The invention relates to a method for the exchange of data between a mobile communications unit carried by a user and at least one first communications unit, a second communications unit and a computer unit.
Electronic door locks are used in modern hotel complexes for access to the rooms. For reasons of cost these electronic door locks are not wired and are operated with batteries for energy supply. Two methods are known for distribution of locked access codes to all electronic door locks and for collation of data from all electronic door locks, for example battery charge state and who has access when.
In a first method all door locks are equipped with infrared interfaces. However, the disadvantage exists with systems of that kind in that data collectors with infrared interfaces, which exchange the data with the door locks, have to be installed in the hotel corridors at the ceilings at various locations. On the other hand, the data collectors are connected with a central computer unit by way of a wire connection in order to exchange the data to and from the electronic door locks. In a second method the data exchange with a central computer unit is to thereby make it possible for, for example, room cleaning personnel to be equipped with a smartcard. After the person has inserted the smartcard into an electronic door lock, access to the room is freed after successful checking of an access code filed on the smartcard. At the same time the locked access codes are transferred from the smartcard to the electronic door lock and access data from the electronic door lock to the smartcard. However, the disadvantage exists with systems of that kind in that a smartcard of that kind usually has to be inserted at a validation station linked with a central computer unit in order to transfer data from the smartcard to the management system or to a central data bank and conversely.
The present invention has the object of so developing a method for the exchange of data that the user has to perform less actions by comparison with conventional methods and no additional data collectors or validation stations have to be installed so that the data exchange can be managed.
According to the present invention for fulfillment of this object in the case of a method for the exchange of data between a mobile communications unit carried by a user and at least one first communications unit, a second communications unit and a computer unit, wherein the first communications unit, the second communications unit and the computer unit are positioned at different locations in an environment, particularly in a building, it is provided that the method comprises the following steps:
a) establishing contact between the mobile communications unit and the first communications unit when the first communications unit and the mobile communications unit are spaced from one another at a predetermined distance, wherein a near-field radio connection is generated within this distance;
b) exchange of data between the mobile communications unit and the first communications unit by means of the near-field radio connection;
c) communication of data from the first communications unit to the computer unit standing in connection with the first communications unit;
d) establishing contact between the mobile communications unit and the second communications unit, which differs from the first communications unit, when the second communications unit and the mobile communications unit are spaced from one another at the predetermined distance, wherein a near-field radio connection is generated within this distance; and
e) exchange of data between the mobile communications unit and the second communications unit by means of the near-field radio connection.
An environment is a location where numerous people come together, such as, for example, a building, a factory area, a high-rise structure, a shopping center, a town district, a leisure park, a railway station, an airport, a swimming pool or a sports stadium.
The method according to the present invention is based on the recognition that the data exchange with the central computer unit can take place on the one hand by way of a plurality of communications units, for example by the first communications unit. On the other hand, the data exchange can take place by means of a near-field communications system via a radio connection, whereby the user can move freely in the environment, the mobile communications unit acts as temporary data store and there is little to even no requirement for actions by the user in order to manage the intended data exchange.
There is provided by the present invention a method which is used preferably for a building with at least one elevator and a number of destination call terminals, which are distributed on the respective floors, as the first communications unit and a plurality of electronic door locks as the second communications unit. The NFC standard is preferably provided as the data transmission standard for the near-field radio connection. This means that the data exchange between the respective units is possible only within a near field. In this manner it can additionally be ensured that no unauthorized access to the data takes place and thus, for example, spying on access codes.
In an advantageous development of the method it is provided that in the case of the exchange of data between the mobile communications unit and the first communications unit a first localization code describing the location of the first communications unit is communicated by the first communications unit to the mobile communications unit. In this connection it can equally be provided that a second localization code describing the location of the second communications unit can be communicated by the second communications unit to the mobile communications unit. It can be established on the basis of the localization codes and the associated points in time of the communication when a specific region, particularly a room, was entered and/or left. For the case that apart from the localization code an identification code is additionally communicated it can also be determined which user has entered or left the region.
In a development of the method according to the invention it is proposed that an access authorization of the user is checked in step b) or e) before the exchange of the data and the data are exchanged only when the check of the access authorization is successful. It can be ensured by this measure that only persons with access authorization obtain data and items of information, particularly access codes.
In a development of the method according to the present invention it is proposed that data, for example a list of locked access codes, are distributed by the computer unit to all first communications units before step b) and these data are stored in the first communications unit.
In a development of the method according to the present invention it is proposed that in step b) the data, for example a list of locked access codes, stored in the first communications unit are transferred to the mobile communications unit and these data are temporarily stored in the mobile communications unit and in step e) are transferred to the second communications unit and stored in the electronic door lock. In this manner locked access codes can be distributed very efficiently to all electronic door locks and locked access codes can be recognized in the evaluation of the access authorization.
In a development of the method according to the present invention it is proposed that the data transferred in step e) from the second communications unit in the electronic door lock to the mobile communications unit, insofar as the mobile communications unit at this point time has still established a short-distance radio connection, for example Bluetooth, with the first communications unit, are directly passed on by means of short-distance radio connection to the first communications unit and this passes on the data to the computer unit.
In a development of the method according to the present invention it is proposed that in step b) additional communications parameters, by which the mobile communications unit in step e) can produce a communications connection by way of a local mobile radio operator to the computer unit, are transferred to the mobile communications unit so that the data transferred by the second communications unit in the electronic door lock to the mobile communications unit can be passed on directly to the computer unit.
In a development of the method according to the present invention it is proposed that the data transferred in step e) by the second communications unit in the electronic door lock to the mobile communications unit are intermediately stored in the mobile communications unit and only when the mobile communications unit at a later point in time has again established a near-field radio connection with the first communications unit are the intermediately stored data then communicated via this first communications unit to the computer unit.
According to a preferred development of the method according to the present invention an access code is communicated in the exchange of the data in step b) or e). In this connection it can be provided that the mobile communications unit communicates the access code to the first communications unit or the second communications unit. The user can in case of need communicate an access code, which is already filed in the mobile communications unit, automatically or by manual operation of a keyboard or by a speech input. According to a preferred development of the method the data are communicated by at least one of the communications units to the computer unit only at specific points in time or in a specific time period. This makes it possible to initially collect the data and to communicate the data only from a specific amount of data. Equally, it can be provided that the data are communicated by the computer unit to at least one communications unit only at specific points in time or within a specific time period.
It is further of advantage if the data are exchanged in dependence on the access authorization. Thus, different data can be transmitted in accordance with the respective level of access authorization.
In a further preferred development of the method it is provided that the data are selected by means of the mobile communications unit. In this manner the user can prohibit communication of specific items of information or call up only the items of information useful for the respective purpose.
A mobile telephone, a PDA (Personal Digital Assistant) or a watch is preferably used as the mobile communications unit. It is thus possible to avoid an obligation on the user to carry, for example, apart from his or her mobile telephone a further mobile communications unit. The first communications unit is preferably an elevator terminal. Preferably a plurality of elevator terminals is distributed in the region of the elevator installation on the respective floors. The second communications unit preferably controls an electronic door lock.
The range of the near field is preferably less than approximately 10 meters. This means that the establishing of contact between the mobile communications unit and the first communications unit or the second communications unit only comes into being when the units intended for the data exchange are at a spacing of less than approximately 10 meters. In this connection it is particularly advantageous that, in particular, the Bluetooth standard can be used as transfer standard for data transfer within such a distance.
The above, as well as other, advantages of the present invention will become readily apparent to those skilled in the art from the following detailed description of a preferred embodiment when considered in the light of the accompanying drawings in which:
A method for exchange of data by means of the aforesaid communications unit 10, 20, 21 and 30 in the building is explained in the following on the basis of this system. After the user 40 has entered the building at the floor 2 he or she approaches the elevator 1. As soon as the user 40 is standing in the vicinity of the terminal 20, for example at a distance of less than approximately ten meters, establishing of contact between the mobile telephone 10 and the terminal 20 takes place. For this purpose the terminal 20 permanently emits a contact signal within a distance R, i.e. in the region of less than approximately ten meters. As soon as the user 40 with the mobile telephone is located within the distance R from the terminal 20 and receives the contact signal the contact comes into being.
Based on this establishing of contact, data are thereupon exchanged between the mobile telephone 10 and the terminal 20 by way of a near-field communications system with use of the NFC standard. In that case, for example, a localization code describing the location of the terminal 20 is transmitted, as data, by the terminal 20 to the mobile telephone 10. After receipt of the localization code the mobile telephone 10 automatically checks whether it can assign to this localization code a corresponding code filed in the memory unit of the mobile telephone 10. If this check is successful, the mobile telephone 10 transmits a first access code, which enables access to the elevator 1, to the terminal 20. The terminal 20 thereupon checks whether the access code transmitted by the mobile telephone 10 agrees with an original access code filed in the terminal 20 or in the central computer unit and in the case of agreement frees access to the elevator 1 and transmits a list with locked access codes for temporary storage at the mobile telephone 10.
After the user 40 has been transported by the elevator 1 from the first floor 2 to the second floor 3 and has left the elevator 1 at the second floor 3, establishing of contact between the terminal 21 and the mobile telephone 10 comes about in the same manner as between the terminal 20 and the mobile telephone 10, particularly under the precondition that the user 40 is located within the distance R of the near field generated by the terminal 1. In the case of the data exchange, which follows thereupon, between the terminal 21 and the mobile telephone 10 there is transmission to the mobile telephone 10 of data containing information enabling guidance of the user 40 to the destination, i.e. to the closed room. With help of this information, which the user 40 can read off the display of the mobile telephone 10, the user 40 moves in direction towards the door 4.
As soon as the user 40 is at a spacing of, for example, approximately 2 meters from the door 4 the transmitter/receiver unit 30 forming the second communications unit establishes contact with the mobile telephone 10. This happens in the same manner as the afore-described establishing of contact of the mobile telephone 10 with the terminal 20 or with the terminal 21 by means of a near-field radio connection. In the case of the subsequent data exchange between the transmitter/receiver unit 30 and the mobile telephone 10 the mobile telephone 10 transmits a second access code, which serves for release of the electronic door lock of the door 4, to the transmitter/receiver unit 30 and the list, which is temporarily stored on the mobile telephone, with locked access codes. The transmitter/receiver unit 30 subsequently checks the communicated second access code with the original access code, which is filed in the electronic door lock, and the list of locked access codes and in the case of agreement releases the electronic door lock and thus the door 4. The user 40 can now enter the room.
However, apart from the second access code also further data such as, for example, a personal identification code, the instant of entry and the instant of departure of the room are communicated. The transmitter/receiver unit 30 is in that case equipped in such a manner that it stores over a predetermined period of time all data, which was communicated by the mobile telephone 10, in a memory unit and/or transmits the stored access data as a packet to the mobile telephone 10, which temporarily stores this data.
The afore-described method is distinguished particularly by the fact that the terminals 20, 21 serve as data collecting stations. In this manner the user does not have to carry, as previously usual, a passive data storage unit and, so to say, transport as transport medium the data to a validation station. Thus, it is possible to dispense with conventional smartcards or other separate chipcards that are carried. In particular, if the mobile telephone 10 is equipped so that the afore-described establishing of contact and data exchange processes can take place automatically, a user-friendly system can be provided.
In accordance with the provisions of the patent statutes, the present invention has been described in what is considered to represent its preferred embodiment. However, it should be noted that the invention can be practiced otherwise than as specifically illustrated and described without departing from its spirit or scope.
Number | Date | Country | Kind |
---|---|---|---|
05106987 | Jul 2005 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
6382363 | Friedli | May 2002 | B1 |
20010002635 | Yamakawa | Jun 2001 | A1 |
20020146999 | Witte | Oct 2002 | A1 |
20020178385 | Dent et al. | Nov 2002 | A1 |
20020180582 | Nielsen | Dec 2002 | A1 |
20030034877 | Miller et al. | Feb 2003 | A1 |
20030159890 | Schuster et al. | Aug 2003 | A1 |
20030194089 | Kansala et al. | Oct 2003 | A1 |
20040046640 | Jourdain et al. | Mar 2004 | A1 |
Number | Date | Country |
---|---|---|
1427799 | Jul 2003 | CN |
102 19 852 | Mar 2003 | DE |
103 06 023 | Sep 2004 | DE |
1 065 641 | Jan 2001 | EP |
1 189 306 | Mar 2002 | EP |
1 216 900 | Jun 2002 | EP |
1 443 471 | Aug 2004 | EP |
1 443 471 | Aug 2004 | EP |
WO 0077329 | Dec 2000 | WO |
WO 03100732 | Dec 2003 | WO |
WO 2004006064 | Jan 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070026801 A1 | Feb 2007 | US |