The present application claims priority under 35 U.S.C. ยง 119 to German Patent Application No. 102004054231.7 filed on Nov. 10, 2004, the entire disclosure of which is herein expressly incorporated by reference.
The invention is based on a method for controlling the driving power of an engine having at least two control units.
German Patent Document DE 42 31 449 C1 discloses a system for controlling the driving power of an engine, which is constructed of at least two cylinder rows, and has at least two control units for influencing the performance of the individual cylinders rows. At least one measuring device is assigned to each control unit so that each control unit, separately of the other and without using the measuring values assigned to the other control unit, can compute control variables and monitor faults by itself. In this case, the first control unit is assigned to a first cylinder row and the second control unit is assigned to a second cylinder row. The operating parameters detected from each cylinder row are fed to the control units as a basis for computing the control variables.
The control of an engine by means of at least two control units can be arranged as in German Patent Document DE 42 31 449 C1 in such a manner that each control unit is assigned to a cylinder row. Also, only one cylinder row may be provided which, similar to aircraft engines, consists of partial engines which are controlled by two redundantly operating control units.
In contrast to the known arrangement, the method according to the invention has the advantage that the operating variables of the at least two control units are detected, compared with one another and are evaluated depending on the applicable deviation tolerances. In addition, the fault monitoring of each individual control unit is compared with the values of the other control units. In the case of engines with two cylinder rows, it therefore becomes possible to take measurements by means of monitoring the data in the control unit when a cylinder row is not operating correctly in order to avoid damage to the still properly operating cylinder row caused by the cylinder row which is not operating correctly.
The embodiment will be explained in detail in the following.
First, for controlling the combustion in the cylinders of an internal combustion engine, in an working step 20, all operating parameters of the first cylinder row BP-ZB1 are detected and, parallel thereto, in a working step 21, all operating parameters of the second cylinder row BP-ZB2 are detected. These operating parameters, such as, among others, the engine temperature, the intake air temperature, the load, the rotational speed, the suction pipe pressure, the ambient pressure, the lambda value, are fed to the respective control unit SG. Each cylinder row or each partial engine has a separate control unit which, on the basis of the corresponding operating parameters, determines the respective control variables and subsequently emits the corresponding control demands to cylinder row ZB1 or ZB2 for a corresponding working operation. The control units SG1 and SG2 are coupled to the comparison unit 13. Thus, all detected operating parameters as well as the respective control variables are provided to this comparison unit. The present invention is based on the recognition that, during the operation of a multicylinder engine with separately controllable cylinders rows, essentially the same control variables are computed and emitted for the control to the respective cylinder row.
The comparison unit 13 now evaluates all detected values, input parameters and control variables under this aspect.
Different approaches can also be used in this case, On the one hand, since the two different engine controls also have to adapt and train themselves, it can be assumed that a condition may occur in which half of the engine, and corresponding control unit has learned, but the other still requires a training time.
Another variant consists of monitoring different conditions for each individual cylinder. Furthermore, when detecting faults in the exhaust train, the lambda control can be tested. Thus, the lambda control may have different conditions which may indicate that one engine half is operated with increased leakage air. This effect may have an influence on the drivability and, in turn, may have a negative influence on the exhaust gas result. By means of a definable permissible deviation tolerance, the parameters may be monitored and diagnosed. Finally, faulty input quantities have the result that the control units activates a catalytic converter on one cylinder row and set a normal operation on the other. These discrepancies are detected in the comparison unit 13 and can be eliminated by way of corresponding steps, or an assignment of the defectively operating cylinder row can be detected so that the latter can be switched off.
By way of a coupling 22, the results of the comparison unit 13 are returned to the respective control units SG1 and SG2 and to an output unit 23 for providing acoustic and/or visual information to the driver.
The result of the credibility verification is evaluated in the respective control units and, in the event of a defectively operating cylinder row, may have the effect that the engine operation is restricted. Simultaneously, a fault entry is added to the fault memory of the control unit.
The driver, who was informed by a corresponding indication, can drive to a repair shop where the fault memory can then be read out.
The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
102004054231.7 | Nov 2004 | DE | national |