Method for the emergency starting of an internal combustion engine in the case of a rotational speed sensor failure

Information

  • Patent Grant
  • 6722190
  • Patent Number
    6,722,190
  • Date Filed
    Wednesday, March 26, 2003
    21 years ago
  • Date Issued
    Tuesday, April 20, 2004
    20 years ago
Abstract
A method for starting a combustion engine including a starter and a speed sensor that supplies an output signal as a function of speed, and a device for measuring the vehicle system voltage to record a characteristic curve of the battery voltage during a starting phase and after the starting phase. The crankshaft position is ascertained from the characteristic curve of the battery voltage, during the starting phase of the combustion engine, in starter operation.
Description




FIELD OF THE INVENTION




The present invention relates to a method for the emergency start of a combustion engine in the event of a failed speed sensor or speed sensors, to permit limited vehicle operation. If the speed sensor fails, no allocation of a camshaft signal of a phase sensor to the crankshaft position is possible during vehicle start.




BACKGROUND INFORMATION




German Published Patent Application No. 40 26 232 relates to a device for monitoring a speed sensor. The device includes a starter having a speed sensor that supplies an output signal as a function of the speed. A device for measuring the vehicle system voltages is provided, and a control unit is provided, in which the output signal of the speed sensor is set in relation to the vehicle system voltage, and a malfunction of the speed sensor may be detectable. The characteristic curve of the vehicle system voltage is evaluated during the starting process of the combustion engine for fault detection. A fault detection is triggered only when a characteristic curve of the vehicle system voltage that is typical for the starting process is detected and, at the same time, no output signal of the speed sensor is detected.




If a speed sensor, which continuously samples a trigger wheel at the crankshaft of a combustion engine, fails, vehicle operation, under emergency conditions, could also occur on the basis of an evaluation of phase sensor signals. A speed signal, with which a limited vehicle operation (limp home) may be possible, may be simulated from the phase sensor signal. If, alternatively, the combustion engine is operated with camshaft control, the location of the camshaft, that is, the position of the camshaft, may be unknown during vehicle start, since the phase sensor is mounted at the indefinitely positioned camshaft. Fluctuations may arise in an angular range up to 40° arc of crankshaft rotation.




During the start of the vehicle, no allocation of the camshaft signal and of the phase sensor to the crankshaft position may be possible. Therefore, neither appropriate injection nor correspondingly matched ignition may be carried out by further systems of the fuel injection system. Consequently, a start of the combustion engine with camshaft control may be impossible if the speed sensor fails.




SUMMARY OF THE INVENTION




An object of an exemplary embodiment of the present invention is to ascertain the crankshaft position by evaluating the battery voltage during starter operation, in the event of a failed speed sensor.




Due to actuation of the starter, which is supplied electricity by a vehicle battery, cyclically repeating compression and decompression phases occur in the individual cylinders of the combustion engine, whether the vehicle is, for example, a 4-cylinder or 6-cylinder combustion engine. The end points of the compression and decompression phases, respectively, of the individual cylinders are determined at the positions of bottom dead center (BDC) and top dead center (TDC). According to the load of the starter during starter operation, which results from the compression and decompression phases of the individual cylinders, the battery current of an energy accumulator feeding the starter assumes a characteristic curve, from which the positions of the respective TDCs and BDCs may be determined. If the starter has finished a number of crankshaft revolutions, it may be possible to reliably allocate the individual TDCs and BDCs to ascertained maximums and minimums, respectively, of the battery current characteristic curve. If the allocation of maximums and minimums to the respective TDCs and BDCs is ensured, injection and ignition at corresponding cylinders may be effected by engine management, according to an injection and ignition sequence stipulated in engine control electronics.




The positions of TDC and BDC, respectively, ascertained from the maximums and minimums of the battery voltage characteristic, may be stored by a corresponding correlation table or a program map repeating the speed/load performance, and kept for future purposes.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

shows a characteristic curve of a battery voltage and an engine speed, during the operation of a starter and after a combustion engine has started.





FIG. 2

shows pulse signals of a 6-cylinder combustion engine, during a starting phase and after the start of an combustion engine.











DETAILED DESCRIPTION





FIG. 1

shows characteristic curve


3


of the voltage of a motor-vehicle battery, during starting phase


1


and after the start of a combustion engine. Starting phase


1


, during which time the starter of a combustion engine cranks the crankshaft a number of complete revolutions, occurs on first voltage level


9


supplied by the vehicle battery voltage source. Depending on the outside temperature, the internal resistance and the state of charge of the motor-vehicle battery, first voltage level


9


may lie considerably below a voltage level that is generated and maintained by a generator in the combustion engine, after the combustion engine has been started. Characteristic curve


3


of the voltage after the starting phase, which asymptotically approaches a limiting value, shows second voltage level


10


, which is supplied by the generator and should essentially correspond to the vehicle system voltage of 12 volts. The second voltage level is independent of the state of charge, the outside temperature and the internal resistance, respectively, since it is supplied and maintained by the generator of the combustion engine.




The exemplary embodiment of

FIG. 1

shows battery-voltage characteristic curve


3


and the characteristic curve of the speed of the combustion engine extending over a time span of approximately 4.5 seconds over time base


2


. Characteristic curve


3


of the voltage, during starting phase


1


, revolves (or shifts) in the shape of a sinusoidal wave between minimums


4


.


1


,


4


.


2


,


4


.


3


, . . . ,


4


.n and maximums


5


.


1


,


5


.


2


,


5


.


3


, . . .


5


.n. A specific one of the maximums


5


.


1


,


5


.


2


,


5


.


3


, . . . ,


5


.n coincides with a bottom dead center BDC


13


, since the load for the starter is lowest at BDC


13


.




Maximums


5


.


1


,


5


.


2


,


5


.


3


, . . . ,


5


.n characterize the specific top dead centers TDCs


12


of the 4 or more respective cylinders of a combustion engine. The highest load acting on the starter occurs shortly before reaching a respective top dead center


12


of a cylinder of the combustion engine, since all valves at the combustion chamber are closed, an elevated pressure prevails in the combustion chamber, the compression phase is terminated, and at this point, the injection of fuel, and therefore, in the case of an Otto (spark ignition) engine, the ignition of the fuel/air mixture may occur. Injection and ignition present a further load on the battery voltage, which, however, is of secondary importance. Between individual ones of maximums


5


.


1


,


5


.


2


,


5


.


3


, . . . ,


5


.n and minimums


4


.


1


,


4


.


2


,


4


.


3


, . . . ,


4


.n, characteristic curve


3


of the battery voltage includes a rising edge


7


and a falling edge


8


, which rise and fall according to the compression and decompression at a specific cylinder, from which signals for the positioning of the crankshaft may have already been obtained.




To permit allocation of individual ones of maximums


5


.


1


,


5


.


2


,


5


.


3


, . . . ,


5


.n and minimums


4


.


1


,


4


.


2


,


4


.


3


, . . . ,


4


.n, respectively, between individual cylinders of the combustion engine to be started, the starter must be actuated during the starting phase for a sufficiently long time phase. The allocation should be implemented during the first combustion, since in response to errors in a range of approximately 40° arc of crankshaft rotation, reversed rotation of the combustion engine or intake-manifold blowbacks may occur, which is to be avoided.





FIG. 2

shows pulse signals of a 6-cylinder combustion engine, during starting phase


1


and during operation, for example, during idling.




Time base


2


, which extends over starting phase


1


, and the first running phase of the combustion engine covers a time interval of approximately 4.5 seconds, analogous to time base


2


of FIG.


1


. During starting phase


1


of the 6-cylinder combustion engine, pulses at individual ones of cylinders


1


-


6


occur in a first pulse duration


16


, while pulses


17


, which occur after the combustion engine has been started, are substantially shorter.




The correlation of top dead center


12


and bottom dead center


13


with minimums


4


.


1


,


4


.


2


,


4


.


3


, . . . ,


4


.n and maximums


5


.


1


,


5


.


2


,


5


.


3


, . . . ,


5


.n, respectively, of characteristic curve


3


of the battery voltage occurs during the starting of the combustion engine and may be stored, for example, in an engine speed/load map and reused for later purposes, or they may be stored in table form in memory, such as, for example, in a ring buffer store of control electronics for the combustion engine.




The references in the Figures include the following: starting phase starter operation


1


; time base


2


; battery voltage characteristic curve


3


; minima


4


.


1


-


4


.n; maxima


5


.


1


-


5


.n; turning point


6


; rising edge


7


; falling edge


8


; first voltage level


9


; voltage level


10


during steady-state operation; first combustion


11


; TDC


12


; BDC


13


; speed characteristic


14


; ignition sequence


15


; cylinders


16


of combustion engine; pulse duration


17


during starter operation per cylinder; and pulse duration


18


during normal operation of combustion engine.



Claims
  • 1. A method for starting a combustion engine including a starter and a speed sensor for supplying an output signal as a function of a speed, the method comprising:recording a characteristic curve of a battery voltage on a device for measuring the battery voltage during a starting phase and after the starting phase; and determining a crankshaft position from the characteristic curve of the battery voltage during the starting phase of the combustion engine in a starter operation.
  • 2. The method of claim 1, further comprising: ascertaining maximums and minimums of the characteristic curve of the battery voltage during the starter operation.
  • 3. The method of claim 1, further comprising: determining a position of top dead center and another position of bottom dead center of at least one of a plurality of cylinders of the combustion engine from the characteristic curve of the battery voltage.
  • 4. The method of claim 1, wherein the starter of the combustion engine is actuated during the starting phase of the combustion engine, until the determined maximums are reliably allocatable to a position of top dead center of at least one of a plurality of cylinders and until determined minimums are reliably allocatable to another position of bottom dead center of at least one of the plurality of cylinders becomes possible.
  • 5. The method of claim 1, wherein the characteristic curve of the battery voltage during starter operation occurs on a first voltage level that depends on an outside temperature.
  • 6. The method of claim 4, further comprising: recording and storing in an engine speed/load map one of a correlation of the determined maximums to the position of top dead center and a correlation of the determined minimums to the another position of bottom dead center.
  • 7. The method of claim 4, wherein a first injection and ignition occurs after the maximums are allocated to the position of top dead center and the minimums are allocated to the another position of bottom dead center.
  • 8. The method of claim 1, wherein the characteristic curve of the battery voltage is used for at least one of diagnosis and monitoring of at least one of the speed sensor, a crankshaft sensor, a phase sensor and a camshaft sensor.
Priority Claims (1)
Number Date Country Kind
100 21 645 May 2000 DE
PCT Information
Filing Document Filing Date Country Kind
PCT/DE01/00856 WO 00
Publishing Document Publishing Date Country Kind
WO01/83981 11/8/2001 WO A
US Referenced Citations (5)
Number Name Date Kind
4839811 Kanegae et al. Jun 1989 A
4955336 Glowczewski et al. Sep 1990 A
5778854 Arai Jul 1998 A
6170462 Kondo Jan 2001 B1
6438487 Mingo et al. Aug 2002 B1
Foreign Referenced Citations (1)
Number Date Country
40 26 232 Feb 1992 DE