The present invention relates to a method for the fabrication of a former for manufacture of composite articles. The invention further relates to a destructible former for use in the manufacture of composite articles. The invention also relates to a method for the manufacture and repair of composite articles using said destructible former.
The fabrication of many items and structural elements, such as vehicles, vessels and aircraft, out of curable composite materials containing layers of fibers or metals joined by means of an adhesive layer of for example thermoplastic, is known. Such composite materials are distinguished by high strength and relatively low weight. These distinguishing properties have resulted in it becoming increasingly common in the aviation industry to use items containing composite materials.
Conventionally, structural elements of composite materials are manufactured by arranging a former made of metal on a base plate and laying up laminate layers on the former, so that the laminate lies against the surface of the former. Thereafter, the base plate with the laminate layer covered former is inserted into a pressurized tank, wherein the laminate element is cured. After curing, the cured element is removed from the former. It is known to encapsulate the base plate, former and laminate material in a bag before insertion into the pressurized tank in order to increase the pressure acting on the composite material in the pressurized tank. The use of the bagging-technique is widely spread and variants of the bagging-technique are described in a great number of patent documents, books and articles.
One drawback with the above mentioned method for manufacturing structural elements of laminates is that only structural elements having a very simple structure can be manufactured using said technique, as the cured structural element has to be removed from the former. GB 2 275 015 describes a destructible, hollow former used in manufacture of a hollow article from composite materials. The former is made by charging a rotational molding tool with sufficient quantity of a hot melt/cold set water soluble compound as is required to coat the internal surfaces of the tool to a desired thickness, and start rotation. In a next step, the rotating tool is moved into a heated oven and is kept there for a sufficient time to permit the compound to be molten and coat all internal surfaces of the tool. After removal from the oven, rotation of the tool is continued to allow the tool to cool to a temperature at which the compound hardens. Then, the tool is opened and the former is removed. The former can now be used in the manufacture of a hollow article, wherein the manufacture comprises laying upon the former a required combination of materials, curing the materials on the former and destroying the former to obtain the hollow article. The former is destroyed either by impacting it with a hard instrument to break it into pieces or by dissolution in water.
One object of the invention is to provide a destructible former with the aid of which more complex structural elements can be manufactured.
Another object of the invention is to provide method for the manufacture of articles including said complex structural elements using said destructible formers.
Yet another object of the invention is to provide method for repair of articles including said complex structural elements using said destructible formers.
A method for the fabrication of a former for manufacture or repair of composite articles according to one embodiment of the invention comprises the following steps: forming a wetted water-soluble fiber composite material, preferably in laminated form, on a master tool, allowing the water-soluble fiber composite material to dry on the master tool and removing the dry water-soluble fiber composite material from the master tool, wherein the fiber composite material forms the walls of the manufactured former. The wetted fiber composite material comprises a fiber material and an adhesive and water. The fiber material is for example a fabric such as a woven textile, glass, carbon, aramide etc. For example, a dishcloth could serve as the fiber material. The adhesive is for example a starch such as starch from corn, potatoes or wheat or an adhesive of another type such as polyvinyl alcohol (PVA). For example, paperhangers paste can be used comprising both starch and water. In another example, one or more sheets of paper are used as the fiber composite material; in this case it is only necessary to add water and starch forming the material on the master tool. The laminated fiber composite material comprises two or more layers of the material laminated by using the adhesive component.
The composite articles manufactured or repaired using said former are preferably fiber composite articles, even though composite articles for other types may be manufactured or repaired. The fiber composite material of the article comprises in one example the fiber material and a thermosetting plastic, such as epoxy, vinyl ester or polyester. The fiber material comprises for example glass fibers, carbon fibers or aramide fibers.
The invention also comprises a method for the manufacture said composite articles. The method comprises the steps of producing a lay-up with the composite material of the article formed on at least one surface of the former having walls of the above mentioned water-soluble fiber composite material, curing the lay-up in a curing process, and removing the former from the composite article by dissolving the fiber composite material in water.
In using the former according to the invention it is possible to manufacture composite articles with very complex geometries in only one cure operation. Further, the laminate material of the former is light in weight and easy to handle. It is also very easy to perform cutting, milling, drilling and other types of forming operations on the former laminate walls. Another advantage with the invention is that the former laminate has a low thermal conductivity, whereby it is easier to obtain thermal stability. The low thermal conductivity also gives rise to shortened cure cycles when curing is performed at an enhanced temperature, such as in the region 100° C. to 200° C. The cure cycle can then at least be halved.
Further, it is much easier to obtain the tolerance chain compared to when using conventional techniques with non-flexible tools, such as metal tools. For the manufacture of composite articles in accordance with the invention, important tolerance determined dimensions for the final article can be determined, and the manufacture can then be performed such that these tolerances are kept.
When the curing process is performed under an enhanced pressure, for example in a so-called autoclave, it can be necessary to support the former in the curing process. In one preferable embodiment of the invention, this is achieved by providing a substantially unitary pressure on all the surfaces of the lay-up in the curing process. The substantially unitary pressure is for example provided by enclosing the surfaces of the lay-up in at least one bag and applying underpressure, preferably vacuum, between the lay-up and the bags.
The more evenly distributed pressure during curing also provides for a higher quality of the final article, wherein the risk of air pockets in the article is minimized.
The present invention relates to a method for repair of a composite article, the repair method comprising the following steps:
The composite articles are for example panels for use in the fuselage of aircraft or in other vehicles such as cars, motorbikes, boats etc. The panels are for example monolithic structures, sandwich structures or the like.
The removing of the material from the damaged areas can for example be made using known techniques such as drilling, milling or sawing.
The fiber composite material of the formers comprises a fiber material and an adhesive and water. The fiber material is for example a fabric such as a woven textile, glass, carbon, aramide etc. For example, a dishcloth could serve as the fiber material. The adhesive is for example a starch such as starch from corn, potatoes or wheat or an adhesive of another type such as polyvinyl alcohol (PVA). For example, paperhangers paste can be used comprising both starch and water. In another example, one or more sheets of paper are used as the fiber composite material; in this case it is only necessary to add water and starch.
The water-soluble fiber composite material can be laminated, in which case the fiber material for example is a fabric or a woven textile. The laminated fiber composite material comprises two or more layers of the material laminated by using the adhesive component.
In accordance with one embodiment of the present invention, the formers are fabricated using the following steps:
When the curing process is performed under an enhanced pressure, for example in a so-called autoclave, it may be necessary to support the former in the curing process. In one preferable embodiment of the invention, this is achieved by providing a substantially unitary pressure on all the surfaces of the lay-up in the curing process, whereby substantially no collapsing forces act on the former and composite article.
The evenly distributed pressure during curing also provides for a higher quality of the final article, wherein the risk of air pockets in the article is minimized.
In accordance with one embodiment of the invention, the substantially unitary pressure is provided by enclosing the surfaces of the lay-up in at least one bag and applying underpressure between the lay-up and the bags. For example, vacuum can be applied between the lay-up and the bags.
Preferably, the formers are designed so as to provide a repaired composite article of a shape essentially identical to the original composite article.
The composite articles repaired in accordance with the method above are preferably fiber composite articles, even though composite articles for other types may be repaired. The fiber composite material of the article comprises in one example the fiber material and a thermosetting plastic, such as epoxy, vinyl ester or polyester. The fiber material comprises for example glass fibers, carbon fibers or aramide fibers.
In using the repair method described above, it is possible to repair composite articles with very complex geometries in only one cure operation. Further, the laminate material of the former is light in weight and easy to handle. It is also very easy to perform cutting, milling, drilling and other types of forming operations on the former laminate walls. Another advantage with the invention is that the former laminate has a low thermal conductivity, whereby it is easier to obtain thermal stability. The low thermal conductivity also gives rise to shortened cure cycles when curing is performed at an enhanced temperature, such as in the region 100° C. to 200° C. The cure cycle can then at least be halved. Further, it is much easier to obtain the tolerance chain compared to when using conventional techniques with non-flexible tools, such as metal tools.
The repair method can be used for the repair of damages in the article caused by ammunition or other objects impacting on the article. The repair method can also be used for the repair of damages formed in manufacture of the article or any other types of damages.
In
In
When the former 3 has dried, it is stiff and can be removed from the master tool 2. The master tool 2 can be shaped in order to make formers 3 of a great number of different shapes. For example, profiles can be made, such as hat profiles, omega profiles etc. The former 3 can now be used for manufacturing composite articles and structure elements of said composite material formed for example as curved profiles or closed profiles, which was not possible with prior art methods. The term closed profiles is intended to relate to profiles having a smaller cross section area at the ends than on parts between the ends.
In
In
When a pump (not shown) is started, the gas that is present between the bagging films 6,7 will be carried away through at least one outlet 8 in the bagging films 6, 7. Thereby a vacuum will be created, whereupon the bagging films will seal tight upon the outer surfaces 9, 11a, 11b of the composite layer 5 and composite plate 4 and upon the walls 12, 11c defined by the inner surfaces of the former 3 and the composite plate 4. Thus, a unitary pressure is provided on all the surfaces on the former and therefore no collapsing forces act on the former.
It should be noted that additional elements can be arranged between the article and the bagging films 6,7; for example, a perforated plastic film (not shown) can be placed nearest the article/former, and a so-called tear-away cloth (not shown) can be placed between the article/former and the bagging films.
In one embodiment, the base element 1 with its associated article parts 4, 5 and the former 3 can be put into a pressure tank, whereby curing is performed under an increased pressure compared to normal air pressure, for example 1 to 6 bar overpressure. In a further embodiment, the curing is performed in a so-called autoclave wherein the curing is performed in heat, for example in the temperature region of 100°-200° C., and under an increased pressure, such as 1-6 bar overpressure. In yet another embodiment the curing is performed in an oven for example in the temperature region of 100°-200° C.
In using this bagging technique, wherein a unitary pressure is provided on former of the stabilizing laminate both from beneath and from above, the former 3 will withstand high curing pressures without collapsing and therefore perform as well as a conventional metal former in that aspect.
The choice of the thickness of the former 3 is made considering the height of the former 3 and the former material. A person skilled in the art would perform strength calculations and tests in order to come up with a suitable wall thickness of the former. As an example, a 120 mm high former 3 made of a starch/fabric fiber composite and bagged-in at vacuum in an autoclave preferably has a thickness in the region of 0.5-2 mm.
In
The invention has now been explained in relation to the manufacture of a quite simple article. One great advantage of the invention is that it allows for the manufacture of very complex geometries in only one cure operation. As the dried stabilizing composite material of the former 3 is well suited for performing different operations on, such as cutting, milling, drilling, etc, a complex pattern of crossing profiles can be developed on the composite plate 4 and the composite layers 5 can be formed on the crossing former profiles. The composite layers 5 of the final article can then form hat stiffener profiles, omega profiles, closed profiles, curved profiles and crossing spars capable of transferring both shear and bending loads.
In
In
In
In
The composite material layers 5a, 5b, 5c are arranged in close contact to each other and to the composite plates 17, 18 such that the layers 5a, 5b, 5c can be integrated with the sandwich structure 19 in the following curing process. The composite plates 16, 17 and the I-profiles 18a, 18b, 18c can be of the same material or of different materials.
In
It should be noted that additional elements, apart from the caul plate 23, can be arranged between the sandwich structure 19 and the bagging films 6a, 6b,7a; for example, a perforated plastic film (not shown) can be placed nearest the sandwich structure/formers, and a so-called tear-away cloth can be placed between the sandwich structure/formers and the bagging films.
In one embodiment, the sandwich structure 19 with the formers 3a, 3b and bags 6a, 6b, 7a can be put into a pressure tank, whereby curing is performed under an increased pressure compared to normal air pressure, for example 1 to 6 bar overpressure. In a further embodiment, the curing is performed in a so-called autoclave wherein the curing is performed in heat, for example in the temperature region of 100°-200° C., and under an increased pressure, such as 1-6 bar overpressure. In yet another embodiment the curing is performed in an oven for example in the temperature region of 100°-200° C.
In using this bagging technique, wherein a unitary pressure is provided on the formers 3a, 3b made of the stabilizing laminate both from beneath and from above, the formers 3a, 3b will withstand high curing pressures without collapsing and therefore perform as well as a conventional metal former in that aspect.
The choice of the thickness of the former 3a, 3b is made considering the height of the former 3 and the former material. However, in general a very thin former wall can provide sufficient stabilization for the curing composite material because of the unitary pressure provided. The thin walls of the formers provides for substantially shortened curing cycles when the curing is performed in heat as the former material do not accumulate the energy of the heat. Instead, the curing composite material accumulates most of the heat, thus substantially shortening the curing cycle.
In
The repairing technique described in relation to the example above is not intended to be limiting to the scope of the claims. For example the repair method can be used for repair of a number of different composite articles such as hat profiles and U-profiles.
Number | Date | Country | Kind |
---|---|---|---|
04003213.8 | Feb 2004 | EP | regional |
05002075.9 | Feb 2005 | EP | regional |
This application is a divisional of U.S. application Ser. No. 11/053,911, filed Feb. 10, 2005, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11053911 | Feb 2005 | US |
Child | 11790001 | Apr 2007 | US |