The invention refers to the installation of electrical switching circuits on structural components and in particular to a method for installing switching circuits on vehicle doors, whereby after preassembly onto a support element, the entire circuit can be attached to the structural component in a single step. Exclusive utilization of flexible printed circuit boards for connecting single elements, such as switching, operating or signaling elements has the advantage not only of being of less weight but also of greater efficiency relative to the serial automated assembly for medium to large scale manufacturing.
German patent application DE 100 31 487 A1 refers to a circuit assembly structure for various electronic finishing equipment for a vehicle door having a standardized circuit unit, which includes a first connector element for connection to another circuit having an electric circuit switch element. This patent application is limited to the networking of window raising switches, door lighting and similar into a single switching element, which serves as a circuit connecting structure. The basic advantage of this arrangement is the possibility that an optional circuit unit, such as a control for an electric seat positioning mechanism, can be retrofitted, since a door control unit or a standard circuit unit is provided in addition to the circuit connector structure.
DE 100 37 263 A1 discloses circuit arrangements provided for installation at the door paneling or also for installation at the door's metal side. Further described is, among others, the connection of switches with flexible printed circuits boards. Since plug connectors were predominantly used, time consuming assembly is required, in particular, when standard circuits are provided for window raising mechanisms, interior lighting and similar, which are supplemented by optional circuits for seat positioning mechanisms, unlocking the gas tank cover or trunk. The assembly lay-out is designed such that the control devices are mounted first and then each switch is connected to the conductors.
It is thus an object of the present invention to provide an improved assembly lay-out and to replace the more time consuming assembly concepts with a complete cable lay-out of the switches including the control devices.
A solution to this object is realized in accordance with the following assembly steps:
A method for connecting multiple switches, operating element, signaling elements or similar that are operated by electric energy, with a control unit mounted by an automated process onto a structural component, in particular, a vehicle door, wherein conductors, in particular in the form of flexible printed circuit boards, are utilized for transmitting the electrical energy. Such flexible conductors comprise a multitude of signaling lines arranged substantially on a flat ribbon, on which several conductors are mounted independently of each other and wherein the conductors' first end portions can each branch out into a single element, such as a switch, an operating element, signaling elements or similar and wherein the other end portions of the conductors are connected to a control unit.
The following method steps are carried out during assembly: preparing a support element for receiving all single elements, that is, the switch, operating elements, signaling elements and similar, as well as the conductor and the control unit or multiple control units, positioning the single elements on the support element, connecting each single element, in particular the switch, operating elements, signaling elements or similar with the first end portions of the conductors and connecting the control unit with the corresponding other end portions of the conductors, conveying the support element with all the elements which are loaded thereon to a work station for attaching the end portions of the conductors to the control unit and optionally attaching the end portions of the conductors to the single elements, to thus realize a subassembly. In either a subsequent or parallel step, the structural component is prepared for receiving the subassembly by providing means for attachment as well as positioning the structural component and the subassembly relative to each other into an installation position.
Additionally, the method according to the present invention allows the automated assembly and attachment of a conductor assembly onto a structural component, such as a door paneling. The conductor assembly preferably comprises flexible circuit boards, so-called FPC (flexible printed circuits) as a replacement for the conventional circular conductors. Furthermore, the conductor assembly comprises various operating or signaling elements, such as switches and lighting, as well as at least one control unit, namely the door control device.
A special feature of this conductor assembly is the absence of any plug contacts because the switches and the door control device are soldered directly to the FPCs. By utilizing a support element which provides complete ease of access, to all elements of the conductor assembly, the soldering process can thus be carried out in a completely automated manner.
A significant advantage of the method according to the present invention is in the continuous automation of the conductor assembly and installation; that is, starting with the FPC production, which includes the integration of electronics, the direct contact between door control device and switches by means of a soldering process, for example a laser soldering process, up to installation of the conductor assembly into the door paneling is carried out in fully automated manner. While single steps of this method may be part of the prior art, however, no one has as yet found an arrangement of door paneling, door control device, switches and lights which when combined with suitable attachment techniques such as laser soldering, hot melt spray deposit, permits assembling and installation of the conductor assembly to be fully automated. (FPC+lights+door control device+switches).
Thus, one advantage of the present invention is the reduction in weight of the complete conductor assembly (FPC+lights+door control device+switches): One half of the door control device housing can be integrated into the door paneling, thereby realizing a 15% weight reduction. When integrating the lights in the form of LEDs onto the FPCs, a weight reduction of the lights by about 30% is realized.
By utilizing FPC instead of the conventional circular conductors, the weight of the conductor assembly is reduced by about 85%.
A further advantage in the method of the present invention is the overall volume reduction of the entire conductor assembly. By not utilizing plug contacts in addition to integrating the lights into FPC and the use of FPC instead of circular conductors, the volume of the conductor assembly can be considerably lowered. The round cable, at its thickest point has a dimension of 15×35 mm. The FPCs which have a thickness of only 0.2 mm accordingly require practically no room.
A further advantage of the present invention is the replacement of the plug contacts with direct contacts. Through the fully automated assembly and installation, the production of a plug-less conductor assembly is realized. This raises the system security and lowers cost considerably in a distinct way. Especially for large production volumes there is a definite cost reduction. A further advantage is the cost reduction, which can be realized from the fully automated assembly and installation, the integration of half of the control device housing into the door paneling, the absence of plug contacts and the integration of the lights into the FPC.
a shows the connection by means of a soldering process in detail;
b shows the soldering process according to a first embodiment;
c shows the soldering process according to a further embodiment;
In
In
b and
c shows the connector pads 25 in which the solder depot is integrated into the foil conductor itself.
The robot is preferably provided with gripper elements, which are operated by means of a vacuum. Also, a gripper element can be configured so as to be adapted to the form of the subassembly such that positioning of each element onto the structural component 1 can be realized in a secure and precise manner.
In parallel method steps, the structural component 1 is being prepared. In a further loading station 31, the structural component 1 is positioned at a support frame 32. In the subsequent adhesive station 33, adhesive is applied at those locations of the structural component where the conductor assembly is to be installed. The conveyor belt 38 continues to move to the installation station 34. As soon as the structural component has reached the support frame of the installation station 34, the robot 36 picks up the subassembly 17 from the support element 13 and positions it in the structural component 1. In a subsequent method step the structural component 1 is removed in the pick-up station 35.
Number | Date | Country | Kind |
---|---|---|---|
103 52 920.9 | Nov 2003 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP04/12373 | 11/2/2004 | WO | 00 | 1/14/2008 |