This application includes a compact disc in duplicate (2 compact discs: Tables copy 1 and Tables copy 2), which are hereby incorporated by reference in their entirely. Each compact disc contains the following files (corresponding to Tables 2-4):
The application includes a paper copy of the sequence listing submitted in the parent application, Ser. No. 10/601,518, filed on Jun. 20, 2003, the contents of which is hereby incorporated by reference.
The blood is a vital part of the human circulatory system for the human body. Numerous cell types make up the blood tissue including monocytes, leukocytes, lymphocytes and erythrocytes. Although many blood cell types have been described, there are likely many as yet undiscovered cell types in the human blood. Some of these undiscovered cells may exist transiently, such as those derived from tissues and organs that are constantly interacting with the circulating blood in health and disease. Thus, the blood can provide an immediate picture of what is happening in the human body at any given time.
The turnover of cells in the hematopoietic system is enormous. It was reported that over one trillion cells, including 200 billion erythrocytes and 70 billing neutropilic leukocytes, turn over each day in the human body (Ogawa 1993). As a consequence of continuous interacts between the blood and the body, genetic changes that occur within the cells or tissues of the body will trigger specific changes in gene expression within blood. It is the goal of the present invention that these genetic alterations be harnessed for diagnostic and prognostic purposes, which may lead to the development of therapeutics for ameliorating disease.
For example, isoformic myosin heavy chain genes are known to be generally expressed in cardiac muscle tissue. In the rodent, the (MyHC gene is only highly expressed in the fetus and in diseased states such as overt cardiac hypertrophy, heart failure and diabetes, the (MyHC gene is highly expressed shortly after birth and continues to be expressed in the adult heart. In the human, however, (MyHC is highly expressed in the ventricles from the fetal stage through adulthood. This highly expressed (MyHC, which harbours several mutations, has been demonstrated to be involved in familial hypertrophic cardiomyopathy (Geisterfer-Lowrance et al. 1990). It was reported that mutations of (MyHC can be detected by PCR using blood lymphocyte DNA (Ferrie et al., 1992). Most recently, it was also demonstrated that mutations of the myosin-binding protein C in familial hypertrophic cardiomyopathy can be detected in the DNA extracted from lymphocytes (Niimura et al., 1998).
Similarly, APP and APC, which are known to be tissue specific and predominantly expressed in the brain and intestinal tract, are also detectable in the transcripts of blood. These cell- or tissue-specific transcripts are not detectable by Northern blot analysis. However, the low number of transcript copies can be detected by RT-PCR analysis. These findings strongly demonstrate that genes preferentially expressed in specific tissues can be detected by a highly sensitive RT-PCR assay. In recent years, evidence has been obtained to indicate that expression of cell or tissue-restricted genes can be detected in the certain peripheral nucleated blood cells of patients with metastatic transitional cell carcinoma (Yuasa et al. 1998) and patients with prostate cancer (Gala et al. 1998).
In the prior art, there is a need for large samples and/or costly and time-consuming separation of cell types within the blood (Kimoto (1998) and Chelly et al. (1989; 1988)). The prior art, however, is deficient in non-invasive methods of screening for tissue-specific diseases. The present invention fulfills this long-standing need and desire in the art.
The present invention relates generally to the molecular biology of human diseases. More specifically, the present invention relates to a process using the genetic information contained in human peripheral whole blood for the diagnosis, prognosis and monitoring of genetic and infectious disease in the human body.
This present invention discloses a process of using the genetic information contained in human peripheral whole blood in the diagnosis, prognosis and monitoring of genetic and infectious disease in the human body. The process described herein requires a simple blood sample and is, therefore, non-invasive compared to conventional practices used to detect tissue specific disease, such as biopsies
The invention is based on the discovery that gene expression in the blood is reflective of body state and, as such, the resultant disruption of homeostasis under Conditions of disease can be detected through analysis of transcripts differentially expressed in the blood alone. Thus, the identification of several key transcripts or genetic markers in blood will provide information about the genetic state of the cells, tissues, organ systems of the human body in health and disease
The present invention demonstrates that a simple drop of blood may be used to determine the quantitative expression of various mRNAs that reflect the health/disease state of the subject through the use of RT-PCR analysis. This entire process takes about three hours or less. The single drop of blood may also be used for multiple RT-PCR analyses. It is believed that the present finding can potentially revolutionize the way that diseases are detected, diagnosed and monitored because it provides a non-invasive, simple, highly sensitive and quick screening for tissue-specific transcripts. The transcripts detected in Whole blood have potential as prognostic or diagnostic markers of disease, as they reflect disturbances in homeostasis in the human body. Delineation of the sequences and/or quantitation of the expression levels of these marker genes by RT-PCR will allow for an immediate and accurate diagnostic/prognostic test for disease or to assess the efficacy and monitor a particular therapeutic.
One object of the present invention is to provide a non-invasive method for the diagnosis, prognosis and monitoring of genetic and infectious disease in humans and animals.
In one embodiment of the present invention, there is provided a method for detecting expression of a gene in blood from a subject, comprising the steps of: a) quantifying RNA from a subject blood sample; and b) detecting expression of the gene in the quantified RNA, wherein the expression of the gene in quantified RNA indicates the expression of the gene in the subject blood. An example of the quantifying method is by mass spectrometry.
In another embodiment of the present invention, there is provided a method for detecting expression of one or more genes in blood from a subject, comprising the steps of: a) obtaining a subject blood sample; b) extracting RNA from the blood sample; c) amplifying the RNA; d) generating expressed sequence tags (ESTs) from the amplified RNA product; and e) detecting expression of the genes in the ESTs, wherein the expression of the genes in the ESTs indicates the expression of the genes in the subject blood. Preferably, the subject is a fetus, an embryo, a child, an adult or a non-human animal. The genes are non-cancer-associated and tissue-specific genes. Still preferably, the amplification is performed by RT-PCR using random sequence primers or gene-specific primers.
In still another embodiment of the present invention, there is provided a method for detecting expression of one or more genes in blood from a subject, comprising the steps of: a) obtaining a subject blood sample; b) extracting DNA fragments from the blood sample; c) amplifying the DNA fragments; and d) detecting expression of the genes in the amplified DNA product, wherein the expression of the genes in the amplified DNA product indicates the expression of the genes in the subject blood.
In yet another embodiment of the present invention, there is provided a method for monitoring a course of a therapeutic treatment in an individual, comprising the steps of: a) obtaining a blood sample from the individual; b) extracting RNA from the blood sample; c) amplifying the RNA; d) generating expressed sequence tags (ESTs) from the amplified RNA product: e) detecting expression of genes in the ESTs, wherein the expression of the genes is associated with the effect of the therapeutic treatment; and f) repeating steps a)-e), wherein the course of the therapeutic treatment is monitored by detecting the change of expression of the genes in the ESTs. Such a method may also be used for monitoring the onset of overt symptoms of a disease, wherein the expression of the genes is associated with the onset of the symptoms. Preferably, the amplification is performed by RT-PCR, and the change of the expression of the genes in the ESTs is monitored by sequencing the ESTs and comparing the resulting sequences at various time points, or by performing single nucleotide polymorphism analysis and detecting the variation of a single nucleotide in the ESTs at various time points.
In still yet another embodiment of the present invention, there is provided a method for diagnosing a disease in a test subject, comprising the steps of: a) generating a cDNA library for the disease from a whale blood sample from a normal subject; b) generating expressed sequence tag (EST) profile from the normal subject cDNA library; c) generating a cDNA library for the disease from a whole blood sample from a test subject; d) generating EST profile from the lest subject cDNA library; and e) comparing the test subject EST profile to the normal subject EST profile, wherein if the test subject EST profile differs from the normal subject EST profile, the test subject might be diagnosed with the disease.
In still yet another embodiment of the present invention, there is provided a kit for diagnosing, prognosing or predicting a disease, comprising: a) gene-specific primers; wherein the primers are designed in such a way that their sequences contain the opposing ends of two adjacent exons for the specific gene with the intron sequence excluded; and b) a carrier, wherein the carrier immobilizes the primer(s). Preferably, the gene-specific primers are selected from the group consisting of insulin-specific primers, atrial natriuretic factor-specific primers, zinc finger protein gene-specific primers, beta-myosin heavy chain gene-specific primers, amyloid precurser protein gene-specific primers, and adenomatous polyposis-coli protein gene-specific primers. Further preferably, the gene-specific primers are selected from the group consisting of SEQ ID Nos. 1 and 2; and SEQ ID Nos. 5 and 6. Such a kit may be applied to a test subject whole blood sample to diagnose, prognose or predict a disease by detecting the quantitative expression levels of specific genes associated with the disease in the test subject and then comparing to the levels of same genes expressed in a normal subject. Such a kit may also be used for monitoring a course of therapeutic treatment or monitoring the onset of overt symptoms of a disease.
In yet another embodiment of the *sent invention, there is provided a kit for diagnosing, prognosing or predicting a disease, comprising: a) probes derived from a whole blood sample for a specific disease; and b) a carrier, wherein the carrier immobilizes the probes. Such a kit may be applied to a test subject whole blood sample to diagnose, prognose or predict a disease by detecting the quantitative expression levels of specific genes associated with the disease in the test subject and then comparing to the levels of same genes expressed in a normal subject. Such a kit may also be used for monitoring a course of therapeutic treatment or monitoring the onset of overt symptoms of a disease.
Furthermore, the present invention provides a cDNA library specific for a disease, wherein the cDNA library is generated from whole blood samples.
Other and further aspects, features, and advantages of the present invention will be apparent from the following description of the presently preferred embodiments of the invention. These embodiments are given for the purpose of disclosure.
The above-recited features, advantages and objects of the invention, as well as others which will become clear, are attained and can be understood in detail, more particular descriptions of the invention briefly summarized above may be had by reference to certain embodiments thereof which are illustrated in the appended drawings. These drawings form a part of the specification. It is to be noted, however, that the appended drawings illustrate preferred embodiments of the invention and therefore are not be considered limiting in their scope not be considered to limit the scope of the invention.
In accordance with the present invention, there may be employed conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Sambrook, Fritsch & Maniatis, “Molecular Cloning: A Laboratory Manual (1982); “DNA Cloning: A Practical Approach,” Volumes I and II (D. N. Glover ed. 1985); “Oligonucleotide Synthesis” (M. J. Gait ed. 1984); “Nucleic Acid Hybridization” [B. D. Hames & S. J. Higgins eds. (1985)]; “Transcription and Translation” [B. D. Hames & S. J. Higgins eds. (1984)]; “Animal Cell Culture” [R. I. Freshney, ed. (1986)]; “Immobilized Cells And Enzymes” [IRL Press, (1986)]; B. Perbal, “A Practical Guide To Molecular Cloning” (1984). Therefore, if appearing herein, the following terms shall have the definitions set out below.
A “cDNA” is defined as copy-DNA or complementary-DNA, and is a product of a reverse transcription reaction from an mRNA transcript. “RT-PCR” refers to reverse transcription polymerase chain reaction and results in production of cDNAs that are Complementary to the mRNA template(s).
In addition to RT-PCR, other methods of amplifying may also be used for the purpose of measuring/quantitating tissue-specific transcripts in human blood. For example, mass spectrometry may be used to quantify the transcripts (Koster et al, 1996; Fu et al., 1998). The application of presently disclosed method for detecting tissue-specific transcripts in blood does not restrict to subjects undergoing course of therapy or treatment, it may also be used for monitoring a patient for the onset of overt symptoms of a disease. Furthermore, the present method may be used for detecting any gene transcripts in blood. A kit for diagnosing, prognosing or even predicting a disease may be designed using gene-specific primers or probes derived from a whole blood sample for a specific disease and applied directly to a drop of blood. A cDNA library specific for a disease may be generated from whole blood samples and used for diagnosis, prognosis or even predicting a disease.
The term “oligonucleotide” is defined as a molecule comprised of two or more deoxyribonucleotides and/or ribonucleotides, preferably more than three. Its exact size will depend upon many factors which, in turn, depend upon the ultimate function and use of the oligonucleotide. The upper limit may be 15, 20, 25, 30, 40 or 50 nucleotides in length. The term “primer” as used herein refers to an oligonucleotide, whether occurring naturally as in a purified restriction digest or produced synthetically, which is capable of acting as a point of initiation of synthesis when placed under conditions in which synthesis of a primer extension product, which is complementary to a nucleic acid strand, is induced, i.e., in the presence of nucleotides and an inducing agent such as a DNA polymerase and at a suitable temperature and pH. The primer may be either single-stranded or double-stranded and must be sufficiently long to prime the synthesis of the desired extension product in the presence of the inducing agent. The exact length of the primer will depend upon many factors, including temperature, source of primer and the method used. For example, for diagnostic applications, depending on the complexity of the target sequence, the oligonucleotide primer typically contains 15-25 or more nucleotides, although it may contain fewer nucleotides. The factors involved in determining the appropriate length of primer are readily known to one of ordinary skill in the art.
As used herein, random sequence primers refer to a composition of primers of random sequence, i.e. not directed towards a specific sequence. These sequences possess sufficient complementary to hybridize with a polynucleotide and the primer sequence need not reflect the exact sequence of the template.
“Restriction fragment length polymorphism” refers to variations in DNA sequence detected by variations in the length of DNA fragments generated by restriction endonuclease digestion.
A standard Northern blot assay can be used to ascertain the relative amounts of mRNA in a cell tissue obtained from plant or other tissue, in accordance with conventional Northern hybridization techniques known to those persons of ordinary skill in the art. The Northern blot uses a hybridization probe, e.g. radiolabelled cDNA, either containing the full-length, single stranded DNA or a fragment of that DNA sequence at least 20 (preferably at least 30, more preferably at least 50, and most preferably at least 100 consecutive nucleotides in length). The DNA hybridization probe can be labelled by any of the many different methods known to those skilled in this art. The labels most commonly employed for these studies are radioactive elements, enzymes, chemicals which fluoresce when exposed to ultraviolet light, and others. A number of fluorescent materials are known and can be utilized as labels. These include, for example, fluorescein, rhodamine, auramine, Texas Red, AMCA blue and Lucifer Yellow. A particular detecting material is anti-rabbit antibody prepared in goats and conjugated with fluorescein through an isothiocyanate. Proteins can also be labeled with a radioactive element or with an enzyme. The radioactive label can be detected by any of the currently available counting procedures. The preferred isotope may be selected from 3H, 14C, 32P, 33S, 36Cl, 51Cr, 57Co, 58Co, 59Fe, 90Y, 125I, 131I, and 106Re. Enzyme labels are likewise useful, and can be detected by any of the presently utilized colorimetric, spectrophotometric, fluorospectrophotometric, amperometric or gasometric techniques. The enzyme is conjugated to the selected particle by reaction with bridging molecules such as carbodiimides, diisotyanates, glutaraldehyde and the like. Many enzymes which can be used in these procedures are known and can be utilized. The preferred are peroxidase, (-glucuronidase, (-D-glucosidase, (-D-galactosidase, urease, glucose oxidase plus peroxidase and alkaline phoiphatase. U.S. Pat. Nos. 3,654,090, 3,850,752, and 4,016,043 are referred to by way of example for their disclosure of alternate labeling material and methods.
As used herein, “individual” refers to human subjects as well as non-human subjects. The examples herein are not meant to limit the methodology of the present invention to human subjects only, as the instant methodology is useful in the fields of veterinary medicine, animal sciences and such.
As used herein, “detecting” refers to determining the presence of a gene expression product, for example cDNA, RNA or EST, by any method known to those of skill in the art or taught in numerous texts and laboratory manuals (see for example, Ausubel et al. Short Protocols in Molecular Biology (1995) 3rd Ed. John Wiley & Sons, Inc.). For example, methods of detection include but are not limited to, RNA fingerprinting, Northern blotting, polymerase chain reaction, ligase chain reaction, Qbeta replicase, isothermal amplification method, strand displacement amplification, transcription based amplification systems, nuclease protection (SI nuclease or RNAse protection assays) as well as methods disclosed in WO 88/10315, Wo 89/ 06700PCT/US87/00880, PCT/ US89/0102
As used herein, a disease of the invention includes, but is not limited to, blood disorder, blood lipid disease, autoimmune disease, arthritis (including osteoarthritis, rheumatoid arthritis, lupus, allergies, juvenile rheumatoid arthritis and the like), bone or joint disorder, a cardiovascular disorder, obesity, respiratory disease, lung diseases, hyperlipidemias, endocrine disorder, immune disorder, infectious disease, muscle wasting and whole body wasting disorder, neurological disorders including neurodegenerative and/or neuropsychiatric diseases, mood disorders, skin disorder, kidney disease, scleroderma, stroke, hereditary hemorrhage telangiectasia, diabetes, disorders associated with diabetes. (e.g., PVD), hypertension, Gaucher's disease, cystic fibrosis, sickle cell anemia, liver disease, pancreatic disease, eye, ear, nose and/or throat disease, diseases affecting the reproductive organs, gastrointestinal diseases (including diseases of the colon, diseases of the spleen, appendix, gall bladder, and others) and the like. For further discussion of human diseases, see Mendelian Inheritance in Man: A Catalog of Human Genes and Genetic Disorders by Victor A. McKusick (12th Edition (3 volume set) June 1998, Johns Hopkins University Press, ISBN: 0801857422) and Harrison's Principles of Internal Medicine by Braunwald, Fauci, Kasper, Hauser, Longo, & Jameson (15th Edition 2001), the entirety of which is incorporated herein.
In another embodiment of the invention, a disease refers to an immune disorder, such as those associated with overexpression of a gene or expression of a mutant gene (e.g., autoimmune diseases, such as diabetes mellitus, arthritis (including rheumatoid arthritis, juvenile rheumatoid arthritis, osteoarthritis, psoriatic arthritis), multiple sclerosis, encephalomyelitis, myasthenia gravis, systemit lupus erythematosis, automimmune thyroiditis, dermatitis (including atopic dermatitis and eczematous dermatitis), psoriasis, Sjogren's Syndrome, Crohn's disease, aphthous ulcer, iritis, conjunctivitis, keratoconjunctivitis, ulcerative colitis, asthma, allergic asthma, cutaneous lupus erythematosus, scleroderma, vaginitis, proctitis, drug eruptions, leprosy reversal erythema nodosum leprosum, autoimmune uveitis, allergic encephalomyelitis, acute necrotizing hemorrhagic encephalopathy, idiopathic bilateral progressive sensorineural hearing, loss, aplastic anemia, pure red cell anemia, idiopathic thrombocytopenia, polychondritis, Wegener's granulomatosis, chronic active hepatitis, Stevens-Johnson syndrome, idiopathic sprue, lichen planus, Graves' disease, sarcoidosis, primary biliary cirrhosis, uveitis posterior, and interstitial lung fibrosis); graft-versus-host disease, cases of transplantation, and allergy.
In another embodiment, a disease of the invention is a cellular proliferative and/or differentiative disorder that includes, but is not limited to, cancer, e.g., carcinoma, sarcoma or other metastatic disorders and the like. As used herein, the term “cancer” refers to cells having the capacity for autonomous growth, i.e., an abnormal state of condition characterized by rapidly proliferating cell growth. “Cancer” is meant to include all types of cancerous growths or oncogenic processes, metastatic tissues or malignantly transformed cells, tissues, or organs, irrespective of histopathologic type or stage of invasiveness. Examples of cancers include, but are nor limited to solid tumours and leukaemias, including: apudoma, choristoma, branchioma, malignant carcinoid syndrome, carcinoid heart disease, carcinoma (e.g., Walker, basal cell, basosquamous, Brown-Pearce, ductal, Ehrlich tumour, in situ, Krebs 2, Merkel cell, mucinous, non-small cell lung, oat cell papillary, scirrhous, bronchiolar, bronchogenic, squamous cell, and transitional cell), histiocytic disorders, leukaemia (e.g., B cell, mixed cell, null cell, T cell, chronic, HTLV-II-associated, lymphocytic acute, lymphocytic chronic, mast cell, and myeloid), histiocytosis malignant, Hodgkin disease, immunoproliferative small, non-Hodgkin lymphoma, plasmacytoma, reticuloendotheliosis, melanoma, chondroblastoma, chondroma, chondrosarcoma, fibroma, fibrosarcoma, giant cell tumours, histiocytoma, lipoma, liposarcoma, mesothelioma, myxoma, myxosarcoma, ostebma, osteosarcoma, Ewing sarcoma, synovioma, adenofibroma, adenolymphoma, carcinosarcoma, chordorna, craniopharyngioma, dysgerminoma, hamartoma, mesenchymoma, mesonephroma, Myosarcoma, ameloblastoma, cementoma, odontoma, teratoma, thymoma, trophoblastic tumour, adeno-carcinoma, adenoma, cholangioma, cholesteatoma, cylindroma, cystadenocarcinoma, cystadenoma, granulosa cell tumour, gynandroblastoma, hepatoma, hidradenoma, islet cell tumour, Leydig cell tumour, papilloma, Sertoli cell tumour, theca cell tumour, leiomyoma, leiomyosarcoma, myoblastoma, mymoma, myosarcoma, rhabdomyoma, rhabdomyosarcoma, ependymoma, ganglioneuroma, glioma, medulloblistoma, meningioma, neurilemmoma, neuroblastoma, neuroepithelioma, neurofibroma, neuroma, paraganglioma, paraganglioma nonchromaffin, angiokeratoma, angiolymphoid hyperplasia with eosinophilia, angioma sclerosing, angiomatosis, glornangioma, hemangioendothelioma, hemangioma, hemangiopericytoma, henlanglosarcoma, lymphangioma, lymphangiomyoma; lymphangiosarcoma, pinealoma, carcinosarcoma, chondrosarcoma, cystosarcoma, phyllodes, fibrosarcoma, hemangiosarcoma, leimyosarcoma, leukosarccima, liposarcoma, lymphangiosarcoma, myosarcoma, myxosarcoma, ovarian carcinoma, rhabdomyosarcoma, sarcoma (e.g., Ewing, experimental, Kaposi, and mast cell), neoplasms (e.g., bone, breast, digestive system, colorectal, liver, pancreatic, pituitary, testicular, orbital, head and neck, central nervous system, acoustic, pelvic tespiratory tract, and urogenital), neurofibromatosis, and cervical dysplasia, and other conditions in which cells have become immortalised or transformed.
As used herein, a gene of the invention is a gene that is expressed in blood and is either upregulated, or downregulated and can be used, either solely or in conjunction with other genes, as a marker for disease as defined herein. The term “gene” includes a region that can be transcribed into RNA, as the invention contemplates detection of RNA or equivalents thereof, i.e., cDNA or EST. A gene of the invention includes but is not limited to genes specific for or involved in a particular biological process, such as apoptosis, differentiation, stress response, aging, proliferation, etc.; cellular mechanism genes, e.g. cell-cycle, signal transduction, metabolism of toxic compounds, and the like; disease associated genes, e.g. genes involved in cancer, schizophrenia; diabetes, high blood pressure, atherosclerosis, viral-host interaction and infection and the like.
For example, the gene of the invention can be an oncogene Manahan, D. and R. A. Weinberg, Cell (2000) 100:57; and Yokota, J., Carcinogenesis (2000) 21(3):497-503) whose expression within a cell induces that, cell to become converted from a normal cell into a tumor cell. Further examples of genes of the invention include, but are not limited to, cytokine genes (Rubinstein, M., et al., Cytokine Growth Factor Rev. (1998) 9(2):175-81); idiotype (Id) protein genes (Benezra, R., et al., Oncogene (2001) 20(58):8334-41; Norton, J. D., J. Cell Sci. (2000) 113(22):3897-905); prion genes (Prusiner, S. B., et al., Cell (1998) 93(3):337-48; Safar, J., and S. B. Prusiner, Prog. Brain Res. (1998) 117:421-34); genes that express Molecules that induce angiogenesis (Gould, V. E. and B. M. Wagner, Hum. Pathol. (2002) 33(11):1061-3); genes encoding adhesion molecules (Chothia, C. and E. Y. Jones, Annu. Rev. Biochem. (1997) 66:823-62; Parise, L. V., et al., Semin. Cancer Biol. (2000) 10(6):407-14); genes encoding cell surface receptors (Deller, M. C., and Y. E. Jones, Curr. Opin. Struct. Biol. (2000) 10(2):213-9); genes of proteins that are involved in metastasizing and/or invasive processes (Boyd, D., Cancer Metastasis Rev. (1996) 15(1):77-89; Yokota, J., Carcinogenesis (2000) 21(3):497-503); genes of proteases as well as of molecules that regulate apoptosis and the cell cycle (Matrisian, L. M., Curr. Biol. (1999) 9(20):R776-8; Krepela, E., Neoplasma (2001) 48(5):332-49; Basbaum and Werb, Curr. Opin. Cell Biol. (1996) 8:731-738; Birkedal-Hansen, et al., Crit. Rev. Oral Biol. Med. (1993) 4:197-250; Mignatti and Rifkin, Physiol. Rev. (1993) 73:161-195; Stetler-Stevenson, et al., Annu. Rev. Cell Biol. (1993) 9:541-573; Brinkerhoff, B., and L. M. Matrisan, Nature Reviews (2002) 3:207-214; Strasser, A., et al., Annu. Rev. Biochem. (2000) 69:217-45; Chao, D. T. and S. J. Korsmeyer, Annu. Rev. Immunol. (1998) 16:395-419; Mullauer, L., et al., Mutat. Res. (2001) 488(3):211-31; Fotedar, R., et al., Prog. Cell Cycle Res. (1996) 2:147-63; Reed, J. C., Am. J. Pathol. (2000) 157(5):1415-30; D'Ari, R., Bioassays (2001) 23(7):563-5); or multi-drug resistance genes, such as MDR1 gene (Childs, S, and V. Ling, Imp. Adv. Oncol. (1994) 21-36). In another embodiment, a gene of the invention contains a sequence found in Tables 2 or 3 or
A nucleic acid microarray (RNA, DNA, cDNA, PCR products or ESTs) according to the invention was constructed as follows.
Nucleic acids (RNA, DNA, cDNA, PCR products or ESTs) (˜40 ul) are precipitated with 4 ul (1/10 volume) of 3M sodium acetate (p1-1 5.2) and 100 ul (2.5 volumes) of ethanol and stored overnight at −20° C. They are then centrifuged at 3,300 rpm at 4° C. for 1 hour. The obtained pellets were washed with 50 ul ice-cold 70% ethanol and centrifuged again for 30 minutes. The pellets are then air-dried and resuspended well in 50% dimethylsulfoxide (DMSO) or 20 ul 3×SSC overnight. The samples are then deposited either singly or in duplicate onto Gamma Amino Propyl Silane (Corning CMT-GAPS or CMT-GAP2, Catalog No. 40003, 40004) or polylysine-coated slides (Sigma Cat. No. P0425) using a robotic GMS 417 or 427 arrayer (Affymetrix, CA). The boundaries of the DNA spots on the microarray are marked with a diamond scriber. The invention provides for arrays where 10-20,000 different DNAs are spotted onto a solid support to prepare an array, and also may include duplicate or triplicate DNAs.
The arrays are rehydrated by suspending the slides over a dish of warm particle free ddH2O for approximately one minute (the spots will swell slightly but not run into each other) and snap-dried on a 70-80° C. inverted heating block for 3 seconds. DNA is then UV crosslinked to the slide (Stratagene, Stratalinker, 65 mJ—set display to “650” which is 650×100 uJ) or baked at 80 C for two to four hours. The arrays are placed in a slide rack. An empty slide chamber is prepared and filled with the following solution: 3.0 grams of succinic anhydride (Aldrich) is dissolved in 189 ml of 1-methyl-2-pyrrolidinone (rapid addition of reagent is crucial), immediately after the last flake of succinic anhydride dissolved, 21.0 ml of 0.2 M sodium borate is mixed in and the solution is poured into the slide chamber. The slide rack is plunged rapidly and evenly in the slide chamber and vigorously shaken up and down for a few seconds, making sure the slides never leave the solution, and then mixed on an orbital shaker for 15-20 minutes. The slide rack is then gently plunged in 95° C. ddH20 for 2 minutes, followed by plunging five times in 95% ethanol. The slides are then air dried by allowing excess ethanol to drip onto paper towels. The arrays are then stored in the slide box at room temperature until use.
Nucleic Acid Microarrays
Any combination of the nucleic acid sequences generated from nucleotides complimentary to regions of DNA expressed in blood are used for the construction of a microarray. In one embodiment, the microarray is chondrocyte-specific and encompasses genes which are important in the osteoarthritis disease process. A microarray according to the invention preferably comprises between 10, 100, 500, 1000, 5000, 10,000 and 15,000 nucleic acid members, and more preferably comprises at least 5000 nucleic acid members. The nucleic acid members are known or novel nucleic acid sequences described herein, or any combination thereof. A microarray according to the invention is used to assay for differential gene expression profiles of genes in blood samples from healthy patients as compared to patient with a disease.
GeneChip® probe arrays are manufactured through a unique and robust process—a combination of photolithography and combinatorial chemistry—that results in many of the arrays' powerful capabilities. With a calculated minimum number of synthesis steps, GeneChip technology produces arrays with hundreds of thousands of different probes packed at an extremely high density. This feature enables researchers to obtain high quality, genome-wide data using small sample volumes. Manufacture is scalable because the length of the probes, not their number, determines the number of synthesis steps required. This robust and automated production process yields arrays with highly reproducible properties, which reduces user set-up time by eliminating the need for individual labs to produce and test their own arrays.
Using technologies adapted from the semiconductor industry, GeneChip manufacturing begins with a 5-inch square quartz wafer. Initially the quartz is washed to ensure uniform hydroxylation across its surface. Because quartz is naturally hydroxylated, it provides an excellent substrate for the attachment of chemicals, such as linker molecules, that are later used to position the probes on the arrays.
The wafer is placed in a bath of silane, which reacts with the hydroxyl groups of the quartz, and forms a matrix of covalently linked molecules. The distance between these sliane molecules determines the probes' packing density, allowing arrays to hold over 500,000 probe locations, or features, within a mere 1.28 square centimeters. Each of these features harbors millions of identical DNA molecules. The silane film provides a uniform hydroxyl density to initiate probe assembly. Linker molecules, attached to the silane matrix, provide a surface that may be spatially activated by light.
Probe synthesis occurs in parallel, resulting in the addition of an A, C, T, or G nucleotide to multiple growing chains simultaneously. To define which oligonucleotide chains will receive a nucleotide in each step, photolithographic masks, carrying 18 to 20 square micron windows that correspond to the dimensions of individual features, are placed over the coated wafer. The windows are distributed over the mask based on the desired sequence of each probe. When ultraviolet light is shone over the mask in the first step of synthesis, the exposed linkers become deprotected and are available for nucleotide coupling. Critical to this step is the precise alignment of the mask with the wafer before each synthesis step. To ensure that this critical step is accurately completed, chrome marks on the wafer and on the mask are perfectly aligned.
Once the desired features have been activated, a solution containing a single type of deoxynucleotide with a removable protection group is flushed over the wafer's surface. The nucleotide attaches to the activated linkers, initiating the synthesis process.
Although the process is highly efficient, some activated molecules fail to attach the new nucleotide. To prevent these “outliers” from becoming probes with missing nucleotides, a capping step is used to truncate them. In addition, the side chains of the nucleotides are protected to prevent the formation of branched oligonucleotides.
In the following synthesis step, another mask is placed over the wafer to allow the next round of deprotection and coupling. The process is repeated until the probes reach their full length, usually 25 nucleotides.
Although each position in the sequence of an oligonucleotide can be occupied by 1 of 4 nucleotides, resulting in an apparent need for 25×4, or 100, different masks per wafer, the synthesis process can be designed to significantly reduce this requirement. Algorithms that help minimize mask usage calculate how to best coordinate probe growth by adjusting synthesis rates of individual probes and identifying situations when the same mask can be used multiple times.
Once the synthesis is complete, the wafers are deprotected, diced, and the resulting individual arrays are packaged in flowcell cartridges. Depending on the number of probe features per array, a single wafer can yield between 49 and 400 arrays.
The manufacturing process ends with a comprehensive series of quality control tests. Additionally, a sampling of arrays from every wafer is used to test the batch by running control hybridizations. A quantitative test of hybridization is also performed using standardized control probes.
After passing these rigorous tests, GeneChip probe arrays are well prepared to help pursue ambitious goals ranging from the discovery of basic biological mechanisms to the development of new disease therapies.
The Human Genome U133 (HG-U133) Set, consisting of two GeneChip® arrays, contains almost 45,000 probe sets representing more than 39,000 transcripts derived from approximately 33,000 well-substantiated human genes. This set design uses sequences selected from GenBank®, dbEST, and RefSeq.
The sequence clusters were created from the UniGene database (Build 133, Apr. 20, 2001). They were then refined by analysis and comparison with a number of other publicly available databases including the Washington University EST trace repository and the University of California, Santa Cruz Golden Path human genome database (April 2001 release).
The HG-U133A Array includes representation of the RefSeq database sequences and probe sets related to sequences previously represented on the Human Genome U95Av2 Array. The HG-U133B Array contains primarily probe sets representing EST clusters.
The Chondrochip version 2b is chondrocyte-specific microarray chip comprising 15000 novel and known EST sequences of the chondrocyte from chondrocyte-specific cDNA libraries.
There are two types of controls used on microarrays. First, positive controls are genes whose expression level is invariant between different stages of investigation and are used to monitor.
a) target DNA binding to the slide,
b) quality of the spotting and binding processes of the target DNA onto the slide,
c) quality of the RNA samples, and
d) efficiency of the reverse transcription and fluorescent labelling of the probes.
Second, negative controls are external controls derived from an organism unrelated to and therefore unlikely to cross-hybridize with the sample of interest. These are used to monitor for:
a) variation in background fluorescence on the slide, and
b) non-specific hybridization.
There are currently 63 controls spots on the ChondroChip™ consisting of:
A.
thaliana DNA
The “Blood chip” is a cDNA microarray slide with 10,368 PCR products derived from peripheral blood cell cDNA libraries as shown in
Preparation of Fluorescent DNA Probe from mRNA
Fluorescently labeled target nucleic acid samples are array of the invention.
2 μg Oligo-dT primers are annealed to 2ug of mRNA isolated from a blood sample of a patient in a total volume of 15 ul, by heating to 70° C. for 10 min, and cooled on ice. The mRNA is reverse transcribed by incubating the sample 42° C. for 1.5-2 hours in a 100 μl volume containing a final concentration of 50 mM Tris-HCl (pH 8.3), 75 mM KCl, 3 mM MgCl2, 25 mM DTT, 25 mM unlabeled dNTPs, 400 units of Superscript II (200 U/uL, Gibco BRL), and 15 mM of Cy3 or Cy5 (Amersham). RNA is then degraded by addition of 15 μl of 0.1N NaOH, and incubation at 70° C. for 10 min. The reaction mixture is neutralized by addition of 15 μl of 0.1N HCL, and the volume is brought to 500 μl with TE (10 mM Tris, 1 mM EDTA), and 20 μg of Cot1 human DNA (Gibco-BRL) is added.
The labeled target nucleic acid sample is purified by centrifugation in a Centricon-30 micro-concentrator (Amicon). If two different target nucleic acid samples (e.g., two samples derived from a healthy patient vs patient with a disease) are being analyzed and compared by hybridization to the same array, each target nucleic acid sample is labeled with a different fluorescent label (e.g., Cy3 and Cy5) and separately concentrated. The separately concentrated target nucleic acid samples (Cy3 and Cy5 labeled) are combined into a fresh centricon, washed with 500 μl TE, and concentrated again to a volume of less than 7 μl. 1 μL of 10 μg/μl polyA RNA (Sigma, #P9403) and 1 μl of 10 μg/ul tRNA (Gibco-BRL, #15401-011) is added and the volume is adjusted to 9.5 μl with distilled water. For final-target nucleic acid preparation 2.1 μl 20×SSC (1.5M NaCl, 150 mM NaCitrate (pH8:0)) and 0.35 μl 10% SDS is added.
Hybridization
Labeled nucleic acid is denatured by heating for 2 min at 100° C., and incubated at 37° C. for 20-30 min before being placed on a nucleic acid array under a 22 mm×22 mm glass cover slip. Hybridization is carried out at 65° C. for 14 to 18 hours in a custom slide chamber with humidity maintained by a small reservoir of 3×SSC. The array is washed by submersion and agitation for 2-5 min in 2×SSC with 0.1% SDS, followed by 1×SSC, and 0.1×SSC. Finally, the array is dried by centrifugation for 2 min in a slide rack in a Beckman GS-6 tabletop centrifuge in Microplus carriers at 650 RPM for 2 min.
Signal Detection and Data Generation
Following hybridization of an array with one or more labeled target nucleic acid samples, arrays are scanned immediately using a GMS Scanner 418 and Scanalyzer software (Michael Eisen, Stanford University), followed by GeneSpring software (Silicon Genetics, CA) analysis. Alternatively, a GMS Scanner 428 and Jaguar software may be used followed by GeneSpring software analysis.
If one target nucleic acid sample is analyzed, the sample is labeled with one fluorescent dye (e.g., Cy3 or Cy5).
After hybridization to a microarray as described herein, fluorescence intensities at the associated nucleic acid members on the microarray are determined from images taken with a custom confocal microscope equipped with laser excitation sources and interference filters appropriate for the Cy3 or Cy5 fluors.
The presence of Cy3 or Cy5 fluorescent dye on the microarray indicates hybridization of a target nucleic acid and a specific nucleic acid member on the microarray. The intensity of Cy3 or Cy5 fluorescence represents the amount of target nucleic acid which is hybridized to the nucleic acid member on the microarray, and is indicative of the expression level of the specific nucleic acid member sequence in the target sample.
After hybridization, fluorescence intensities at the associated nucleic acid members on the microarray are determined from images taken with a custom confocal microscope equipped with laser excitation sources and interference filters appropriate for the Cy3 and Cy5 fluors. Separate scans are taken for each fluor at a resolution of 225 μm2 per pixel and 65,536 gray levels. Normalization between the images is used to adjust for the different efficiencies in labeling and detection with the two different fluors. This is achieved by manual matching of the detection sensitivities to bring a set of internal control genes to nearly equal intensity followed by computational calculation of the residual scalar required for optimal intensity matching for this set of genes.
The presence of Cy3 or Cy5 fluorescent dye on the microarray indicates hybridization of a target nucleic acid and a specific nucleic acid member on the microarray. The intensities of Cy3 or Cy5 fluorescence represent the amount of target nucleic acid which is hybridized to the nucleic acid member on the microarray, and is indicative of the expression level of the specific nucleic acid member sequence in the target sample. If a nucleic acid member on the array shows no color, it indicates that the gene in that element is not expressed in either sample. If a nucleic acid member on the array shows a single color, it indicates that a labeled gene is expressed only in that cell sample. The appearance of both colors indicates that the gene is expressed in both tissue samples. The ratios of Cy3 and Cy5 fluorescence intensities, after normalization, are indicative of differences of expression levels Of the associated nucleic acid member sequence in the two samples for comparison. A ratio of expression not equal to is used as an indication of differential gene expression.
The array is scanned in the Cy 3 and Cy5 channels and stored as separate 16-bit TIFF images. The images are incorporated and-analysed using Scanalyzer software which includes a gridding process to capture the hybridization intensity data from each spot on the array. The fluorescence intensity and background-subtracted hybridization intensity of each spot is collected and a ratio of measured mean intensities of Cy5 to Cy3 is calculated. A liner regression approach is used for normalization and assumes that a scatter plot of the measured Cy5 versus Cy3 intensities should have a scope of one. The average of the ratios is calculated and used to rescale the data and adjust the slope to one. A post-normalization cutoff of a ratio not equal to 1.0 is used to identify differentially exorcised genes.
When comparing two or more samples for differences, results are reported as statistically significant when there is only a small probability that similar results would have been observed if the tested hypothesis (i.e., the genes are not expressed at different levels) were true. A small probability can be defined as the accepted threshold level at which the results being compared are considered significantly different. The accepted lower threshold is set at, but not limited to, 0.05 (i.e., there is a 5% likelihood that the results would be observed between two or more identical populations) such that any values determined by statistical means at or below this threshold are considered significant.
When comparing two or more samples for similarities, results are reported as statistically significant when there is only a small probability that similar results would have been observed if the tested hypothesis (i.e., the genes are not expressed at different levels) were true. A small probability can be defined as the accepted threshold level at which the results being compared are considered significantly different. The accepted lower threshold is set at, but not limited to, 0.05 (i.e., there is a 5% likelihood that the results would be observed between two or more identical populations) such that any values determined by statistical means above this threshold are not considered significantly different and thus similar.
Identification of genes differentially expressed in blood samples from patients with disease as compared to healthy patients is determined by statistical analysis of the gene expression profiles from healthy patient compared to patients with a disease using the Wilcox Mann Whitney rank sum test.
Data Acquisition and Analysis of Differentially Expressed EST Sequences
The differentially expressed EST sequences are then searched against available databases, including the “nt”, “nr”, “est”, “gss” and“htg” databases available through NCBI to determine putative identities for ESTs matching to known genes or other ESTs. Functional characterization of ESTs with known gene matches are made according to any known method. Preferably, differentially expressed EST sequences are compared to the non-redundant Genbank/EMBL/DDBJ and dbEST databases using the BLAST algorithm (Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. J Mol Biol 1990; 215:403-10). A minimum value of P=10−10 and nucleotide sequence identity >95%, where the sequence identity is non-contiguous or scattered, are required for assignments of putative identities for ESTs matching to known genes or to other EST. Construction of a non-redundant list of genes represented in the EST set is done with the help of Unigene, Entrez. and PubMed at the National Center for Biotechnology Information (NCBI) web site at www.ncbi.nlm.nih.gov.
Genes are identified from ESTs according to known methods. To identify novel genes from an EST sequence, the EST should preferably be at least 100 nucleotides in length, and more preferably 150 nucleotides in length, for annotation. Preferably, the EST exhibits open reading frame characteristics (i.e., can encode a putative polypeptide).
Because of the completion of the Human Genome Project, a specific EST which Matches with a genomic sequence can be mapped onto a specific chromosome based on the chromosomal location of the genomic sequence. However, no function may be known for the protein encoded by the sequence and the EST would then be considered “novel” in a functional sense. In one aspect, the invention is used to identify a novel differentially expressed EST, which is part of a larger known sequence for which no function is known, is used to determine the function of a gene comprising the EST. Alternatively, or additionally, the EST can be used to identify an mRNA or polypeptide encoded by the larger sequence as a diagnostic or prognostic marker of a disease.
Having identified an EST corresponding to a larger sequence, other portions of the larger sequence which comprises the EST can be used in assays to elucidate gene function, e.g., to isolate polypeptides encoded by the gene, to generate antibodies specifically reactive with these polypeptides, to identify binding partners of the polypeptides (receptors, ligands, agonists, antagonists and the like) and/or to detect the expression of the gene (or lack thereof) in healthy or diseased individuals.
In another aspect, the invention provides for nucleic acid sequences that do not demonstrate a “significant match” to any of the publicly known sequences in sequence databases at the time a query is done. Longer genomic segments comprising these types of novel EST sequences can be identified by probing genomic libraries, while longer expressed sequences can be identified in cDNA libraries and/or by performing polymerase extension reactions (e.g., RACE) using EST sequences to derive primer sequences as is known in the art. Longer fragments can be mapped to particular chromosomes by FISH and other techniques and their sequences compared to known sequences in genomic and/or expressed sequence databases.
The amino acid sequences encoded by the ESTs can also be used to search databases, such as GenBank, SWISS-PROT, EMBL database, PIR protein database, Vecbase, or GenPept for the amino acid sequences of the corresponding full-length genes according to procedures well known in the art.
Identified genes can be catalogued according to their putative function. Functional characterization of ESTs with known gene matches is preferably made according to the categories described by Hwang et al Compendium of Cardiovascular Genes. Circulation 1997; 96:4146-203. The distribution of genes in each of the subcellular categories will provide important insights into the disease process.
Alternative methods for analyzing ESTs are also available. For example, the ESTs may be assembled into contigs with sequence, alignment, editing, and assembly programs such as PHRED and PHRAP (Ewing, et al., 1998, Genome Res. 3:175, incorporated herein; and the web site at bozeman.genome.washington.edu). Contig redundancy is reduced by clustering nonoverlapping sequence contigs using the EST done identification number, which is common for the nonoverlapping 5 and 3 sequence reads for a single EST cDNA clone. In one aspect, the consensus sequence from each cluster is compared to the non-redundant Genbank/EMBL/DDBJ and dbEST databases using the BLAST algorithm with the help of unigene, Entrez and PubMed at the NCBI site.
Known Nucleic Acid Sequences or ESTs and Novel Nucleic Acid Sequences or ESTs
An EST that exhibits a significant match (>65%, and preferably 90% or greater, identity) to at least one existing sequence in an existing nucleic acid sequence database is characterized as a “known” sequence according to the invention. Within this category, some known ESTs match to existing sequences which encode polypeptides with known function(s) and are referred to as a “known sequence with a function”. Other “known” ESTs exhibit a significant match to existing sequences which encode polypeptides of unknown function(s) and are referred to as a “known sequence with no known function”,
EST sequences which have no significant match (less than 65% identity) to any existing sequence in the above cited available databases arc categorized as novel ESTs. To identify a novel gene from an EST sequence, the EST is preferably at least 150 nucleotides in length. More preferably, the EST encodes at least part of an open reading frame, that is, a nucleic acid sequence between a translation initiation codon and a termination codon, which is potentially translated into a polypeptide sequence.
The following references were cited herein:
The following examples are given for the purpose of illustrating various embodiments of the invention and are not meant to limit the present invention in any fashion.
Construction of cDNA Library
RNA extracted from human tissues (including fetal heart, adult heart, liver, brain, prostate gland and whole blood) were used to construct unidirectional cDNA libraries. The first mammalian heart cDNA library was constructed as early as 1982. Since then, the methodology has been revised and optimal conditions have been developed for construction of human heart and hematopoietic progenitor cDNA libraries (Liew et al., 1984; Liew 1993, Claudio et al., 1998). Most of the novel genes which were identified by sequence annotation can now be obtained as full length transcripts.
Random partial sequencing of expressed sequence tags (ESTs) of cDNA clones from the blood cell library was carried out to establish an EST database of blood. The known genes as derived from the ESTs were categorized into seven major cellular functions (Hwang, Dempsey et al., 1997). The preparation of the chondrocyte-specific EST database is reported in WO 02/070737, which is hereby incorporated by reference in its entirety.
Differential Screening of cDNA Library
cDNA probes generated from transcripts of each tissue were used to hybridize the blood cell cDNA clones or chondrocyte cDNA clones (Liew et al., 1997; WO 02/070737). The “positive” signals which were hybridized with P-labelled cDNA probes were defined as genes which shared identity with blood and respective tissues. The “negative” spots which were not exposed to P-labelled cDNA probes were considered to be blood-cell-enriched or low frequency transcripts.
RNA extracted from samples of human tissue was used for RT-PCR analysis (Jin et al. 1990). Three pairs of forward and reverse primers were designed for human cardiac beta-myosin heavy chain gene ((MyHC), amyloid precurser protein (APP) gene and adenomatous polyposis-coli protein (APC) gene. The PCR products were also subjected to automated DNA sequencing to verify the sequences as derived from the specific transcripts of blood.
The beta-myosin heavy chain gene ((MyHC) transcript (mRNA) is known to be highly expressed in ventricles of the human heart. This sarcomeric protein is important for heart muscle contraction and its presence would not be expected in other non-muscle tissues and blood. In 1990, the gene for human cardiac (MyHC was completely sequenced (Liew et al. 1990) and was comprised of 41 exons and 42 introns.
The method of reverse transcription polymerase chain reaction (RT-PCR) was used to determine whether this cardiac specific mRNA is also present in human blood. A pair of primers was designed; the forward primer (SEQ ID No. 3) was on the boundary of exons 21 and 22, and the reverse primer (SEQ ID No. 4) was on the boundary of exons 24 and 25. This region of mRNA is only present in (MyHC and is not found in the alpha-myosin heavy chain gene ((MyHC).
A blood sample was first treated with lysing buffer and then undergone centrifuge. The resulting pellets were further processed with RT-PCR. RT-PCR was performed using the total blood cell RNA as a template. A nested PCR product was generated and used for sequencing. The sequencing results were subjected to BLAST and the identity of exons 21 to 25 was confirmed to be from (MyHC (
Using the same method just described, two other tissue specific genes—amyloid precursor protein (APP, forward primer, SEQ No. 7; reverse primer, SEQ ID No. 8) found in the brain and associated with Alzheimer's disease, and adenomatous polyposis coli protein (APC) found in the colon and rectum and associated with colorectal cancer (Groden et al. 1991; Santoro and Groden 1997)—were also detected in the RNA extracted from human blood (
Multiple RT-PCR Analysis on a Drop of Blood from a Normal/Diseased Individual
A drop of blood was extracted to obtain RNA to carry out quantitative RT-PCR analysis. Specific primers for the insulin gene were designed; forward primer. (5′-GCCCTCTGGGGACCTGAC-3′, SEQ ID No. 1) of exon 1 and reverse primer (5′-CCCACCTGCAGGTCCTCT-3″, SEQ ID No. 2) of exons 1 and 2 of insulin gene. Such reverse primer was obtained by deleting the intron between the exons 1 and 2. Blood samples of 4 normal subjects were assayed. It was found that the insulin gene is expressed in the blood and the quantitative expression of the insulin gene in a drop of blood is influenced by fasting and non-fasting states of normal healthy subjects (
Same quantitative RT-PCR analysis was performed using insulin specific primers on RNA samples extracted from a drop of blood from a normal healthy person, a person having late-onset diabetes (Type II) and a person having asymptomatic diabetes. It was found that the insulin gene is expressed differentially amongst subjects that are healthy, diagnosed as type II diabetic, and also in an asymptomatic preclinical patient (
Similarly, specific primers for the atrial natriuretic factor (ANF) gene were designed (forward primer, SEQ ID No. 5; reverse primer, SEQ ID No. 6) and RT-PCR analysis was performed on a drop of blood. ANF is known to be highly expressed in heart tissue biopsies and in the plasma of heart failure patients. However, atrial natriuretic factor was observed to be expressed in the blood and the expression of the atrial natriuretic factor gene is significantly higher in the blood of patients with heart failure as compared to the blood of a normal control patient.
Specific primers for the zinc finger protein gene (ZFP, forward primer, SEQ ID No. 9; reverse primer, SEQ ID No. 10) were also designed and RT-PCR analysis was performed on a drop of blood. ZFP is known to be high in heart tissue biopsies of cardiac hypertrophy and heart failure patients. In the present study, the expression of ZFP was observed in the blood as well as differential expression levels of ZFP amongst the normal, diabetic and asymptomatic preclinical subjects (
It was hypothesized that a housekeeping gene such as glyceraldehyde dehydrogenase (GADH) which is required and highly expressed in all cells would not be differentially expressed in the blood of normal vs. disease subjects. This hypothesis was confirmed by RT-PCR using GADH specific primers (
Standardized levels of insulin gene or ZFP gene expressed in a drop of blood were estimated using a housekeeping gene as an internal control relative to insulin or ZFP expressed (
Human Blood Cell cDNA Library
In order to further substantiate the present invention, differential screening of the human blood cell cDNA library was conducted. cDNA probes derived from human blood, adult heart or brain were respectively hybridized to the human blood cDNA library clones. As shown in
DNA sequencing of randomly selected clones from the human whole blood cell cDNA library was also performed. This allowed information regarding the cellular function of blood to be obtained concurrently with gene identification. More than 20,000 expressed sequence tags (ESTs) have been generated and characterized to date, 17.6% of which did not result in a statistically significant match to entries in the GenBank databases and thus were designated as “Novel” ESTs. These results are summarized in
From 20,000 ESTs, 1,800 have been identified as known genes which may not all appear in the hemapoietic system. For example, the insulin gene and the atrial natriuretic factor gene have not been detected in these 20,000 ESTs but their transcripts were detected in a drop of blood, strongly suggesting that all transcripts of the human genome can be detected by performing RT-PCR analysis on a drop of blood.
In addition, approximately 400 novel genes have been identified from the 20,000 ESTs characterized to date, and these will be subjected to full length sequencing and open reading frame alignment to reduce the actual number of novel ESTs prior to screening for disease markers.
Analysis of the approximately 6,283 ESTs which have known matches in the GenBank databases revealed that this dataset represents over 1,800 unique genes. These genes have been catalogued into seven cellular functions. Comparisons of this set of unique genes with ESTs derived from human brain, heart, lung and kidney demonstrated a greater than 50% overlap in expression (Table 1).
The results from the differential screening clearly indicate that the transcripts expressed in the whole blood are reflective of genes expressed in all cells and tissues of the body. More than 95% of detectable spots were identical from two different tissues. The remaining 5% of spots may represent cell- or tissue-specific transcripts; however, results obtained from partial sequencing to generate ESTs of these clones revealed most of them not to be cell- or tissue-specific transcripts. Therefore, the negative spots are postulated to be reflective of low abundance transcripts in the tissue from which the cDNA probes were derived.
An alternative approach that was employed to identify transcripts expressed at low levels is the large-scale generation of expressed sequence tags (ESTs). There is substantial evidence regarding the efficiency of this technology to detect previously characterized (known) and uncharacterized (unknown or novel) genes expressed in the cardiovascular system (Hwang & Dempsey et al., 1997). In the present invention, 20,000 ESTs have been produced from a human blood cell cDNA library and resulted in the identification of approximately 1,800 unique known genes (Table 2)
In the most recent GenBank release, analysis of more than 300,000 ESTs in the database (dbESTs) generated more than 48,000 gene clusters which are thought to represent approximately 50% of the genes in the human genome. Only 4,800 of the dbESTS are blood-derived. In the present invention, 20,000 ESTs have been obtained to date from a human blood cDNA library, which provides the world's most informative database with respect to blood cell transcripts. From the limited amount of information generated so far (i.e. 1,800 unique genes), it has already been determined that more than 50% of the transcripts are found in other cells or tissues of the human body (Table 2). Thus, it is expected that by increasing the number of ESTs generated, more genes will be identified that have an overlap in expression between the blood and other tissues. Furthermore, the transcripts for several genes which are known to have tissue-restricted patterns of expression (i.e. (MyHC, APP, APC, ANF, ZFP) have also been demonstrated to be present in blood.
Most recently, a cDNA library of human hematopoietic progenitor stem cells has also been constructed. From the limited set of 1,000 ESTs, there are at least 200 known genes that are shared with other tissue related genes (Claudio et al. 1998).
Table 2 demonstrates the expression of known genes of specific tissues in blood cells. Previously, only the presence of “housekeeping” genes would have been expected. Additionally, the presence of at least 25 of the currently known 500 genes corresponding to molecular drug targets was detected. These molecular drug targets are used in the treatment of a variety of diseases which involve inflammation, renal and cardiovascular function, neoplastic disease, immunomodulation and viral infection (Drews & Ryser, 1997). It is expected that additional novel ESTs will represent future molecular drug targets.
Blood cDNA Chip Microarray Data Analysis of Gene Expression Profiles of Blood Samples from Individuals having Coronary Artery Disease as compared with Gene Expression Profiles from Normal Individuals
A microarray was constructed using cDNA clones from a human peripheral blood cell cDNA library, as described herein. A total of 10,368 polymerase chain reaction (PCR) products of the clones from the human peripheral blood cell cDNA library were arrayed using GNS 417 arrpyer (Affymetrix). RNA for microarray analysis was isolated from whole block samples obtained from three male and one female patients with coronary heart disease (80-90% stenosis) receiving vascular extension drugs and awaiting bypass surgery, and three healthy male controls.
A method of high-fidelity mRNA amplification from 1 pg of total RNA sample was used. Cy5- or Cy3-dUTP was incorporated into cDNA probes by reverse transcription of anti-sense RNA, primed by oligo-dT. Labeled probes were purified and concentrated to the desired volume. Pre-hybridization and hybridization were performed following Hegde's protocol (Hegde P et al. A concise guide to cDNA microarray analysis. Biotechniques 2000,29, 548-56). After overnight hybridization and washing, hybridization signals were detected with a GMS 418 scanner at 635-nm (Cy5) and 532-nm (Cy3) wave lengths (see
The differential expression of three genes, pro-platelet basic protein (PBP), platelet factor 4 (PF4) and coagulation factor XIII Al (F13A), initially identified in the microarray data analysis, was further examined by reverse transcriptase-PCR (RT-PCR) using the Titan One-tube RT-PCR kit (Boehringer Mannheim). Reaction solution contains 0.2 mM each dNTP, 5 mM DTT, 1.5 mM MgCl 0.1 pg of total RNA from each sample and 20 pmol each of left and right primers of PBP (5′-GGTGCTGCTGCTTCTGTCAT-3′ and 5′-GGCAGATTTTCCTCCCATCC-3′), F13A (5CAGTCCACCGTGCTAACCATC-3′ and 5′-AGGGAGTCACTGCTCATGCT-3′) and PF4 (5′ GTTGCTGCTCCTGCCACTT 3′ and 5′ GTGGCTATCAGTTGGGCAGT-3′). RT-PCR steps are as follows: 1. reverse-transcription: 30 min at 60° C.; 2. PCR: 2 min at 94° C., followed by 30-35 cycles (as optimized for each gene) for 30 s at 94° C., 30 s at optimized annealing temperature and 2 min at 68° C.; 3. final extension: 7 min at 68° C. PCR, products were electrophoresed on 1.5% agarose gels. Human (β-actin primers (5′-GCGAGAAGATGACCCAGATCAT-3′ and 5′-GCTCAGGAGGAGCAATGATCTT-3′) were used as the internal control. The RT-PCR analysis confirmed that the expression of the three secreted proteins: PBP, PF4 and F13A were all unregulated in CAD blood cells (see
ChondroChip Microarray Data Analysis of Gene Expression Profiles of Blood Samples from Individuals having Osteoarthritis and Hypertension as Compared with Gene Expression Profiles from Normal Individuals
This example demonstrates the use of the claimed invention to detect differential gene expression in blood samples taken from patients with osteoarthritis and hypertension on as compared to blood samples taken from healthy patients.
As used herein, the term “hypertension” is defined as high blood pressure or elevated arterial pressure. Patients identified with hypertension herein include persons who have an increased risk of developing a morbid cardiovascular event and/or persons who benefit from medical therapy designer to treat hypertension. Patients identified with hypertension also can include persons having systolic blood pressure of >130 mm Hg or a diastolic blood pressure of >90 mm Hg or a person takes antihypertensive medication.
Osteoarthritis (OA), as used herein also known as “degenerative joint disease”, represents failure of a diarthrodial (movable, synovial-lined) joint. It is a condition, which affects joint cartilage, and or subsequently underlying bone and supporting tissues leading to pain, stiffness, movement problems and activity limitations. It most often affects the hip, knee, foot, and hand, but can affect other joints as well.
OA severity can be graded according to the system described by Marshall (Marshall K W. J Rheumatol, 1996:23(4) 582-85). Briefly, each of the six knee articular surfaces was assigned a cartilage grade with points based on the worst lesion seen on each particular surface. Grade 0 is normal (0 points), grade 1 cartilage is soft or swollen but the articular surface is intact (1 point). In Grade II lesions, the cartilage surface is not intact but the lesion does not extend down to subchondral bone (2 points). Grade III damage extends to subchondral bone but the bone is neither eroded nor eburnated (3 points). In Grade IV lesions, there is eburnation of or erosion into bone (4 points). A global OA score is calculated by summing the points from all six cartilage surfaces. If there is any associated pathology, such as meniscus tear, an extra point will be added to the global score. Based on the total score, each patient is then categorized into one of four OA groups: mild (1-6), moderate (7-12), marked (13-18), and severe (>18). As used herein, patients identified with OA may be categorized in any of the four OA groupings as described above.
Blood samples were taken from patients who were diagnosed with osteoarthritis and hypertension as defined herein. Gene expression profiles were then analyzed and compared to profiles from patients unaffected by any disease. In each case, the diagnosis of osteoarthritis and hypertension was corroborated by a skilled Board certified physician.
Total mRNA from a drop of peripheral whole blood taken from each patient was isolated using TRIzol® reagent (GIBCO) and fluorescently labeled probes for each blood sample were generated as described above. Each probe was denatured and hybridized to a 15K Chondrogene Microarray Chip (Chondrochip) as described herein. Identification of genes differentially expressed in blood samples from patients with disease as compared to healthy patients was determined by statistical analysis using the Wilcox Mann Whitney rank sum test (Glantz S A. Primer of Biostatistics. 5th ed. New York, USA: McGraw-Hill Medical Publishing Division, 2002).
ChondroChip Microarray Data Analysis of Gene Expression Profiles of Blood Samples from Individuals having Osteoarthritis and Obesity as Compared with Gene Expression Profiles from Normal Individuals.
This example demonstrates the use of the claimed invention to detect differential gene expression in blood samples taken from patients with obesity as compared to blood samples taken from healthy patients.
As used herein, “obesity” is defined as an excess of adipose tissue that imparts a health risk. Obesity is assessed in terms of height and weight in the relevance of age. Patients who are considered obese include, but are not limited to, patients having a body mass index or BMI ((defined as body weight in kg divided by (height in meters)2) greater than or equal to 30.0. Patients having obesity as defined herein are those with a BMI of greater than or equal to 30.0.
Blood samples were taken from patients who were diagnosed with osteoarthritis and obesity as defined herein. Gene expression profiles were then analyzed and compared to profiles from patients unaffected by any disease. In each case, the diagnosis of the disease was corroborated by a skilled Board certified physician. Total mRNA from a drop of peripheral whole blood taken from each patient was isolated using TRIzol® reagent (GIBCO) and fluorescently labeled probes for each blood sample were generated as described above. Each probe was denatured and hybridized to a 15K Chondrogene Microarray Chip (ChondroChip) as described herein. Identification of genes differentially expressed in blood samples from patients with disease as compared to healthy patients was determined by statistical analysis using the Wilcox Mann Whitney rank sum test (Glantz S A. Primer of Biostatistics. 5th ed. New York, USA: McGraw-Hill Medical Publishing Division, 2002).
ChondroChip Microarray Data Analysis of Gene Expression Profiles of Blood Samples from Individuals having Osteoarthritis and Allergies as Compared with Gene Expression Profiles from Normal Individuals
This example demonstrates the use of the claimed invention to detect differential gene expression in blood samples taken from patients with allergies as compared to blood samples taken from healthy patients.
As used herein, “allergies” encompasses diseases and conditions wherein a patient demonstrates a hypersensitive or allergic reaction to one or more substances or stimuli such as drugs, food stuffs, plants, animals etc. and as a result has an increased immune response. Such immune responses can include anaphylaxis, allergic rhinitis, asthma, skin sensitivity such as urticaria, eczema, and allergic contact dermatitis and ocular allergies such as allergic conjunctivitis and contact allergy. Patients identified as having allergies includes patients having one or more of the above noted conditions.
Blood samples were taken from patients who were diagnosed with osteoarthritis and allergies as defined herein. Gene expression profiles were then analyzed and compared to profiles from patients unaffected by any disease. In each case, the diagnosis of osteoarthritis and allergies was corroborated by a skilled Board certified physician.
Total mRNA from a drop of peripheral whole blood taken from each patient was isolated using TRIzol® reagent (GIBCO) and fluorescently labeled probes for each blood sample were generated as described above. Each probe was denatured and hybridized to a 15K Chondrogene Microarray Chip (Chondrochip) as described herein. Identification of genes differentially expressed in blood samples from patients with osteoarthritis and allergies as compared to healthy patients was determined by statistical analysis using the Wilcox Mann Whitney rank sum test (Glantz S A. Primer of Biostatistics. 5th ed. New York, USA: McGraw-Hill Medical Publishing Division, 2002).
ChondroChip Microarray Data Analysis of Gene Expression Profiles of Blood Samples from Individuals having Osteoarthritis and Subject to Systemic Steroids as Compared with Gene Expression Profiles from Normal Individuals
This example demonstrates the use of the claimed invention to detect differential gene expression in blood samples taken from patients subject to systemic steroids as compared to blood samples taken from healthy patients.
As used herein, “systemic steroids” indicates a person subjected to artificial levels of steroids as a result of medical intervention. Such systemic steroids include birth control pills, prednisone, and hormones as a result of hormone replacement treatment. A person identified as having systemic steroids is one who is on one or more of the following treatment regimes.
Blood samples were taken from patients who were diagnosed with osteoarthritis and subject to systemic steroids as defined herein. Gene expression profiles were then analyzed and compared to profiles from patients unaffected by any disease. In each case, the diagnosis of osteoarthritis and systemic steroids was corroborated by a skilled Board certified physician.
Total mRNA from a drop of peripheral whole blood taken from each patient was isolated using TRIzol® reagent (GIBCO) and fluorescently labeled probes for each blood sample were generated as described above. Each probe was denatured and hybridized to the 15K Chondrogene Microarray Chip (Chondrochip) as described herein. Identification of genes differentially expressed in blood samples from patients with osteoarthritis and subject to systemic steroids as compared to healthy patients was determined by statistical analysis using the Wilcox Mann Whitney rank sum test (Glantz S A. Primer of Biostatistics. 5th ed. New York, USA: McGraw-Hill Medical Publishing Division, 2002).
ChondroChip Microarray Data Analysis of Gene Expression Profiles of Blood Samples from Individuals having Hypertension as Compared with Gene Expression Profiles from Normal Individuals
This example demonstrates the use of the claimed invention to detect differential gene expression in blood samples taken from patients with hypertension but without osteoarthritis as compared to blood samples taken from healthy patients.
As used herein, the term “hypertension” is defined as high blood pressure or elevated arterial pressure. Patients identified with hypertension herein include persons who have an increased risk of developing a morbid cardiovascular event and/or persons who benefit from medical therapy designed to treat hypertension. Patients identified with hypertension also can include persons having systolic blood pressure of >130 mm Hg or a diastolic blood pressure of >90 mm Hg or a person takes antihypertensive medication.
Blood samples were taken from patients who were diagnosed with hypertension as defined herein. Gene expression profiles were then analyzed and compared to profiles from patients unaffected by any disease. In each case, the diagnosis of hypertension was corroborated by a skilled Board certified physician.
Total mRNA from a drop of peripheral whole blood taken from each patient was isolated using TRIzol® reagent (GIBCO) and fluorescently labeled probes for each blood sample were generated as described above. Each probe was denatured and hybridized to a 15K Chondrogene Microarray Chip (ChondroChip) as described herein. Identification of genes differentially expressed in blood samples from patients with hypertension as compared to healthy patients was determined by statistical analysis using the Wilcox Mann Whitney rank sum test (Glantz S A, Primer of Biostatistics. 5th ed. New York, USA: McGraw-Hill Medical Publishing Division, 2002).
ChondroChip Microarray Data Analysis of Gene Expression Profiles of Blood Samples from Individuals having Obesity as Compared with Gene Expression Profiles from Normal Individuals
This example demonstrates the use of the claimed invention to detect differential gene expression in blood samples taken from patients with obesity but without osteoarthritis as compared to blood samples taken from healthy patients.
As used herein, “obesity” is defined as an excess of adipose tissue that imparts a health risk. Obesity, is assessed in terms of height and weight in the relevance of age. Patients who are considered obese include, but are not limited to, patients having a body mass index or BMI ((defined as body weight in kg divided by (height in meters)2) greater than or equal to 30.0. Patients having obesity as defined herein are those without BMI of greater than or equal to 30.0.
Blood samples were taken from patients who were diagnosed with hypertension as defined herein. Gene expression profiles were then analyzed and compared to profiles from patients unaffected by any disease. In each case, the diagnosis of obesity was corroborated by a skilled Board certified physician.
Total mRNA from a drop of peripheral whole blood taken from each patient was isolated using TRIzol® reagent. (GIBCO) and fluorescently labeled probes for each blood sample were generated as described above. Each probe was denatured and hybridized to a (Chondrochip) as described herein. Identification of genes differentially expressed in blood samples from patients with obesity as compared to healthy patients was determined by statistical analysis using the Wilcox Mann Whitney rank sum test (Glantz S A. Primer of Biostatistics. 5th ed. New York, USA: McGraw-Hill Medical Publishing Division, 2002).
ChondroChip Microarray Data Analysis of Gene Expression Profiles of Blood Samples from Individuals having Type 2 Diabetes as Compared with Gene Expression Profiles from Normal Individuals
This example demonstrates the use of the claimed invention to detect differential gene expression in blood samples taken from patients with type 2 diabetes but without osteoarthritis as compared to blood samples taken from healthy patients.
As used herein, “diabetes”, or “diabetes mellitus” includes both “type 1 diabetes” (insulin-dependent diabetes (IDDM)) and “type 2 diabetes” (insulin-independent diabetes (NIDDM). Both type 1 and type 2 diabetes characterized in accordance with Harrison's Principles of Internal Medicine 14th edition, as a person having a venous plasma glucose concentration ≧140 mg/dL on at least two separate occasions after overnight fasting and venous plasma glucose concentration ≧200 mg/dL at 2 h and on at least one other occasion during the 2-h test following ingestion of 75 g of glucose. Patients identified as having type 2 diabetes as described herein are those demonstrating insulin-independent diabetes as determined by the methods described above.
Blood samples were taken from patients who were diagnosed with type II diabetes as defined herein. Gene expression profiles were then analyzed and compared to profiles from patients unaffected by any disease. In each case, the diagnosis of type II diabetes was corroborated by a skilled Board certified physician.
Total mRNA from a drop of peripheral whole blood taken from each patient was isolated using TRIzol® reagent (GIBCO) and fluorescently labeled probes for each blood sample were generated as described above. Each probe was denatured and hybridized to a 15K Chondrogene Microarray Chip (Chondrochip) as described herein. Identification of genes differentially expressed in blood samples from patients with type diabetes as compared to healthy patients was determined by statistical analysis using the Wilcox Mann Whitney rank sum test (Glantz S A. Primer of Biostatistics. 5th ed. New York, USA: McGraw-Hill Medical Publishing Division, 2002).
Chondrochip Microarray Data Analysis of Gene Expression Profiles of Blood Samples from Individuals having hyperlipidemia as Compared with Gene Expression Profiles from Normal Individuals
This example demonstrates the use of the claimed invention to detect differential gene expression in blood samples taken from patients with hyperlipidemia but without osteoarthritis as compared to blood samples taken from healthy patients.
As used herein, “hyperlipidemia” is defined as an elevation of lipid protein profiles and includes the elevation of chylomicrons, very low-density lipeproteins (VLDL), intermediate-density lipoproteins (IDL), low-density lipoproteins (LDL), and/or high-density lipoproteins (HDL) as compared with the general population. Hyperlipidemia includes hypercholesterolemia and/or hypertriglyceridemia. By hypercholesterolemia, it is meantelevated fasting plasma total cholesterol level of >200 mg/dL, and/or LDL-cholesterol levels of >130 mg/dL. A desirable level of HDL-cholesterol is >60 mg/dL. By hypertriglyceridemia it is meant plasma triglyceride (TG) concentrations of greater than the 90th or 95th percentile for age and sex and can include, for example, TG>160 mg/dL as determined after an overnight fast.
Blood samples were taken from patients who were diagnosed with hyperlipidemia as defined herein. Gene expression profiles were then analyzed and compared to profiles from patients unaffected by any disease. In each case, the diagnosis of hyperlipidemia was corroborated by a skilled Board certified physician.
Total mRNA from a drop of peripheral whole blood taken from each patient was isolated using TRIzol® reagent (GIBCO) and fluorescently labeled probes for each blood sample were generated as described above. Each probe was denatured and hybridized to a 15K Chondrogene Microarray Chip (Chondrochip) as described herein. Identification of genes differentially expressed in blood samples from patients with hyperlipidemia as compared to healthy patients was determined by statistical analysis using the Wilcox Mann Whitney rank sum test (Glantz S A. Primer of Biostatistics. 5th ed. New York, USA: McGraw-Hill Medical Publishing Division, 2002).
Chondrochip Microarray Data Analysis of Gene Expression Profiles of Blood Samples from Individuals having Lung Disease as Compared with Gene Expression Profiles from Normal Individuals
This example demonstrates the use of the claimed invention to detect differential gene expression in blood samples taken from patients with lung disease but without osteoarthritis as compared to blood samples taken from healthy patients.
As used herein, “lung disease” encompasses any disease that affects the respiratory system and includes bronchitis, chronic obstructive lung disease, emphysema, asthma, lung cancer. Patients identified as having lung disease includes patients having one or more of the above noted conditions.
Blood samples were taken from patients who were diagnosed with lung disease as defined herein. Gene expression profiles were then analyzed and compared to profiles from patients unaffected by any disease. In each case, the diagnosis of lung disease was corroborated by a skilled Board certified physician.
Total mRNA from a drop of peripheral whole blood taken from each patient was isolated using TRIzol® reagent (GIBCO) and fluorescently labeled probes for each blood sample were generated as described above. Each probe was denatured and hybridized to a 15K Chondrogene Microarray Chip (Chondrochip) as described herein. Identification of genes differentially expressed in blood samples from patients with lung disease as compared to healthy patients was determined by statistical analysis using the Wilcox Mann Whitney rank sum test (Glantz S A. Primer of Biostatistics. 5th ed. New York, USA: McGraw-Hill Medical Publishing Division, 2002).
Affymetrix U133A Chip Microarray Data Analysis of Gene Expression Profiles of Blood Samples from Individuals having Bladder Cancer as Compared with Gene Expression Profiles from Normal Individuals
This example demonstrates the use of the claimed invention to detect differential gene expression in blood samples taken from patients with bladder cancer but without osteoarthritis as compared to blood samples taken from healthy patients.
As used herein, the term “cancer” or “carcinoma” is defined as a disease in, which cells behave abnormally and includes; (i) cancers which originate from a single cell proliferating to form a clone of malignant cells, (ii) cancers wherein the growth of the cell is not regulated by normal biological and physical influences of the environment, (iii) anaplasic cancer, wherein the cells lack normal coordinated cell differentiation and (iv) metastasis cancer, wherein the cells have the capacity for discontinuous growth and dissemination to other parts of the body. The diagnosis of cancer can include careful clinical assessment and/or diagnostic investigations including endoscopy, imaging, histopathology, cytology and laboratory studies.
As used herein, “bladder cancer” includes carcinomas that occur in the transitional epithelium lining the urinary tract, starting at the renal pelvis and extending through the ureter, the urinary bladder, and the proximal two-thirds of the urethra. As used herein, patients diagnosed with bladder cancer include patients diagnosed utilizing any of the following methods or a combination thereof: urinary cytologic evaluation, endoscopic evaluation for the presence of malignant cells, CT (computed tomography), MRI (magnetic resonance imaging) for metastasis status.
Blood samples were taken from patients who were diagnosed with bladder cancer as defined herein. Gene expression profiles were then analyzed and compared to profiles from patients unaffected by any disease. In each case, the diagnosis of bladder cancer was corroborated by a skilled Board certified physician.
Total mRNA from a drop of peripheral whole blood taken from each patient was isolated using TRIzol® reagent (GIBCO) and fluorescently labeled probes for each blood sample were generated as described above. Each probe was denatured and hybridized to a Affymetrix U133A Chip as described herein. Identification of genes differentially expressed in blood samples from patients with bladder cancer as compared to healthy patients was determined by statistical analysis using the Wilcox Mann Whitney rank sum test (Glantz S A. Primer of Biostatistics. 5th ed. New York, USA: McGraw-Hill Medical Publishing Division, 2002).
Affymetrix U133A Chip Microarray Data Analysis of Gene Expression Profiles of Blood Samples from Individuals having Early or Advanced Bladder Cancer as Compared with Gene Expression Profiles from Normal Individuals
This example demonstrates the use of the claimed invention to detect differential gene expression in blood samples taken from patients with early or advanced late stage bladder cancer but without osteoarthritis as compared to blood samples taken from healthy patients.
As used herein, “early stage bladder cancer” includes bladder cancer wherein the detection of the anatomic extent of the tumor, both in its primary location and in metastatic sites, as defined by the TNM staging system in accordance with Harrison's Principles of Internal Medicine 14th edition can be considered early stage. More specifically, early stage bladder cancer can include those instances wherein the carcinoma is mainly superficial.
As used herein, “advanced stage bladder cancer” is defined as bladder cancer wherein the detection of the anatomic extent of the tumor, both in its primary location and in metastatic sites, as defined by the TNM staging system in accordance with Harrison's Principles of Internal Medicine 14th edition, can be considered as advanced stage. More specifically, advanced stage carcinomas can involve instances wherein the cancer has infiltrated the muscle and wherein metastasis has occurred.
Blood samples were taken from patients who were diagnosed with early or advanced late stage bladder cancer as defined herein. Gene expression profiles were then analyzed and compared to profiles from patients unaffected by any disease. In each case, the diagnosis of early or advanced late stage bladder cancer was corroborated by a skilled Board certified physician.
Total mRNA from a drop of peripheral whole blood taken from each patient was isolated using TRIzol® reagent (GIBCO) and fluorescently labeled probes for each blood sample were generated as described above. Each probe was denatured and hybridized to a Affymetrix U133A Chip as described herein. Identification of genes differentially expressed in blood samples from patients with early or advanced late stage bladder cancer as compared to healthy patients was determined by statistical analysis using the Wilcox Mann Whitney rank sum test (Glantz S A. Primer of Biostatistics. 5th ed. New York; USA: McGraw-Hill Medical Publishing Division, 2002).
Affymetrix U133A Chip Microarray Data Analysis of Gene Expression Profiles of Blood Samples from Individuals having Coronary Artery Disease as Compared with Gene Expression Profiles from Normal Individuals
This example demonstrates the use of the claimed invention to detect differential gene expression in blood samples taken from patients with coronary artery disease but without osteoarthritis as compared to blood samples taken from healthy patients.
As used herein, “Coronary artery disease” (CAD) is defined as a condition wherein at least one coronary artery has >50% luminal diameter stenosis, as diagnosed by coronary angiography and includes conditions in which there is atheromatous narrowing and subsequent occlusion of the vessel. CAD includes those conditions which manifest as angina, silent ischaemia, unstable angina, myocardial infarction, arrhythmias, heart failure, and sudden death. Patients identified as having CAD herein Coronary artery disease is defined
Blood samples were taken from patients who were diagnosed with Coronary artery disease as defined herein. Gene expression profiles were then analyzed and compared to profiles from patients unaffected by any disease. In each case, the diagnosis of Coronary artery disease was corroborated by a skilled Board certified physician.
Total mRNA from a drop of peripheral whole blond taken from each patient was isolated using TRIzol® reagent (GIBCO) and fluorescently labeled probes for each blood sample were generated as described above. Each probe was denatured and hybridized to a Affymetrix U133A Chip as described herein. Identification of genes differentially expressed in blood samples from patients with Coronary artery disease as compared to healthy patients was determined by statistical analysis using the Wilcox Mann Whitney rank sum test (Glantz S A. Primer of Biostatistics. 5th ed. New York, USA: McGraw-Hill Medical Publishing Division, 2002).
Affymetrix U133A Chip Microarray Data Analysis of Gene Expression Profiles of Blood Samples from Individuals having Rheumatoid Arthritis as Compared with Gene Expression Profiles from Normal Individuals
This example demonstrates the use of the claimed invention to detect differential gene expression in blood samples taken from patients with Rheumatoid arthritis but without osteoarthritis as compared to blood samples taken from healthy patients.
Rheumatoid arthritis (RA) is defined as a chronic, multisystem disease of unknown etiology with the characteristic feature of persistent inflammatory synovitis. Said inflammatory synovitis usually involves peripheral joints in a systemic distribution. Patients having RA as defined herein were identified as having one or more of the following; (i) cartilage destruction, (ii) bone erosions and/or-(iii) joint deformities.
Blood samples were taken from patients who were diagnosed Rheumatoid arthritis as defined herein. Gene expression profiles were then analyzed and compared to profiles from patients unaffected by any disease. In each case, the diagnosis of Rheumatoid arthritis was corroborated by a skilled Board certified physician.
Total mRNA from a drop of peripheral whole blood taken from each patient was isolated using TRIzol® reagent (GIBCO) and fluorescently labeled probes for each blood sample were generated as described above. Each probe was denatured and hybridized to a Affymetrix U133A Chip as described herein. Identification of genes differentially expressed in blood samples from patients with Rheumatoid arthritis as compared to healthy patients was determined by statistical analysis using the Wilcox Mann Whitney rank sum test (Glantz S A. Primer of Biostatistics. 5th ed. New York, USA: McGraw-Hill Medical Publishing Division, 2002).
Affymetrix U133A Chip Microarray Data Analysis of Gene Expression Profiles of Blood Samples from Individuals having Depression as Compared with Gene Expression Profiles from Normal Individuals
This example demonstrates the use of the claimed invention to detect differential gene expression in blood samples taken from patients with depression but without osteoarthritis as compared to blood samples taken from healthy patients.
As used herein “mood disorders” are conditions characterized by a disturbance in the regulation of mood, behaviour, and affect. “Mood disorders” can include depression, anxiety, schizophrenia, bipolar disorder, manic depression and the like.
As used herein “depression” includes depressive disorders or depression in association with medical illness or substance abuse in addition to depression as a result of sociological situations. Patients defined as having depression were diagnosed mainly on the basis of clinical symptoms including a depressed mood episode wherein a person displays a depressed mood on a daily basis for a period of greater than 2 weeks. A depressed mood episode may be characterized by sadness, indifference, apathy, or irritability and is usually associated with changes in a number of neurovegetative functions, including sleep patterns, appetite and weight, fatigue, impairment in concentration and decision making.
Blood samples were taken from patients who were diagnosed with depression as defined herein. Gene expression profiles were then analyzed and compared to profiles from patients unaffected by any disease. In each case, the diagnosis of depression was corroborated by a skilled Board certified physician.
Total mRNA from a drop of peripheral whole blood taken from each patient was isolated using TRIzol® reagent (GIBCO) and fluorescently labeled probes for each blood sample were generated as described above. Each probe was denatured and hybridized to a Affymetrix U133A Chip as described herein. Identification of genes differentially expressed in blood samples from patients with depression as compared to healthy patients was determined by statistical analysis using the Wilcox Mann Whitney rank sum test (Glantz S A. Primer of Biostatistics. 5th ed. New York, USA: McGraw-Hill Medical Publishing Division, 2002).
ChondroChip Microarray Data Analysis of Gene Expression Profiles of Blood Samples from Individuals having Osteoarthritis as Compared with Gene Expression Profiles from Normal Individuals
This example demonstrates the use of the claimed invention to detect differential gene expression in blood samples taken from patients who were identified as having various stages of osteoarthritis as compared to blood samples taken from healthy patients.
Osteoarthritis (OA), as used herein also known as “degenerative joint disease”, represents failure of a diarthrodial (movable, synovial-lined) joint. It is a condition, which affects joint cartilage, and or subsequently underlying bone and supporting tissues leading to pain, stiffness, movement problems and activity limitations. It most often affects the hip, knee, foot, and hand, but can affect other joints as well.
OA severity can be graded according to the system described by Marshall (Marshall K W. J Rheumatol, 1996:23(4)582-85). Briefly, each of the six knee articular surfaces was assigned a cartilage grade with points based on the worst lesion seen on each particular surface. Grade 0 is normal (0 points), Grade 1 cartilage is soft or swollen hut the articular surface is intact (1 point). In Grade II lesions, the cartilage surface is not intact but the lesion does not extend down to subchondral bone (2 points). Grade III damage extends to subchondral bone but the bone is neither eroded nor eburnated (3 points). In Grade IV lesions, there is eburnation of or erosion into bone (4 points). A global OA score is calculated by summing the points from all six cartilage surfaces. If there is any associated pathology, such as meniscus tear, an extra point will be added to the global score. Based on the total score, each patient is then categorized into one of four OA groups: mild (1-6), moderate (7-12), marked (13-18), and severe (>18). As used herein, patients identified with OA may be categorized in any of the four OA groupings as described above.
Blood samples were taken from patients who were diagnosed with osteoarthritis as defined herein. Gene expression profiles were then analyzed and compared to profiles from patients unaffected by any disease. In each case, the diagnosis of osteoarthritis was corroborated by a skilled Board certified physician.
Total mRNA from a drop of peripheral whole blood taken from each patient was isolated using TRIzol® reagent (GIBCO) and fluorescently labeled probes for each blood sample were generated as described above. Each probe was denatured and hybridized to a 15K Chondrogene Microarray Chip (Chondrochip) as described herein. Identification of genes differentially expressed in blood samples from patients with disease as compared to healthy patients was determined by statistical analysis using the Wilcox Mann Whitney rank sum test (Glantz S A. Primer of Biostatistics. 5th ed. New York, USA: McGraw-Hill Medical Publishing Division, 2002).
Microarray Data Analysis of Gene Expression Profiles of Blood samples from Individuals Undergoing Therapeutic Treatment as compared with Gene Expression Profiles from Individuals not Undergoing Treatment
This example demonstrates the use of the claimed invention to detect differential gene expression in blood samples taken from individuals undergoing therapeutic treatment as compared with gene expression profiles from individuals not undergoing treatment.
Blood samples are taken from patients who are undergoing therapeutic treatment. Gene expression profiles are then, analyzed and compared to profiles from patients not undergoing treatment.
Total mRNA from a drop of peripheral whole blood taken from each patient is isolated using TRIzol® reagent (GIBCO) and fluorescently labeled probes for each blood sample are generated as described above. Each probe is denatured and hybridized to a microarray for example the 15K Chondrogene Microarray Chip (Chondrochip), Affymetrix Genechip or Blood chip as described herein. Identification of genes differentially expressed in blood samples from patients undergoing therapeutic treatment as compared to patients not undergoing treatment is determined by statistical analysis using the Wilcox Mann Whitney rank sum test (Glantz S A. Primer of Biostatistics. 5th ed. New York, USA: McGraw-Hill Medical Publishing Division, 2002). Expression profiles are generated using GeneSpring software analysis as described herein. The number of differentially expressed genes are then identified as being differentially expressed with a p value of <0.05.
All patents, patent applications, and published references cited herein are hereby incorporated by reference in their entirety. While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
One skilled in the art will appreciate readily that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those objects, ends and advantages inherent herein. The present examples, along with the methods, procedures, treatments, molecules, and specific compounds described herein are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention as defined by the scope of the claims.
This application is a continuation of U.S. application Ser. No. 10/601,518, filed on Jun. 20, 2003, which is a continuation-in-part of application Ser. No. 10/268,730, filed on Oct. 9, 2002, now issued as U.S. Pat. No. 7,598,031, which is a continuation of U.S. application Ser. No. 09/477,148, filed Jan. 4, 2000, now abandoned, which claims the benefit of U.S. Provisional Application No. 60/115,125, filed on Jan. 6, 1999, the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60115125 | Jan 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10601518 | Jun 2003 | US |
Child | 12803688 | US | |
Parent | 09477148 | Jan 2000 | US |
Child | 10268730 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10268730 | Oct 2002 | US |
Child | 10601518 | US |