The present invention relates to a in vivo method for the identification of modulators of secretase activities.
Protein secretion is central to the proper development and function of eukaryotic organisms. Moreover, several pathophysiological processes such as neuro-degeneration, oncogenesis, apoptosis and inflammation are associated with the malfunction or aberrant regulation of protein secretion. It has become clear that there is no single biosynthetic mechanism common to all secretory proteins. Secretion of proteins can occur through either the regulated or constitutive pathways and, in some cell types, this secretion can be polarized to distinct cellular domains. An increasing number of proteins are now recognized as being derived from integral membrane proteins of type I and type II topology and, in this case, the secretory event involves their selective post-translational hydrolysis from the cell surface. This secretion is catalyzed by proteases known as secretases. The cleavage of membrane proteins generally occurs near the extracellular face of the membrane, although in some cases it has been shown also to occur within the transmembrane domain. Proteins secreted in this fashion include membrane receptors and receptor ligands, ectoenzymes, cell adhesion molecules and others. Examples of protein secretion through the action of secretases include the vasoregulatory enzyme ACE (angiotensin converting enzyme), the tumor necrosis factor (TNF) ligand and receptor superfamilies, the transforming growth factor-α, certain cytokine receptors, the Alzheimer's amyloid precursor protein (APP) and others (7).
The involvement of secretases in the development of human diseases makes them potential drug target candidates in a variety of disease areas, including anti-cancer drugs, cardiovascular drugs, anti-neurodegenerative drugs and anti-inflammatory drugs.
In the past, different in vitro/in vivo and biochemical methods have been used to identify modulators of secretease enzymes.
U.S. Pat. No. 5,942,400 and WO 96/40885 disclose in vitro methods for screening for candidate drugs for the ability to inhibit the activity of beta-secretase. Said methods are based on the detection of APP cleavage products using specific antibodies.
WO 98/13488 describes a method for determining the activity of modulators of APP secretases that are active in cultured human cells. Said method involves transfection of tissue-culture cells with vectors that express cleavable reporter proteins. Upon cleavage by the endogenous secretases, a reporter domain is secreted and can be detected using standard biochemical and immunological methods.
WO 01/49871 discloses an in vivo process for finding substances which specifically inhibit γ-secretase. Said process encompasses cells expressing a secretase activity and a fusion protein which comprises the substrate of said secretase with the specific cleavage site and a reporter. Said cells are contacted with a test substance and the quantity of reporter cleaved is either measured directly or indirectly. Suitable reporter proteins allowing direct detection are GFP, luciferase, β-galactosidase and secreted alkaline phosphatase. In case of an indirect detection of the reporter, the cleaved reporter is a transcription factor or part of a transcription factor which migrates into the nucleus and induces expression of a reporter e.g. luciferase.
Although the prior art already discloses screening methods for secretase modulators, there is a need for improved reliable in vivo screening systems for the identification of modulators of a secretase activity.
Hence, it is a general object of the present invention to provide a method for the identification/isolation of modulators of a secretase activity. Said method is defined by the following steps:
suitable eukaryotic host cells that are contacted with a test substance wherein said suitable host cells comprise:
then culturing said cells under suitable conditions such that said reporter gene allowing detection and/or survival of cells is only expressed or repressed in a manner that is dependent on an altered secretase activity due to said test substance.
In a preferred embodiment, the present invention relates to a method for the identification of a secretase inhibitor. Said method is characterised in that a reduced or no release of said secretory protein from said fusion protein due to a reduced/inhibited secretase activity leads to a reduced or no secretion of said secretory protein and to the induction of expression of said reporter gene. The induction of expression of said reporter gene allows under suitable culturing conditions the detection and/or survival of cells which are in contact with a test compound having an inhibitory effect on the secretase activity.
Said reporter gene is preferably selected from genes conferring antibiotic resistance, genes complementing auxotrophies and genes encoding reporter molecules with an activity that can be detected by colorimetric or fluorescent methods such as genes selected from the group consisting of: lacz, Luciferase gene, green fluorescence protein gene and chloramphenicol acetyl transferase gene.
In another preferred embodiment, the present invention relates to a method for the identification of stimulators of a secretase activity. Said method is characterised in that the release of said secretory protein from said fusion protein due to an enhanced secretase activity leads to repression of said reporter gene expression thereby allowing detection and/or survival of cells which are in contact with a test substance having an stimulating effect on the secretase activity. Appropriate culturing conditions of the cells must be used such that said fusion protein is not efficiently cleaved by the secretase in the absence of said test substance having a stimulating effect on the secretase activity.
Said reporter gene is preferably selected from genes such as CYH2 or CAN1 conferring sensitivity to a chemical.
In a further preferred embodiment of the invention said suitable host cells comprise a second reporter gene that is selected from the group consisting of:
In a method of the present invention any eukaryotic cell can be used, preferably a yeast cell.
The term membrane anchor domain as used herein refers to molecules and/or protein domains which are responsible for the membrane association of a protein and includes e.g. transmembrane domains and GPI anchors.
The term secretory protein as used herein encompasses polypeptides or fragments thereof which are destined for export. Said secretory protein has preferably an enzymatic activity, more preferably it is a protein with invertase activity or functional fragments of a protein with invertase activity. An especially preferred invertase is a yeast invertase or functional fragments thereof. Yet it is obvious for the man skilled in the art that other secretory proteins can be used in a method of the present invention.
Any recognition sequence of a known secretase can be used for the construction of said fusion protein of the present invention. Preferred secretase recognition sites are selected from the β site and the α site of the human amyloid precursor protein (APP) and the S2 site of Notch 1 protein. A much preferred recognition site is the β site of human APP in which the Lys595Asn and Met596Leu changes were introduced (Swedish APP mutant).
In a much preferred embodiment of the invention said fusion protein comprises amino acid residues 1-532 of yeast invertase, amino acid residues 590-695 of human APP and optionally an ER retention signal.
In a further preferred embodiments said fusion protein comprises amino acid residues 1-532 of yeast invertase, amino acid residues 1714-1876 of human Notch 1 and optionally an ER retention signal
Said fusion protein can be expressed from an extrachromosomal gene construct e.g. from an episomal vector enabling expression of the fusion protein in a host cell. Preferably the nucleic acid construct encoding the fusion protein is integrated into the genome of the host cell. The nucleic acid can be introduced into the cell by any transfection method leading to uptake of the nucleic acid sequence into the cell. Such methods are know to the man skilled in the art and are e.g described in Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Laboratory, 2001).
The term secretase activity as used herein encompasses proteolytic enzymes or functional fragments thereof which cleave membrane associated proteins, integral membrane proteins of type I and type II topology.
In a preferred embodiment said protein comprising a secretase activity further comprises an ER signal sequence.
Preferred secretase activities for the present invention are selected from β-secretase and α-secretase of human APP.
In a preferred embodiment of the invention said protein comprising a β-secretase activity further comprises an ER signal sequence and amino acid residues 616-695 of human APP.
The protein comprising said secretase activity can be expressed endogenously by the host cell or it can be encoded by a nucleic acid construct e.g. an episomal expression vector or by a nucleic acid construct that is stably integrated into the genome of the host cell.
Another object of the present invention are compounds identified by a method of the present invention.
The invention will be better understood and objects other than those set forth above will become apparent when consideration is given to the following detailed description thereof. Such description makes reference to the annexed drawings, wherein:
A reporter gene for the use in the present invention is under control of a transcriptional activation system. A preferred transcriptional activation system is a GAL gene regulatory system, more preferably a yeast GAL gene regulatory system.
In a preferred embodiment of the invention said reporter gene is under control of the yeast GAL1-10 gene regulatory region.
The use of said system in a preferred embodiment of the present invention has the following theoretical background:
The preferred carbohydrate of yeast cells is glucose since it can be metabolized directly. Other carbohydrates are converted to the glycolytic substrate glucose-1-phosphate in several steps. Addition of galactose to yeast cultures grown on glycerol induces expression of the GAL genes at least 1000-fold. If glucose is added to the galactose-containing media, the GAL genes are induced to only 1% of the levels obtained with galactose alone. This phenomenon is known as glucose repression. GAL2, GAL1-GAL7-GAL10, and MEL1 are the GAL structural genes. Their products transport galactose into the cell and convert it to glucose-1-phosphate. The major regulatory proteins of this system are the products of the genes GAL3, GAL4, and GAL80. Gal4p, the product of the GAL4 gene, is a transcriptional activator that binds specific regulatory DNA elements called UASG, which are present near the promoter regions of the galactose inducible genes. Its activity is required to stimulate expression of the GAL genes in the presence of galactose. Gal80p is a direct repressor of Gal4p, while Gal3p mediates the galactose-dependent release of Gal80p inhibition of Gal4p (for review see [5].
The glucose repression is exerted through several mechanisms [5]. Here, we focus on the regulation of the divergently oriented GAL1-10 genes, whose regulatory region was used for the experiments described below. The GAL1-10 regulatory region contains four UASG elements located between the divergent GAL1 and GAL10 promoters. These UASG elements are bound by Gal4p in a cooperative manner. Due to this cooperativity, the system is rather sensitive towards changes in the concentration of Gal4p, which is reduced 3- to 5-fold in the presence of glucose. Gal80p significantly contributes to glucose repression of the GAL1-10 genes by binding to Gal4p to mask its activation domain, thereby preventing expression of these GAL genes [6]. The GAL1 promoter contains an additional regulatory element, which is the binding site for the repressor Mig1p. The activity of this repressor is also regulated by glucose. (A Mig1p site is also present in the GAL4 promoter.)
The construction of suitable host cells and the other molecular biological reagents for the use in the present invention e.g. fusion protein constructs can be done using standard molecular biology techniques as described e.g. in Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Laboratory, 2001).
The man skilled in the art is as well able to determine suitable culturing conditions allowing the detection and/or survival of the used cells. Said conditions are dependent on the used genetic constructs and the host cells.
There are at least three different categories of compounds that can be screened by a screening method of the present invention; chemical libraries, natural product libraries and combinatorial libraries. Chemical libraries consist of structural analogues of known compounds. Natural product libraries are collections of microorganism, animals, plants or marine organisms which are used to create mixtures for screening by for example fermentation and extraction of broths from soil, plant or marine microorganisms or extraction of plants or marine organisms. Combinatorial libraries are composed of large numbers of peptides, oligonucleotides or organic compounds as a mixture. They are relatively easy to prepare e.g. by traditional synthesis methods, PCR or cloning.
In a screening test of the present invention a test compound can e.g. be added to the culture medium of the host cells or it can be expressed by the host cells e.g. from an expression construct. The expression of test substances within the host cells is e.g. suitable for the screening of peptide libraries.
The present invention is now further illustrated by means of examples.
Reconstitution of Secretase Activities in Yeast
To monitor BACE activity within yeast cells, we made use of the invertase reporter system described in our patent application WO 01/75088, Title: “Method for identification of polypeptides with protease activity”.
Secretion of invertase enables yeast to use sucrose as a carbon source. The invertase hydrolyses sucrose to yield fructose and glucose. For the reporter system described in our patent application WO 01/75088, the endogenous gene encoding the invertase (the SUC2 gene) was knocked out. A recombinant invertase was fused to the N-terminus of a portion of APP harboring the transmembrane domain as well as the α- and β-sites (residues 590-695). In addition, an ER retention signal was added to the C-terminus of this fusion construct (
There are two yeast endogenous secretases described in the literature which can cleave APP at the α-site: Yap3p and Mkc7 [1, 2]. Since these proteins have α-secretase activity that constitutively cleaves APP, their respective genes had to be knocked out in order to investigate β-secretase activity in yeast using the invertase reporter system described in WO 01/75088.
To detect APP-specific BACE activity within yeast cells, the protein had to be modified. Since transmembrane and cytosolic sequences contribute to the sub-cellular localization of transmembrane proteins, the transmembrane and cytosolic portion of BACE was substituted by the transmembrane and cytosolic portion of APP. In this way, co-localization of the enzyme with its substrate was facilitated. To ensure efficient translocation into the yeast ER, the signal sequence of BACE was substituted with the SUC2-signal peptide at the N-terminus of the protein (
Cellular System to Screen for Secretase Inhibitors
In order to establish the described cellular system to screen for BACE inhibitors, we combined the BACE-dependent invertase secretion system with the endogenous GAL gene regulatory network.
A reporter construct was cloned which expresses the LacZ gene under the control of the GAL1 promoter and the divergently oriented HIS3 gene under the control of the GAL10 promoter. As in the case of the endogenous GAL1 and GAL10 genes, four UASG elements are located between these two promoters. This reporter construct was integrated in yeast cells deficient for suc2, mkc7 and yap3 to create the strain Biscrel. If this strain is grown in the presence of galactose, expression of the LacZ gene and the HIS3 gene is induced by the UASG-binding Gal4p activator. As in the case of the endogenous GAL1 and GAL10 genes, these reporter genes become dominantly repressed upon addition of glucose to the medium. The product of the HIS3 gene is needed for growth on histidine-depleted (-his) medium. Consequently, Biscrel can only grow on -his media that contain galactose but no glucose. The HIS3 reporter gene of the strain Biscrel, which lacks the endogenous invertase activity, is also induced by Gal4p when these cells grow in the presence of sucrose together with galactose (
Biscrel cultured on sucrose and galactose and expressing the invertase-APP (Sw) fusion protein provides a tool to select for inhibited RACE. Indeed, if BACE expressed in Biscrel is active, the membrane-anchored invertase-APP (Sw) fusion protein is cleaved at the β site and the invertase moiety is secreted. The secreted invertase hydrolyses sucrose into fructose and glucose, the latter of which represses the HIS3 and the LacZ reporter genes (
Results
Expression of the product of the LacZ gene, a β-galactosidase, can be measured by using the substrate analogue o-nitro-phenyl-β-galactopyranosid (ONPG). A cleavage product of ONPG has a yellow colour. OD measurement at 420 nm allows quantification of the reaction catalyzed by β-galactosidase, and indirectly of the LacZ-expression. This assay allowed us to investigate the effect of invertase-APP cleavage by BACE in the context of Biscrel.
Is Biscrel was transformed with plasmids expressing different β-secretase activities together with the invertase-APP (Sw) construct, or its wildtype variant (invertase-APP). Empty plasmids and an invertase-expressing plasmid were used as negative and positive controls, respectively. Liquid cultures were grown in 5% sucrose, 2% galactose, 0.1% glucose drop-out medium (The medium contained histidine for this assay as the cultures should grow equally). The maximal level of LacZ expression in this assay was obtained with transformants harboring two empty plasmids. In these cells there was no invertase activity, and consequently no glucose was produced in the presence of sucrose. In this way, values of >0.6 β-galactosidase units were measured (
Co-expression of BACE with the invertase-APP (Sw) fusion protein led to a significant reduction of β-galactosidase activity (0.026 β-galactosidase units,
These results show that the expression level of the reporter gene system is dependent on the presence of free invertase. Free invertase was generated either by direct expression of the natural SUC2 gene or by liberation from a membrane-bound fusion protein. The liberation and subsequent secretion of the invertase moiety only took place efficiently when the active BACE secretase was co-expressed with the invertase fusion protein harboring the Swedish mutation, thus underlying the specificity of the system.
The expression of the HIS3 gene was quantified by a growth assay in liquid medium. For this assay, Biscrel cells were cultivated in liquid -his medium containing 5% sucrose and 2% galactose (selective conditions). Two-ml cultures were inoculated with equal amounts of cells transformed with the constructs of interest. Cell density was measured after 24 h. The same amounts of cells were used to inoculate cultures in non-selective medium. This control experiment showed that none of the constructs per se had an effect on cell growth under non-selective conditions (
The screening system is as well suitable to screen for modulators of other secretases.
To further investigate the general applicability of our system, a different target, namely the human Notch 1 protein, was fused to invertase (
While there are shown and described presently preferred embodiments of the invention, it is to be distinctly understood that the invention is not limited thereto but may be otherwise variously embodied and practiced within the scope of the following claims.
1. Zhang, W., et al., Characterization of beta-amyloid peptide precursor processing by the yeast Yap3 and Kkc7 proteases. Biochimica et Biophysica Acta, 1997. 1359(2): p. 110-22.
2. Komano, H., et al., Involvement of cell surface glycosyl-phosphatidylinositol-linked aspartyl proteases in alpha-secretase-type cleavage and ectodomain solubilization of human Alzheimer beta-amyloid precursor protein in yeast.J Biol Chem, 1998. 273(48): p. 31648-51.
3. Citron, M., et al., Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature, 1992. 360(6405): p. 672-4.
4. Lohr, D., P. Venkov, and J. Zlatanova, Transcriptional regulation in the yeast GAL gene family: a complex genetic network. The PASEB Journal, 1995. 9: p. 777-786.
5. Lamphier, M. S. and M. Ptashne, Multiple mechanisms mediate glucose repression of the yeast GAL1 gene. Proc. Natl. Acad. Sci. USA, 1992. 89: p. 5922-5926.
6. Melcher, K. and H. E. Xu, Gal80-Gal80 interaction on adjacent Gal4p binding sites is required for complete GAL gene repression. Embo J, 2001. 20(4): p. 841-851.
7. Hooper, N. M., Karran, E. H., Turner, A. J. Membrane protein secretases Biochem. J, 1997. 321: 265-279.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB02/01342 | 4/18/2002 | WO | 9/8/2005 |