set of text can get a half of a point when the generative sequence processing model 202 is not sure which set of text is preferred such as by producing conflicting or irrelevant results.
In some implementations, the generative sequence processing model 202 can perform the one or more pairwise comparisons between the first set of text (e.g., passage 1) and the second set of text (e.g., passage 2) based on the query by initiating a sorting algorithm, such as a heapsort algorithm as one example, with the first set of text and the second set of text and receiving an output of the sorting algorithm that includes an ordered or ranked list of the sets of text. The pairwise preferences from the generative sequence processing model 202 can be used as the comparator for sorting algorithms, such as a heapsort algorithm as one example since the heapsort algorithm results in O(N log N) computation complexity where N is the number of documents (i.e., sets of text, passages).
The generative sequence processing model 202 can generate an output (e.g., output data 216, 218) that identifies which of the sets of text is the highest ranked set of text that is most relevant to the query based on the pairwise comparisons that were performed. The output data 216 can be an ordered list of the sets of text in the order from highest ranked to lowest ranked set of text of relevance to the query.
In some examples, the query (e.g., input data 204) and the plurality of sets of text (e.g., input data 212) can be input into the ranking system 214 and the generative sequence processing model 202 can be prompted with a first set of text from among the plurality of sets of text (e.g., input data 212) followed by a second set of text from among the plurality of sets of text (e.g., input data 212), and then prompted with the second set of text followed by the first set of text. The process of prompting the generative sequence processing model 202 with two sets of text from among the plurality of sets of text (e.g., input data 212) in pairs with the order of each set of text being switched can be performed for each set of text (e.g., passage 1 through passage N). When the first prompt with the first set of text followed by the second set of text and the second prompt with the second set of text followed by the first set of text result in consistent decisions by the generative sequence processing model 202, then the local ordering is d1>d2 when the first set of text, d1, is consistently ranked higher and the local ordering is d2>d1 when the second set of text, d2, is consistently ranked higher, otherwise d1=d2.
In some implementations, for each set of text in the plurality of sets of text (e.g., input data 212), the generative sequence processing model 202 can perform comparisons of a set of text (e.g., passage 1) to each remaining set of text (e.g., passage 2 through passage N), generate a score for the set of text (e.g., passage 1) for each of the pairwise comparisons, and add the scores together to generate an aggregate score for the set of text (e.g., passage 1). For instance, the set of text that is rated higher may receive a higher score, which may be a probability, confidence score, or a log-likelihood of the generative sequence processing model 202 generating the generated text that identifies the set of text as more relevant to the query, as non-limiting examples.
All pairs of documents (e.g., each pair for passage 1 through passage N) are enumerated and a global aggregation is performed to generate a score si for each document di, and si=1*Σj≠id
d
In some implementations, a sorting algorithm, such as a heapsort algorithm as one example, can be initiated with the ordered list of the sets of text in the order from highest ranked to lowest ranked set of text of relevance to the query (e.g., output data 216). The sorting algorithm can sort the ordered list and produce an output of a sorted list of the sets of text. The pairwise preferences from the generative sequence processing model 202 can be used as the comparator for sorting algorithms, such as a heapsort algorithm as one example since the heapsort algorithm results in O(N log N) computation complexity where N is the number of documents (i.e., sets of text, passages).
Starting from the bottom of the list (i.e., the final entry on the right side), the entry at the bottom of the list can be compared to the entry above it (i.e., the first entry on the left side). The sets of text in the corresponding final entry and first entry can be swapped with a stride of 1 on-the-fly based on the outputs of the generative sequence processing model 202. The sets of text in the corresponding final entry and first entry may be swapped when the generative sequence processing model 202 output disagrees with the initial ranking to produce a final ranking 306. One pass requires O(N) time complexity where N is the number of documents (e.g., sets of text, passages). When the second set of text (e.g., passage 2) is the first entry in the list and the first set of text (e.g., passage 1) is the final entry in the list and the final entry is swapped with the first entry, then the first set of text may be the highest ranked set of text which is most relevant to the query (e.g., final ranking 306).
Ranking usually only cares about top-K ranking metrics, where K is small, so K passes can be performed. For instance, for N=100 and K=10, where N is the number of documents or passages, so less API calls may be required, resulting in favorable time complexity.
At 402, a computing system generates a prompt comprising a query, a first set of text associated with a first candidate result, and a second set of text associated with a second candidate result.
At 404, the computing system prompts a generative sequence processing model with the prompt. In some examples, the computing system prompts the generative sequence processing model with the prompt by prompting the generative sequence processing model with the query, the first set of text, and the second set of text in sequence and prompting the generative sequence processing model with the query, the second set of text, and the first set of text in sequence.
At 406, the computing system performs, by the generative sequence processing model, one or more pairwise comparisons between the first set of text and the second set of text based on the query. In some examples, the computing system performs, by the generative sequence processing model, the one or more pairwise comparisons between the first set of text and the second set of text based on the query by performing a comparison of the first set of text to the second set of text based on the query and generating a first score for the first set of text and a second score for the second set of text based on the comparison, and the higher ranked set of text in response to the query can include the first set of text when the first score is greater than the second score and include the second set of text when the second score is greater than the first score. The computing system determines whether the first set of text is preferred to the second set of text and assigns one point to the preferred set of text, wherein the first score for the first set of text comprises the one point when the first set of text is preferred to the second set of text, and the second score for the second set of text comprises the one point when the second set of text is preferred to the first set of text.
In some examples, the computing system performs, by the generative sequence processing model, the one or more pairwise comparisons between the first set of text and the second set of text based on the query by obtaining an initial ranking of the first set of text and the second set of text, wherein the initial ranking comprises a list of entries comprising a first entry corresponding to the first set of text and a final entry corresponding to the second set of text, performing a comparison of the final entry in the list to the first entry in the list, and determining based on the comparison, whether to swap the final entry in the list with the first entry in the list, and the higher ranked set of text in response to the query can include the first set of text when the final entry in the list is not swapped with the first entry in the list and include the second set of text when the final entry in the list is swapped with the first entry in the list.
In some examples, the computing system performs, by the generative sequence processing model, the one or more pairwise comparisons between the first set of text and the second set of text based on the query by initiating a sorting algorithm with the first set of text and the second set of text and receiving an output of the sorting algorithm comprising an ordered list, and the higher ranked set of text in response to the query can include the first set of text when the first set of text is first in the ordered list and include the second set of text when the second set of text is first in the ordered list. The sorting algorithm may be a heapsort algorithm in some examples.
At 408, the computing system generates, by the generative sequence processing model based on the one or more pairwise comparisons, an output comprising generated text identifying the first set of text or the second set of text as a higher ranked set of text in response to the query. In some examples, the computing system generates an output comprising a first score for the first set of text and a second score for the second set of text in response to the query and determines, based on the first score and the second score, that the first set of text or the second set of text is a higher ranked set of text in response to the query, and the first score identifies a probability of the generative sequence processing model generating the first set of text in response to the query and the second score identifies a probability of the generative sequence processing model generating the second set of text in response to the query.
At 502, a computing system generates a prompt comprising a query and a plurality of sets of text, each set of text of the plurality of sets of text associated with a candidate result of a plurality of candidate results.
At 504, the computing system inputs the prompt into a ranking system configured to initiate a generative sequence processing model.
At 506, the computing system performs, by the generative sequence processing model, a plurality of pairwise comparisons between the sets of text of the plurality of sets of text based on the query.
At 508, the computing system generates, by the generative sequence processing model based on the plurality of pairwise comparisons, an output comprising an ordered list of the plurality of sets of text in response to the query.
In some examples, the computing system, for each respective set of text in the plurality of sets of text, performs comparisons of the respective set of text to each set of text in the plurality of sets of text, generates a score for the respective set of text for each comparison, and aggregates each score for the respective set of text for each comparison to generate an aggregate score for the respective set of text.
In some examples, the computing system performs a comparison of a final entry in the ordered list to an entry above the final entry in the ordered list, determines based on the comparison, whether to swap the final entry in the ordered list with the entry above the final entry in the ordered list, and for each respective entry in the ordered list above the final entry in the list: performs a comparison of the respective entry in the ordered list to an entry above the respective entry in the ordered list and determines based on the comparison, whether to swap the respective entry in the ordered list with the entry above the respective entry in the ordered list.
In some examples, the computing system initiates a sorting algorithm with the ordered list and receives an output of the sorting algorithm comprising a sorted list of the plurality of sets of text from the ordered list.
One or more portion(s) of example method 600 can be implemented by a computing system that includes one or more computing devices such as, for example, computing systems described with reference to the other figures. Each respective portion of example method 600 can be performed by any (or any combination) of one or more computing devices. Moreover, one or more portion(s) of example method 600 can be implemented on the hardware components of the device(s) described herein, for example, to train one or more systems or models.
At 602, example method 600 can include obtaining a training instance. A set of training data can include a plurality of training instances divided between multiple datasets (e.g., a training dataset, a validation dataset, or testing dataset). A training instance can be labeled or unlabeled. Although referred to in example method 600 as a “training” instance, it is to be understood that runtime inferences can form training instances when a model is trained using an evaluation of the model's performance on that runtime instance (e.g., online training/learning). Example data types for the training instance and various tasks associated therewith are described throughout the present disclosure.
At 604, example method 600 can include processing, using one or more machine-learned models, the training instance to generate an output. The output can be directly obtained from the one or more machine-learned models or can be a downstream result of a chain of processing operations that includes an output of the one or more machine-learned models.
At 606, example method 600 can include receiving an evaluation signal associated with the output. The evaluation signal can be obtained using a loss function. Various determinations of loss can be used, such as mean squared error, likelihood loss, cross entropy loss, hinge loss, contrastive loss, or various other loss functions. The evaluation signal can be computed using known ground-truth labels (e.g., supervised learning), predicted or estimated labels (e.g., semi- or self-supervised learning), or without labels (e.g., unsupervised learning). The evaluation signal can be a reward (e.g., for reinforcement learning). The reward can be computed using a machine-learned reward model configured to generate rewards based on output(s) received. The reward can be computed using feedback data describing human feedback on the output(s).
At 608, example method 600 can include updating the machine-learned model using the evaluation signal. For example, values for parameters of the machine-learned model(s) can be learned, in some embodiments, using various training or learning techniques, such as, for example, backwards propagation. For example, the evaluation signal can be backpropagated from the output (or another source of the evaluation signal) through the machine-learned model(s) to update one or more parameters of the model(s) (e.g., based on a gradient of the evaluation signal with respect to the parameter value(s)). For example, system(s) containing one or more machine-learned models can be trained in an end-to-end manner. Gradient descent techniques can be used to iteratively update the parameters over a number of training iterations. In some implementations, performing backwards propagation of errors can include performing truncated backpropagation through time. Example method 600 can include implementing a number of generalization techniques (e.g., weight decays, dropouts, etc.) to improve the generalization capability of the models being trained.
In some implementations, example method 600 can be implemented for training a machine-learned model from an initialized state to a fully trained state (e.g., when the model exhibits a desired performance profile, such as based on accuracy, precision, recall, etc.).
In some implementations, example method 600 can be implemented for particular stages of a training procedure. For instance, in some implementations, example method 600 can be implemented for pre-training a machine-learned model. Pre-training can include, for instance, large-scale training over potentially noisy data to achieve a broad base of performance levels across a variety of tasks/data types. In some implementations, example method 600 can be implemented for fine-tuning a machine-learned model. Fine-tuning can include, for instance, smaller-scale training on higher-quality (e.g., labeled, curated, etc.) data. Fine-tuning can affect all or a portion of the parameters of a machine-learned model. For example, various portions of the machine-learned model can be “frozen” for certain training stages. For example, parameters associated with an embedding space can be “frozen” during fine-tuning (e.g., to retain information learned from a broader domain(s) than present in the fine-tuning dataset(s)). An example fine-tuning approach includes reinforcement learning. Reinforcement learning can be based on user feedback on model performance during use.
Machine-learned model(s) 1 can be or include one or multiple machine-learned models or model components. Example machine-learned models can include neural networks (e.g., deep neural networks). Example machine-learned models can include non-linear models or linear models. Example machine-learned models can use other architectures in lieu of or in addition to neural networks. Example machine-learned models can include decision tree based models, support vector machines, hidden Markov models, Bayesian networks, linear regression models, k-means clustering models, etc.
Example neural networks can include feed-forward neural networks, recurrent neural networks (RNNs), including long short-term memory (LSTM) based recurrent neural networks, convolutional neural networks (CNNs), diffusion models, generative-adversarial networks, or other forms of neural networks. Example neural networks can be deep neural networks. Some example machine-learned models can leverage an attention mechanism such as self-attention. For example, some example machine-learned models can include multi-headed self-attention models.
Machine-learned model(s) 1 can include a single or multiple instances of the same model configured to operate on data from input(s) 2. Machine-learned model(s) 1 can include an ensemble of different models that can cooperatively interact to process data from input(s) 2. For example, machine-learned model(s) 1 can employ a mixture-of-experts structure. See, e.g., Zhou et al., Mixture-of-Experts with Expert Choice Routing, arXiv: 2202.09368v2 (Oct. 14, 2022).
Input(s) 2 can generally include or otherwise represent various types of data. Input(s) 2 can include one type or many different types of data. Output(s) 3 can be data of the same type(s) or of different types of data as compared to input(s) 2. Output(s) 3 can include one type or many different types of data.
Example data types for input(s) 2 or output(s) 3 include natural language text data, software code data (e.g., source code, object code, machine code, or any other form of computer-readable instructions or programming languages), machine code data (e.g., binary code, assembly code, or other forms of machine-readable instructions that can be executed directly by a computer's central processing unit), assembly code data (e.g., low-level programming languages that use symbolic representations of machine code instructions to program a processing unit), genetic data or other chemical or biochemical data, image data, audio data, audiovisual data, haptic data, biometric data, medical data, financial data, statistical data, geographical data, astronomical data, historical data, sensor data generally (e.g., digital or analog values, such as voltage or other absolute or relative level measurement values from a real or artificial input, such as from an audio sensor, light sensor, displacement sensor, etc.), and the like. Data can be raw or processed and can be in any format or schema.
Sequence processing model(s) 4 can include one or multiple machine-learned model components configured to ingest, generate, or otherwise reason over sequences of information. For example, some example sequence processing models in the text domain are referred to as “Large Language Models,” or LLMs. See, e.g., PaLM 2 Technical Report, Google, https://ai.google/static/documents/palm2techreport.pdf (n.d.). Other example sequence processing models can operate in other domains, such as image domains, see, e.g., Dosovitskiy et al., An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale, arXiv: 2010.11929v2 (Jun. 3, 2021), audio domains, see, e.g., Agostinelli et al., MusicLM: Generating Music From Text, arXiv: 2301.11325v1 (Jan. 26, 2023), biochemical domains, see, e.g., Jumper et al., Highly accurate protein structure prediction with AlphaFold, 596 Nature 583 (Aug. 26, 2021), by way of example. Sequence processing model(s) 4 can process one or multiple types of data simultaneously. Sequence processing model(s) 4 can include relatively large models (e.g., more parameters, computationally expensive, etc.), relatively small models (e.g., fewer parameters, computationally lightweight, etc.), or both.
In general, sequence processing model(s) 4 can obtain input sequence 5 using data from input(s) 2. For instance, input sequence 5 can include a representation of data from input(s) 2 in a format understood by sequence processing model(s) 4. One or more machine-learned components of sequence processing model(s) 4 can ingest the data from input(s) 2, parse the data into pieces compatible with the processing architectures of sequence processing model(s) 4 (e.g., via “tokenization”), and project the pieces into an input space associated with prediction layer(s) 6 (e.g., via “embedding”).
Sequence processing model(s) 4 can ingest the data from input(s) 2 and parse the data into a sequence of elements to obtain input sequence 5. For example, a portion of input data from input(s) 2 can be broken down into pieces that collectively represent the content of the portion of the input data. The pieces can provide the elements of the sequence.
Elements 5-1, 5-2, . . . , 5-M can represent, in some cases, building blocks for capturing or expressing meaningful information in a particular data domain. For instance, the elements can describe “atomic units” across one or more domains. For example, for textual input source(s), the elements can correspond to groups of one or more words or sub-word components, such as sets of one or more characters.
For example, elements 5-1, 5-2, . . . , 5-M can represent tokens obtained using a tokenizer. For instance, a tokenizer can process a given portion of an input source and output a series of tokens (e.g., corresponding to input elements 5-1, 5-2, . . . , 5-M) that represent the portion of the input source. Various approaches to tokenization can be used. For instance, textual input source(s) can be tokenized using a byte-pair encoding (BPE) technique. See, e.g., Kudo et al., SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing, Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (System Demonstrations), pages 66-71 (Oct. 31-Nov. 4, 2018), https://aclanthology.org/D18-2012.pdf. Image-based input source(s) can be tokenized by extracting and serializing patches from an image.
In general, arbitrary data types can be serialized and processed into input sequence 5. It is to be understood that element(s) 5-1, 5-2, . . . , 5-M depicted in
Prediction layer(s) 6 can predict one or more output elements 7-1, 7-2, . . . , 7-N based on the input elements. Prediction layer(s) 6 can include one or more machine-learned model architectures, such as one or more layers of learned parameters that manipulate and transform the input(s) to extract higher-order meaning from, and relationships between, input element(s) 5-1, 5-2, . . . , 5-M. In this manner, for instance, example prediction layer(s) 6 can predict new output element(s) in view of the context provided by input sequence 5.
Prediction layer(s) 6 can evaluate associations between portions of input sequence 5 and a particular output element. These associations can inform a prediction of the likelihood that a particular output follows the input context. For example, consider the textual snippet, “The carpenter's toolbox was small and heavy. It was full of.” Example prediction layer(s) 6 can identify that “It” refers back to “toolbox” by determining a relationship between the respective embeddings. Example prediction layer(s) 6 can also link “It” to the attributes of the toolbox, such as “small” and “heavy.” Based on these associations, prediction layer(s) 6 can, for instance, assign a higher probability to the word “nails” than to the word “sawdust.”
A transformer is an example architecture that can be used in prediction layer(s) 4. See, e.g., Vaswani et al., Attention Is All You Need, arXiv: 1706.03762v7 (Aug. 2, 2023). A transformer is an example of a machine-learned model architecture that uses an attention mechanism to compute associations between items within a context window. The context window can include a sequence that contains input sequence 5 and potentially one or more output element(s) 7-1, 7-2, . . . , 7-N. A transformer block can include one or more attention layer(s) and one or more post-attention layer(s) (e.g., feedforward layer(s), such as a multi-layer perceptron).
Prediction layer(s) 6 can include other machine-learned model architectures in addition to or in lieu of transformer-based architectures. For example, recurrent neural networks (RNNs) and long short-term memory (LSTM) models can also be used, as well as convolutional neural networks (CNNs). In general, prediction layer(s) 6 can leverage various kinds of artificial neural networks that can understand or generate sequences of information.
Output sequence 7 can include or otherwise represent the same or different data types as input sequence 5. For instance, input sequence 5 can represent textual data, and output sequence 7 can represent textual data. Input sequence 5 can represent image, audio, or audiovisual data, and output sequence 7 can represent textual data (e.g., describing the image, audio, or audiovisual data). It is to be understood that prediction layer(s) 6, and any other interstitial model components of sequence processing model(s) 4, can be configured to receive a variety of data types in input sequence(s) 5 and output a variety of data types in output sequence(s) 7.
Output sequence 7 can have various relationships to input sequence 5. Output sequence 7 can be a continuation of input sequence 5. Output sequence 7 can be complementary to input sequence 5. Output sequence 7 can translate, transform, augment, or otherwise modify input sequence 5. Output sequence 7 can answer, evaluate, confirm, or otherwise respond to input sequence 5. Output sequence 7 can implement (or describe instructions for implementing) an instruction provided via input sequence 5.
Output sequence 7 can be generated autoregressively. For instance, for some applications, an output of one or more prediction layer(s) 6 can be passed through one or more output layers (e.g., softmax layer) to obtain a probability distribution over an output vocabulary (e.g., a textual or symbolic vocabulary) conditioned on a set of input elements in a context window. In this manner, for instance, output sequence 7 can be autoregressively generated by sampling a likely next output element, adding that element to the context window, and re-generating the probability distribution based on the updated context window, and sampling a likely next output element, and so forth.
Output sequence 7 can also be generated non-autoregressively. For instance, multiple output elements of output sequence 7 can be predicted together without explicit sequential conditioning on each other. See, e.g., Saharia et al., Non-Autoregressive Machine Translation with Latent Alignments, arXiv: 2004.07437v3 (Nov. 16, 2020).
Output sequence 7 can include one or multiple portions or elements. In an example content generation configuration, output sequence 7 can include multiple elements corresponding to multiple portions of a generated output sequence (e.g., a textual sentence, values of a discretized waveform, computer code, etc.). In an example classification configuration, output sequence 7 can include a single element associated with a classification output. For instance, an output “vocabulary” can include a set of classes into which an input sequence is to be classified. For instance, a vision transformer block can pass latent state information to a multilayer perceptron that outputs a likely class value associated with an input image.
Input sequence 8 can be the same as or different from input sequence 5. Input sequence 8 can be a multimodal input sequence that contains elements that represent data from different modalities using a common dimensional representation. For instance, an embedding space can have P dimensions. Input sequence 8 can be configured to contain a plurality of elements that have P dimensions. In this manner, for instance, example implementations can facilitate information extraction and reasoning across diverse data modalities by projecting data into elements in the same embedding space for comparison, combination, or other computations therebetween.
For example, elements 8-0, . . . , 8-9 can indicate particular locations within a multidimensional embedding space. Some elements can map to a set of discrete locations in the embedding space. For instance, elements that correspond to discrete members of a predetermined vocabulary of tokens can map to discrete locations in the embedding space that are associated with those tokens. Other elements can be continuously distributed across the embedding space. For instance, some data types can be broken down into continuously defined portions (e.g., image patches) that can be described using continuously distributed locations within the embedding space.
In some implementations, the expressive power of the embedding space may not be limited to meanings associated with any particular set of tokens or other building blocks. For example, a continuous embedding space can encode a spectrum of high-order information. An individual piece of information (e.g., a token) can map to a particular point in that space: for instance, a token for the word “dog” can be projected to an embedded value that points to a particular location in the embedding space associated with canine-related information. Similarly, an image patch of an image of a dog on grass can also be projected into the embedding space. In some implementations, the projection of the image of the dog can be similar to the projection of the word “dog” while also having similarity to a projection of the word “grass,” while potentially being different from both. In some implementations, the projection of the image patch may not exactly align with any single projection of a single word. In some implementations, the projection of the image patch can align with a combination of the projections of the words “dog” and “grass.” In this manner, for instance, a high-order embedding space can encode information that can be independent of data modalities in which the information is expressed.
Task indicator 9 can include a model or model component configured to identify a task being performed and inject, into input sequence 8, an input value represented by element 8-0 that signals which task is being performed. For instance, the input value can be provided as a data type associated with an input modality and projected along with that input modality (e.g., the input value can be a textual task label that is embedded along with other textual data in the input; the input value can be a pixel-based representation of a task that is embedded along with other image data in the input; etc.). The input value can be provided as a data type that differs from or is at least independent from other input(s). For instance, the input value represented by element 8-0 can be a learned within a continuous embedding space.
Input modalities 10-1, 10-2, and 10-3 can be associated with various different data types (e.g., as described above with respect to input(s) 2 and output(s) 3).
Data-to-sequence models 11-1, 11-2, and 11-3 can be the same or different from each other. Data-to-sequence models 11-1, 11-2, and 11-3 can be adapted to each respective input modality 10-1, 10-2, and 10-3. For example, a textual data-to-sequence model can subdivide a portion of input text and project the subdivisions into element(s) in input sequence 8 (e.g., elements 8-1, 8-2, 8-3, etc.). An image data-to-sequence model can subdivide an input image and project the subdivisions into element(s) in input sequence 8 (e.g., elements 8-4, 8-5, 8-6, etc.). An arbitrary datatype data-to-sequence model can subdivide an input of that arbitrary datatype and project the subdivisions into element(s) in input sequence 8 (e.g., elements 8-7, 8-8, 8-9, etc.).
Data-to-sequence models 11-1, 11-2, and 11-3 can form part of machine-learned sequence processing model(s) 4. Data-to-sequence models 11-1, 11-2, and 11-3 can be jointly trained with or trained independently from machine-learned sequence processing model(s) 4. Data-to-sequence models 11-1, 11-2, and 11-3 can be trained end-to-end with machine-learned sequence processing model(s) 4.
Model development platform 12 can provide one or more model libraries 13 containing building blocks for new models. Model libraries 13 can include one or more pre-trained foundational models 13-1, which can provide a backbone of processing power across various tasks. Model libraries 13 can include one or more pre-trained expert models 13-2, which can be focused on performance in particular domains of expertise. Model libraries 13 can include various model primitives 13-3, which can provide low-level architectures or components (optionally pre-trained), which can be assembled in various arrangements as desired.
Model development platform 12 can receive selections of various model components 14. Model development platform 12 can pass selected model components 14 to a workbench 15 that combines selected model components 14 into a development model 16.
Workbench 15 can facilitate further refinement and adaptation of development model 16 by leveraging a number of different toolkits integrated with model development platform 12. For example, workbench 15 can facilitate alignment of the development model 16 with a desired performance profile on various tasks using a model alignment toolkit 17.
Model alignment toolkit 17 can provide a number of tools for causing development model 16 to generate outputs aligned with desired behavioral characteristics. Alignment can include increasing an accuracy, precision, recall, etc. of model outputs. Alignment can include enforcing output styles, schema, or other preferential characteristics of model outputs. Alignment can be general or domain-specific. For instance, a pre-trained foundational model 13-1 can begin with an initial level of performance across multiple domains. Alignment of the pre-trained foundational model 13-1 can include improving a performance in a particular domain of information or tasks (e.g., even at the expense of performance in another domain of information or tasks).
Model alignment toolkit 17 can integrate one or more dataset(s) 17-1 for aligning development model 16. Curated dataset(s) 17-1 can include labeled or unlabeled training data. Dataset(s) 17-1 can be obtained from public domain datasets. Dataset(s) 17-1 can be obtained from private datasets associated with one or more developer system(s) for the alignment of bespoke machine-learned model(s) customized for private use-cases.
Pre-training pipelines 17-2 can include a machine-learned model training workflow configured to update development model 16 over large-scale, potentially noisy datasets. For example, pre-training can leverage unsupervised learning techniques (e.g., de-noising, etc.) to process large numbers of training instances to update model parameters from an initialized state and achieve a desired baseline performance. Pre-training pipelines 17-2 can leverage unlabeled datasets in dataset(s) 17-1 to perform pre-training. Workbench 15 can implement a pre-training pipeline 17-2 to pre-train development model 16.
Fine-tuning pipelines 17-3 can include a machine-learned model training workflow configured to refine the model parameters of development model 16 with higher-quality data. Fine-tuning pipelines 17-3 can update development model 16 by conducting supervised training with labeled dataset(s) in dataset(s) 17-1. Fine-tuning pipelines 17-3 can update development model 16 by conducting reinforcement learning using reward signals from user feedback signals. Workbench 15 can implement a fine-tuning pipeline 17-3 to fine-tune development model 16.
Prompt libraries 17-4 can include sets of inputs configured to induce behavior aligned with desired performance criteria. Prompt libraries 17-4 can include few-shot prompts (e.g., inputs providing examples of desired model outputs for prepending to a desired runtime query), chain-of-thought prompts (e.g., inputs providing step-by-step reasoning within the exemplars to facilitate thorough reasoning by the model), and the like.
Example prompts can be retrieved from an available repository of prompt libraries 17-4. Example prompts can be contributed by one or more developer systems using workbench 15.
In some implementations, pre-trained or fine-tuned models can achieve satisfactory performance without exemplars in the inputs. For instance, zero-shot prompts can include inputs that lack exemplars. Zero-shot prompts can be within a domain within a training dataset or outside of the training domain(s).
Prompt libraries 17-4 can include one or more prompt engineering tools. Prompt engineering tools can provide workflows for retrieving or learning optimized prompt values. Prompt engineering tools can facilitate directly learning prompt values (e.g., input element values) based one or more training iterations. Workbench 15 can implement prompt engineering tools in development model 16.
Prompt libraries 17-4 can include pipelines for prompt generation. For example, inputs can be generated using development model 16 itself or other machine-learned models. In this manner, for instance, a first model can process information about a task and output a input for a second model to process in order to perform a step of the task. The second model can be the same as or different from the first model. Workbench 15 can implement prompt generation pipelines in development model 16.
Prompt libraries 17-4 can include pipelines for context injection. For instance, a performance of development model 16 on a particular task can improve if provided with additional context for performing the task. Prompt libraries 17-4 can include software components configured to identify desired context, retrieve the context from an external source (e.g., a database, a sensor, etc.), and add the context to the input prompt. Workbench 15 can implement context injection pipelines in development model 16.
Although various training examples described herein with respect to model development platform 12 refer to “pre-training” and “fine-tuning,” it is to be understood that model alignment toolkit 17 can generally support a wide variety of training techniques adapted for training a wide variety of machine-learned models. Example training techniques can correspond to the example training method 600 described above.
Model development platform 12 can include a model plugin toolkit 18. Model plugin toolkit 18 can include a variety of tools configured for augmenting the functionality of a machine-learned model by integrating the machine-learned model with other systems, devices, and software components. For instance, a machine-learned model can use tools to increase performance quality where appropriate. For instance, deterministic tasks can be offloaded to dedicated tools in lieu of probabilistically performing the task with an increased risk of error. For instance, instead of autoregressively predicting the solution to a system of equations, a machine-learned model can recognize a tool to call for obtaining the solution and pass the system of equations to the appropriate tool. The tool can be a traditional system of equations solver that can operate deterministically to resolve the system of equations. The output of the tool can be returned in response to the original query. In this manner, tool use can allow some example models to focus on the strengths of machine-learned models—e.g., understanding an intent in an unstructured request for a task—while augmenting the performance of the model by offloading certain tasks to a more focused tool for rote application of deterministic algorithms to a well-defined problem.
Model plugin toolkit 18 can include validation tools 18-1. Validation tools 18-1 can include tools that can parse and confirm output(s) of a machine-learned model. Validation tools 18-1 can include engineered heuristics that establish certain thresholds applied to model outputs. For example, validation tools 18-1 can ground the outputs of machine-learned models to structured data sources (e.g., to mitigate “hallucinations”).
Model plugin toolkit 18 can include tooling packages 18-2 for implementing one or more tools that can include scripts or other executable code that can be executed alongside development model 16. Tooling packages 18-2 can include one or more inputs configured to cause machine-learned model(s) to implement the tools (e.g., few-shot prompts that induce a model to output tool calls in the proper syntax, etc.). Tooling packages 18-2 can include, for instance, fine-tuning training data for training a model to use a tool.
Model plugin toolkit 18 can include interfaces for calling external application programming interfaces (APIs) 18-3. For instance, in addition to or in lieu of implementing tool calls or tool code directly with development model 16, development model 16 can be aligned to output instruction that initiate API calls to send or obtain data via external systems.
Model plugin toolkit 18 can integrate with prompt libraries 17-4 to build a catalog of available tools for use with development model 16. For instance, a model can receive, in an input, a catalog of available tools, and the model can generate an output that selects a tool from the available tools and initiates a tool call for using the tool.
Model development platform 12 can include a computational optimization toolkit 19 for optimizing a computational performance of development model 16. For instance, tools for model compression 19-1 can allow development model 16 to be reduced in size while maintaining a desired level of performance. For instance, model compression 19-1 can include quantization workflows, weight pruning and sparsification techniques, etc. Tools for hardware acceleration 19-2 can facilitate the configuration of the model storage and execution formats to operate optimally on different hardware resources. For instance, hardware acceleration 19-2 can include tools for optimally sharding models for distributed processing over multiple processing units for increased bandwidth, lower unified memory requirements, etc. Tools for distillation 19-3 can provide for the training of lighter-weight models based on the knowledge encoded in development model 16. For instance, development model 16 can be a highly performant, large machine-learned model optimized using model development platform 12. To obtain a lightweight model for running in resource-constrained environments, a smaller model can be a “student model” that learns to imitate development model 16 as a “teacher model.” In this manner, for instance, the investment in learning the parameters and configurations of development model 16 can be efficiently transferred to a smaller model for more efficient inference.
Workbench 15 can implement one, multiple, or none of the toolkits implemented in model development platform 12. Workbench 15 can output an output model 20 based on development model 16. Output model 20 can be a deployment version of development model 16. Output model 20 can be a development or training checkpoint of development model 16. Output model 20 can be a distilled, compressed, or otherwise optimized version of development model 16.
Initially, development model 16 can persist in an initial state as an initialized model 21. Development model 16 can be initialized with weight values. Initial weight values can be random or based on an initialization schema. Initial weight values can be based on prior pre-training for the same or for a different model.
Initialized model 21 can undergo pre-training in a pre-training stage 22. Pre-training stage 22 can be implemented using one or more pre-training pipelines 17-2 over data from dataset(s) 17-1. Pre-training can be omitted, for example, if initialized model 21 is already pre-trained (e.g., development model 16 contains, is, or is based on a pre-trained foundational model or an expert model).
Pre-trained model 23 can then be a new version of development model 16, which can persist as development model 16 or as a new development model. Pre-trained model 23 can be the initial state if development model 16 was already pre-trained. Pre-trained model 23 can undergo fine-tuning in a fine-tuning stage 24. Fine-tuning stage 24 can be implemented using one or more fine-tuning pipelines 17-3 over data from dataset(s) 17-1. Fine-tuning can be omitted, for example, if a pre-trained model as satisfactory performance, if the model was already fine-tuned, or if other tuning approaches are preferred.
Fine-tuned model 29 can then be a new version of development model 16, which can persist as development model 16 or as a new development model. Fine-tuned model 29 can be the initial state if development model 16 was already fine-tuned. Fine-tuned model 29 can undergo refinement with user feedback 26. For instance, refinement with user feedback 26 can include reinforcement learning, optionally based on human feedback from human users of fine-tuned model 25. As reinforcement learning can be a form of fine-tuning, it is to be understood that fine-tuning stage 24 can subsume the stage for refining with user feedback 26. Refinement with user feedback 26 can produce a refined model 27. Refined model 27 can be output to downstream system(s) 28 for deployment or further development.
In some implementations, computational optimization operations can be applied before, during, or after each stage. For instance, initialized model 21 can undergo computational optimization 29-1 (e.g., using computational optimization toolkit 19) before pre-training stage 22. Pre-trained model 23 can undergo computational optimization 29-2 (e.g., using computational optimization toolkit 19) before fine-tuning stage 24. Fine-tuned model 25 can undergo computational optimization 29-3 (e.g., using computational optimization toolkit 19) before refinement with user feedback 26. Refined model 27 can undergo computational optimization 29-4 (e.g., using computational optimization toolkit 19) before output to downstream system(s) 28. Computational optimization(s) 29-1, . . . , 29-4 can all be the same, all be different, or include at least some different optimization techniques.
Model host 31 can perform inference on behalf of one or more client(s) 32. Client(s) 32 can transmit an input request 33 to model host 31. Using input request 33, model host 31 can obtain input(s) 2 for input to machine-learned model(s) 1. Machine-learned model(s) 1 can process input(s) 2 to generate output(s) 3. Using output(s) 3, model host 31 can return an output payload 34 for responding to input request 33 from client(s) 32. Output payload 34 can include or be based on output(s) 3.
Model host 31 can leverage various other resources and tools to augment the inference task. For instance, model host 31 can communicate with tool interfaces 35 to facilitate tool use by model instance(s) 31-1. Tool interfaces 35 can include local or remote APIs. Tool interfaces 35 can include integrated scripts or other software functionality. Model host 31 can engage online learning interface(s) 36 to facilitate ongoing improvements to machine-learned model(s) 1. For instance, online learning interface(s) 36 can be used within reinforcement learning loops to retrieve user feedback on inferences served by model host 31. Model host 31 can access runtime data source(s) 37 for augmenting input(s) 2 with additional contextual information. For instance, runtime data source(s) 37 can include a knowledge graph 37-1 that facilitates structured information retrieval for information associated with input request(s) 33 (e.g., a search engine service). Runtime data source(s) 37 can include public or private, external or local database(s) 37-2 that can store information associated with input request(s) 33 for augmenting input(s) 2. Runtime data source(s) 37 can include account data 37-3 which can be retrieved in association with a user account corresponding to a client 32 for customizing the behavior of model host 31 accordingly.
Model host 31 can be implemented by one or multiple computing devices or systems. Client(s) 2 can be implemented by one or multiple computing devices or systems, which can include computing devices or systems shared with model host 31.
For example, model host 31 can operate on a server system that provides a machine-learning service to client device(s) that operate client(s) 32 (e.g., over a local or wide-area network). Client device(s) can be end-user devices used by individuals. Client device(s) can be server systems that operate client(s) 32 to provide various functionality as a service to downstream end-user devices.
In some implementations, model host 31 can operate on a same device or system as client(s) 32. Model host 31 can be a machine-learning service that runs on-device to provide machine-learning functionality to one or multiple applications operating on a client device, which can include an application implementing client(s) 32. Model host 31 can be a part of a same application as client(s) 32. For instance, model host 31 can be a subroutine or method implemented by one part of an application, and client(s) 32 can be another subroutine or method that engages model host 31 to perform inference functions within the application. It is to be understood that model host 31 and client(s) 32 can have various different configurations.
Model instance(s) 31-1 can include one or more machine-learned models that are available for performing inference. Model instance(s) 31-1 can include weights or other model components that are stored on in persistent storage, temporarily cached, or loaded into high-speed memory. Model instance(s) 31-1 can include multiple instance(s) of the same model (e.g., for parallel execution of more requests on the same model). Model instance(s) 31-1 can include instance(s) of different model(s). Model instance(s) 31-1 can include cached intermediate states of active or inactive model(s) used to accelerate inference of those models. For instance, an inference session with a particular model may generate significant amounts of computational results that can be re-used for future inference runs (e.g., using a KV cache for transformer-based models). These computational results can be saved in association with that inference session so that session can be executed more efficiently when resumed.
Compute resource(s) 31-2 can include one or more processors (central processing units, graphical processing units, tensor processing units, machine-learning accelerators, etc.) connected to one or more memory devices. Compute resource(s) 31-2 can include a dynamic pool of available resources shared with other processes. Compute resource(s) 31-2 can include memory devices large enough to fit an entire model instance in a single memory instance. Compute resource(s) 31-2 can also shard model instance(s) across multiple memory devices (e.g., using data parallelization or tensor parallelization, etc.). This can be done to increase parallelization or to execute a large model using multiple memory devices which individually might not be able to fit the entire model into memory.
Input request 33 can include data for input(s) 2. Model host 31 can process input request 33 to obtain input(s) 2. Input(s) 2 can be obtained directly from input request 33 or can be retrieved using input request 33. Input request 33 can be submitted to model host 31 via an API.
Model host 31 can perform inference over batches of input requests 33 in parallel. For instance, a model instance 31-1 can be configured with an input structure that has a batch dimension. Separate input(s) 2 can be distributed across the batch dimension (e.g., rows of an array). The separate input(s) 2 can include completely different contexts. The separate input(s) 2 can be multiple inference steps of the same task. The separate input(s) 2 can be staggered in an input structure, such that any given inference cycle can be operating on different portions of the respective input(s) 2. In this manner, for instance, model host 31 can perform inference on the batch in parallel, such that output(s) 3 can also contain the batch dimension and return the inference results for the batched input(s) 2 in parallel. In this manner, for instance, batches of input request(s) 33 can be processed in parallel for higher throughput of output payload(s) 34.
Output payload 34 can include or be based on output(s) 3 from machine-learned model(s) 1. Model host 31 can process output(s) 3 to obtain output payload 34. This can include chaining multiple rounds of inference (e.g., iteratively, recursively, across the same model(s) or different model(s)) to arrive at a final output for a task to be returned in output payload 34. Output payload 34 can be transmitted to client(s) 32 via an API.
Online learning interface(s) 36 can facilitate reinforcement learning of machine-learned model(s) 1. Online learning interface(s) 36 can facilitate reinforcement learning with human feedback (RLHF). Online learning interface(s) 36 can facilitate federated learning of machine-learned model(s) 1.
Model host 31 can execute machine-learned model(s) 1 to perform inference for various tasks using various types of data. For example, various different input(s) 2 and output(s) 3 can be used for various different tasks. In some implementations, input(s) 2 can be or otherwise represent image data. Machine-learned model(s) 1 can process the image data to generate an output. As an example, machine-learned model(s) 1 can process the image data to generate an image recognition output (e.g., a recognition of the image data, a latent embedding of the image data, an encoded representation of the image data, a hash of the image data, etc.). As another example, machine-learned model(s) 1 can process the image data to generate an image segmentation output. As another example, machine-learned model(s) 1 can process the image data to generate an image classification output. As another example, machine-learned model(s) 1 can process the image data to generate an image data modification output (e.g., an alteration of the image data, etc.). As another example, machine-learned model(s) 1 can process the image data to generate an encoded image data output (e.g., an encoded and/or compressed representation of the image data, etc.). As another example, machine-learned model(s) 1 can process the image data to generate an upscaled image data output. As another example, machine-learned model(s) 1 can process the image data to generate a prediction output.
In some implementations, the task is a computer vision task. In some cases, input(s) 2 includes pixel data for one or more images and the task is an image processing task. For example, the image processing task can be image classification, where the output is a set of scores, each score corresponding to a different object class and representing the likelihood that the one or more images depict an object belonging to the object class. The image processing task may be object detection, where the image processing output identifies one or more regions in the one or more images and, for each region, a likelihood that region depicts an object of interest. As another example, the image processing task can be image segmentation, where the image processing output defines, for each pixel in the one or more images, a respective likelihood for each category in a predetermined set of categories. For example, the set of categories can be foreground and background. As another example, the set of categories can be object classes. As another example, the image processing task can be depth estimation, where the image processing output defines, for each pixel in the one or more images, a respective depth value. As another example, the image processing task can be motion estimation, where the network input includes multiple images, and the image processing output defines, for each pixel of one of the input images, a motion of the scene depicted at the pixel between the images in the network input.
In some implementations, input(s) 2 can be or otherwise represent natural language data. Machine-learned model(s) 1 can process the natural language data to generate an output. As an example, machine-learned model(s) 1 can process the natural language data to generate a language encoding output. As another example, machine-learned model(s) 1 can process the natural language data to generate a latent text embedding output. As another example, machine-learned model(s) 1 can process the natural language data to generate a translation output. As another example, machine-learned model(s) 1 can process the natural language data to generate a classification output. As another example, machine-learned model(s) 1 can process the natural language data to generate a textual segmentation output. As another example, machine-learned model(s) 1 can process the natural language data to generate a semantic intent output. As another example, machine-learned model(s) 1 can process the natural language data to generate an upscaled text or natural language output (e.g., text or natural language data that is higher quality than the input text or natural language, etc.). As another example, machine-learned model(s) 1 can process the natural language data to generate a prediction output (e.g., one or more predicted next portions of natural language content).
In some implementations, input(s) 2 can be or otherwise represent speech data (e.g., data describing spoken natural language, such as audio data, textual data, etc.). Machine-learned model(s) 1 can process the speech data to generate an output. As an example, machine-learned model(s) 1 can process the speech data to generate a speech recognition output. As another example, machine-learned model(s) 1 can process the speech data to generate a speech translation output. As another example, machine-learned model(s) 1 can process the speech data to generate a latent embedding output. As another example, machine-learned model(s) 1 can process the speech data to generate an encoded speech output (e.g., an encoded and/or compressed representation of the speech data, etc.). As another example, machine-learned model(s) 1 can process the speech data to generate an upscaled speech output (e.g., speech data that is higher quality than the input speech data, etc.). As another example, machine-learned model(s) 1 can process the speech data to generate a textual representation output (e.g., a textual representation of the input speech data, etc.). As another example, machine-learned model(s) 1 can process the speech data to generate a prediction output.
In some implementations, input(s) 2 can be or otherwise represent latent encoding data (e.g., a latent space representation of an input, etc.). Machine-learned model(s) 1 can process the latent encoding data to generate an output. As an example, machine-learned model(s) 1 can process the latent encoding data to generate a recognition output. As another example, machine-learned model(s) 1 can process the latent encoding data to generate a reconstruction output. As another example, machine-learned model(s) 1 can process the latent encoding data to generate a search output. As another example, machine-learned model(s) 1 can process the latent encoding data to generate a reclustering output. As another example, machine-learned model(s) 1 can process the latent encoding data to generate a prediction output.
In some implementations, input(s) 2 can be or otherwise represent statistical data. Statistical data can be, represent, or otherwise include data computed and/or calculated from some other data source. Machine-learned model(s) 1 can process the statistical data to generate an output. As an example, machine-learned model(s) 1 can process the statistical data to generate a recognition output. As another example, machine-learned model(s) 1 can process the statistical data to generate a prediction output. As another example, machine-learned model(s) 1 can process the statistical data to generate a classification output. As another example, machine-learned model(s) 1 can process the statistical data to generate a segmentation output. As another example, machine-learned model(s) 1 can process the statistical data to generate a visualization output. As another example, machine-learned model(s) 1 can process the statistical data to generate a diagnostic output.
In some implementations, input(s) 2 can be or otherwise represent sensor data. Machine-learned model(s) 1 can process the sensor data to generate an output. As an example, machine-learned model(s) 1 can process the sensor data to generate a recognition output. As another example, machine-learned model(s) 1 can process the sensor data to generate a prediction output. As another example, machine-learned model(s) 1 can process the sensor data to generate a classification output. As another example, machine-learned model(s) 1 can process the sensor data to generate a segmentation output. As another example, machine-learned model(s) 1 can process the sensor data to generate a visualization output. As another example, machine-learned model(s) 1 can process the sensor data to generate a diagnostic output. As another example, machine-learned model(s) 1 can process the sensor data to generate a detection output.
In some implementations, machine-learned model(s) 1 can be configured to perform a task that includes encoding input data for reliable and/or efficient transmission or storage (and/or corresponding decoding). For example, the task may be an audio compression task. The input may include audio data and the output may comprise compressed audio data. In another example, the input includes visual data (e.g. one or more images or videos), the output comprises compressed visual data, and the task is a visual data compression task. In another example, the task may comprise generating an embedding for input data (e.g. input audio or visual data). In some cases, the input includes audio data representing a spoken utterance and the task is a speech recognition task. The output may comprise a text output which is mapped to the spoken utterance. In some cases, the task comprises encrypting or decrypting input data. In some cases, the task comprises a microprocessor performance task, such as branch prediction or memory address translation.
In some implementations, the task is a generative task, and machine-learned model(s) 1 can be configured to output content generated in view of input(s) 2. For instance, input(s) 2 can be or otherwise represent data of one or more modalities that encodes context for generating additional content.
In some implementations, the task can be a text completion task. Machine-learned model(s) 1 can be configured to process input(s) 2 that represent textual data and to generate output(s) 3 that represent additional textual data that completes a textual sequence that includes input(s) 2. For instance, machine-learned model(s) 1 can be configured to generate output(s) 3 to complete a sentence, paragraph, or portion of text that follows from a portion of text represented by input(s) 2.
In some implementations, the task can be an instruction following task. Machine-learned model(s) 1 can be configured to process input(s) 2 that represent instructions to perform a function and to generate output(s) 3 that advance a goal of satisfying the instruction function (e.g., at least a step of a multi-step procedure to perform the function). Output(s) 3 can represent data of the same or of a different modality as input(s) 2. For instance, input(s) 2 can represent textual data (e.g., natural language instructions for a task to be performed) and machine-learned model(s) 1 can process input(s) 2 to generate output(s) 3 that represent textual data responsive to the instructions (e.g., natural language responses, programming language responses, machine language responses, etc.). Input(s) 2 can represent image data (e.g., image-based instructions for a task to be performed, optionally accompanied by textual instructions) and machine-learned model(s) 1 can process input(s) 2 to generate output(s) 3 that represent textual data responsive to the instructions (e.g., natural language responses, programming language responses, machine language responses, etc.). One or more output(s) 3 can be iteratively or recursively generated to sequentially process and accomplish steps toward accomplishing the requested functionality. For instance, an initial output can be executed by an external system or be processed by machine-learned model(s) 1 to complete an initial step of performing a function. Multiple steps can be performed, with a final output being obtained that is responsive to the initial instructions.
In some implementations, the task can be a question answering task. Machine-learned model(s) 1 can be configured to process input(s) 2 that represent a question to answer and to generate output(s) 3 that advance a goal of returning an answer to the question (e.g., at least a step of a multi-step procedure to perform the function). Output(s) 3 can represent data of the same or of a different modality as input(s) 2. For instance, input(s) 2 can represent textual data (e.g., natural language instructions for a task to be performed) and machine-learned model(s) 1 can process input(s) 2 to generate output(s) 3 that represent textual data responsive to the question (e.g., natural language responses, programming language responses, machine language responses, etc.). Input(s) 2 can represent image data (e.g., image-based instructions for a task to be performed, optionally accompanied by textual instructions) and machine-learned model(s) 1 can process input(s) 2 to generate output(s) 3 that represent textual data responsive to the question (e.g., natural language responses, programming language responses, machine language responses, etc.). One or more output(s) 3 can be iteratively or recursively generated to sequentially process and accomplish steps toward answering the question. For instance, an initial output can be executed by an external system or be processed by machine-learned model(s) 1 to complete an initial step of obtaining an answer to the question (e.g., querying a database, performing a computation, executing a script, etc.). Multiple steps can be performed, with a final output being obtained that is responsive to the question.
In some implementations, the task can be an image generation task. Machine-learned model(s) 1 can be configured to process input(s) 2 that represent context regarding a desired portion of image content. The context can include text data, image data, audio data, etc. Machine-learned model(s) 1 can be configured to generate output(s) 3 that represent image data that depicts imagery related to the context. For instance, machine-learned model(s) 1 can be configured to generate pixel data of an image. Values for channel(s) associated with the pixels in the pixel data can be selected based on the context (e.g., based on a probability determined based on the context).
In some implementations, the task can be an audio generation task. Machine-learned model(s) 1 can be configured to process input(s) 2 that represent context regarding a desired portion of audio content. The context can include text data, image data, audio data, etc. Machine-learned model(s) 1 can be configured to generate output(s) 3 that represent audio data related to the context. For instance, machine-learned model(s) 1 can be configured to generate waveform data in the form of an image (e.g., a spectrogram). Values for channel(s) associated with pixels of the image can be selected based on the context. Machine-learned model(s) 1 can be configured to generate waveform data in the form of a sequence of discrete samples of a continuous waveform. Values of the sequence can be selected based on the context (e.g., based on a probability determined based on the context).
In some implementations, the task can be a data generation task. Machine-learned model(s) 1 can be configured to process input(s) 2 that represent context regarding a desired portion of data (e.g., data from various data domains, such as sensor data, image data, multimodal data, statistical data, etc.). The desired data can be, for instance, synthetic data for training other machine-learned models. The context can include arbitrary data type(s). Machine-learned model(s) 1 can be configured to generate output(s) 3 that represent data that aligns with the desired data. For instance, machine-learned model(s) 1 can be configured to generate data values for populating a dataset. Values for the data object(s) can be selected based on the context (e.g., based on a probability determined based on the context).
Network 49 can be any type of communications network, such as a local area network (e.g., intranet), wide area network (e.g., Internet), or some combination thereof and can include any number of wired or wireless links. In general, communication over network 49 can be carried via any type of wired or wireless connection, using a wide variety of communication protocols (e.g., TCP/IP, HTTP, SMTP, FTP), encodings or formats (e.g., HTML, XML), or protection schemes (e.g., VPN, secure HTTP, SSL). Network 49 can also be implemented via a system bus. For instance, one or more devices or systems of
Computing device 50 can be any type of computing device, such as, for example, a personal computing device (e.g., laptop or desktop), a mobile computing device (e.g., smartphone or tablet), a gaming console or controller, a wearable computing device, an embedded computing device, a server computing device, a virtual machine operating on a host device, or any other type of computing device. Computing device 50 can be a client computing device. Computing device 50 can be an end-user computing device. Computing device 50 can be a computing device of a service provided that provides a service to an end user (who may use another computing device to interact with computing device 50).
Computing device 50 can include one or more processors 51 and a memory 52. Processor(s) 51 can be any suitable processing device (e.g., a processor core, a microprocessor, an ASIC, an FPGA, a controller, a microcontroller, etc.) and can be one processor or a plurality of processors that are operatively connected. Memory 52 can include one or more non-transitory computer-readable storage media, such as HBM, RAM, ROM, EEPROM, EPROM, flash memory devices, magnetic disks, etc., and combinations thereof. Memory 52 can store data 53 and instructions 54 which can be executed by processor(s) 51 to cause computing device 50 to perform operations. The operations can implement any one or multiple features described herein. The operations can implement example methods and techniques described herein.
Computing device 50 can also include one or more input components that receive user input. For example, a user input component can be a touch-sensitive component (e.g., a touch-sensitive display screen or a touch pad) that is sensitive to the touch of a user input object (e.g., a finger or a stylus). The touch-sensitive component can serve to implement a virtual keyboard. Other example user input components include a microphone, camera, LIDAR, a physical keyboard or other buttons, or other means by which a user can provide user input.
Computing device 50 can store or include one or more machine-learned models 55. Machine-learned models 55 can include one or more machine-learned model(s) 1, such as a sequence processing model 4. Machine-learned models 55 can include one or multiple model instance(s) 31-1. Machine-learned model(s) 55 can be received from server computing system(s) 60, model development platform system 70, third party system(s) 80 (e.g., an application distribution platform), or developed locally on computing device 50. Machine-learned model(s) 55 can be loaded into memory 52 and used or otherwise implemented by processor(s) 51. Computing device 50 can implement multiple parallel instances of machine-learned model(s) 55.
Server computing system(s) 60 can include one or more processors 61 and a memory 62. Processor(s) 61 can be any suitable processing device (e.g., a processor core, a microprocessor, an ASIC, an FPGA, a controller, a microcontroller, etc.) and can be one processor or a plurality of processors that are operatively connected. Memory 62 can include one or more non-transitory computer-readable storage media, such as HBM, RAM, ROM, EEPROM, EPROM, flash memory devices, magnetic disks, etc., and combinations thereof. Memory 62 can store data 63 and instructions 64 which can be executed by processor(s) 61 to cause server computing system(s) 60 to perform operations. The operations can implement any one or multiple features described herein. The operations can implement example methods and techniques described herein.
In some implementations, server computing system 60 includes or is otherwise implemented by one or multiple server computing devices. In instances in which server computing system 60 includes multiple server computing devices, such server computing devices can operate according to sequential computing architectures, parallel computing architectures, or some combination thereof.
Server computing system 60 can store or otherwise include one or more machine-learned models 65. Machine-learned model(s) 65 can be the same as or different from machine-learned model(s) 55. Machine-learned models 65 can include one or more machine-learned model(s) 1, such as a sequence processing model 4. Machine-learned models 65 can include one or multiple model instance(s) 31-1. Machine-learned model(s) 65 can be received from computing device 50, model development platform system 70, third party system(s) 80, or developed locally on server computing system(s) 60. Machine-learned model(s) 65 can be loaded into memory 62 and used or otherwise implemented by processor(s) 61. Server computing system(s) 60 can implement multiple parallel instances of machine-learned model(s) 65.
In an example configuration, machine-learned models 65 can be included in or otherwise stored and implemented by server computing system 60 to establish a client-server relationship with computing device 50 for serving model inferences. For instance, server computing system(s) 60 can implement model host 31 on behalf of client(s) 32 on computing device 50. For instance, machine-learned models 65 can be implemented by server computing system 60 as a portion of a web service (e.g., remote machine-learned model hosting service, such as an online interface for performing machine-learned model operations over a network on server computing system(s) 60). For instance, server computing system(s) 60 can communicate with computing device 50 over a local intranet or internet connection. For instance, computing device 50 can be a workstation or endpoint in communication with server computing system(s) 60, with implementation of machine-learned models 65 being managed by server computing system(s) 60 to remotely perform inference (e.g., for runtime or training operations), with output(s) returned (e.g., cast, streamed, etc.) to computing device 50. Machine-learned models 65 can work cooperatively or interoperatively with machine-learned models 55 on computing device 50 to perform various tasks.
Model development platform system(s) 70 can include one or more processors 71 and a memory 72. Processor(s) 71 can be any suitable processing device (e.g., a processor core, a microprocessor, an ASIC, an FPGA, a controller, a microcontroller, etc.) and can be one processor or a plurality of processors that are operatively connected. Memory 72 can include one or more non-transitory computer-readable storage media, such as HBM, RAM, ROM, EEPROM, EPROM, flash memory devices, magnetic disks, etc., and combinations thereof. Memory 72 can store data 73 and instructions 74 which can be executed by processor(s) 71 to cause model development platform system(s) 70 to perform operations. The operations can implement any one or multiple features described herein. The operations can implement example methods and techniques described herein. Example operations include the functionality described herein with respect to model development platform 12. This and other functionality can be implemented by developer tool(s) 75.
Third-party system(s) 80 can include one or more processors 81 and a memory 82. Processor(s) 81 can be any suitable processing device (e.g., a processor core, a microprocessor, an ASIC, an FPGA, a controller, a microcontroller, etc.) and can be one processor or a plurality of processors that are operatively connected. Memory 82 can include one or more non-transitory computer-readable storage media, such as HBM, RAM, ROM, EEPROM, EPROM, flash memory devices, magnetic disks, etc., and combinations thereof. Memory 82 can store data 83 and instructions 84 which can be executed by processor(s) 81 to cause third-party system(s) 80 to perform operations. The operations can implement any one or multiple features described herein. The operations can implement example methods and techniques described herein. Example operations include the functionality described herein with respect to tools and other external resources called when training or performing inference with machine-learned model(s) 1, 4, 16, 20, 55, 65, etc. (e.g., third-party resource(s) 85).
The central intelligence layer can include a number of machine-learned models. For example, as illustrated in
The central intelligence layer can communicate with a central device data layer. The central device data layer can be a centralized repository of data for computing device 99. As illustrated in
The technology discussed herein makes reference to servers, databases, software applications, and other computer-based systems, as well as actions taken and information sent to and from such systems. The inherent flexibility of computer-based systems allows for a great variety of possible configurations, combinations, and divisions of tasks and functionality between and among components. For instance, processes discussed herein can be implemented using a single device or component or multiple devices or components working in combination. Databases and applications can be implemented on a single system or distributed across multiple systems. Distributed components can operate sequentially or in parallel.
While the present subject matter has been described in detail with respect to various specific example embodiments thereof, each example is provided by way of explanation, not limitation of the disclosure. Those skilled in the art, upon attaining an understanding of the foregoing, can readily produce alterations to, variations of, and equivalents to such embodiments. Accordingly, the subject disclosure does not preclude inclusion of such modifications, variations and/or additions to the present subject matter as would be readily apparent to one of ordinary skill in the art. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present disclosure cover such alterations, variations, and equivalents.
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 63/589,393, filed Oct. 11, 2023. U.S. Provisional Patent Application No. 63/589,393 is hereby incorporated by reference in its entirety.
| Number | Date | Country | |
|---|---|---|---|
| 63589393 | Oct 2023 | US |