The present invention relates to the method according to the preamble of patent claim 1 for the manufacture of layered metal slabs. The invention also relates to the layered metal product slab according to patent claim 10.
The method according to the invention is especially intended for the manufacture of coin blanks. In some types of coin, a multi-layered metal is used, where the central layer is of a different material to the surface layers. The layered material is typically manufactured by placing three material strips in layers on top of each other and by rolling the material strips into a layered structure, using heavy rolling force. After rolling, diffusion annealing has typically still been necessary in order to ensure that the layers remain fast together. After diffusion annealing, the blanks have been rolled once again to their final size. The disadvantages known in the prior art are e.g. the special equipment required. In addition, the manufacturing technology used is demanding concerning impurities, since the impurities caught between layers have caused problems when joining the layers to each other.
The object of this invention is to achieve a method for the manufacture of a layered metal product, by means of which the disadvantages known in the prior art can be prevented.
The characteristics of the invention are presented in the patent claims.
There are a number of significant advantages in the solution according to the invention. It is possible to achieve an extremely high-quality juncture between the surface and central layers by means of the method according to the invention. By using nickel strip as the material for the central layer and cupro-nickel for the surface layers, an extremely beneficial layered structure is achieved which has good bonding properties. The multi-layer casting achieved by using the method is thus extremely well suited for further processing. After further forming and other necessary stages, the structure achieved by using the method is extremely well suited for use as e.g. coin blanks.
The invention is described more detailed with the aid of a preferable example with reference to the enclosed figures, where
The invention relates to a method for manufacturing a layered metal slab 1 direct by casting, which strip comprises a central layer 2 and surface layers 3 on either side of it. In the method the central layer 2 is introduced as a strip through a mould 4, into which is introduced molten metal 5, the mould 4 is cooled, whereupon a layered structure 1 is formed as the molten metal 5 solidifies. In the method, a metallurgical bond is formed between the surface layer 3 and the central layer 2. Typically the molten metal 5 is conducted to the mould 4, on both sides of the central layer 2. The melt 5 is ordinarily conducted via a launder element 6 to the mould. The melt is conducted to the launder element from a melting furnace (not illustrated) in the direction of the arrow M. In the method according to the invention a special launder element 6 is used, which includes an opening 7 for conducting the central-layer strip 2 into the mould. The central-layer strip can be introduced into the mould as a continuous strip or as specially cut-off lengths. From the launder element 6 the melt is conducted to the mould at least via one feed element 8. According to the application form of the figure, there are two feed elements 8, one either side of central-layer strip 2. The feed elements 8 are typically pipe elements, of which the end near the mould extends preferably beneath the surface of the melt in the mould.
In connection with the method, non-oxidizing conditions are used in order to protect the melt 5, at least in the area between the mould 4 and the duct part 6. Typically the launder element 6 includes a cover for preventing oxidation of the melt. Typically shielding gas, such as argon or nitrogen, is introduced into the mould above the surface of the melt, to prevent oxidizing of the melt. Additionally, the space between the mould 4 and the launder element 6 is typically sealed.
The melting point of the central layer 2 is higher than the melting point of the metal of the surface layers. According to one of the beneficial application forms of the invention, the surface layer 3 is an alloy of nickel and copper, preferably an alloy, which is about 75 weight percent copper and about 25 weight percent nickel. Thus the central layer 2 contains mostly nickel; the most preferably the central layer is about 99 weight percent nickel. The temperature of the melt conducted from the melting furnace to the launder element 6 is typically in the region 1200-1500° C., preferably 1300-1400° C. The molten metal solidifies in the mould, which is typically water-cooled.
In another typical application the surface layer is nickel brass which contains about 75 weight per cent copper, 20 weight per cent zinc and 5 weight per cent nickel. The central layer is nickel also in this application form.
In a typical application form the thickness of the central layer strip 2 is from about 7-15 mm, typically 8-9 mm, where the thickness of the whole cast slab can be in the region 100-200 mm, preferably 140-160 mm.
The slab 1 cast according to the method is further processed by forming, particularly by rolling. The casting 1 is further processed in such a way as to achieve a metal product blank, in particular a coin blank. Thus the cast slab is firstly hot rolled, its surface is milled, cold rolled, cut into narrow strips, after which the strip is stamped into metal product blanks, in particular coin blanks.
Layered metal product slabs, comprising a central layer and surface layers, are manufactured by the method according to the invention. The multi-layered metal slab according to the invention is especially suitable for coin blanks. Typically, blanks produced by the method according to the invention are used, for example in coins 10, where the center 11 of the coin is a different color to its radial outer annular area 12. One such coin is e.g. the one-euro piece. Thus the method according to the invention is especially suitable as the center 11 of a coin used in the production of layered metal blanks.
The object of the invention is therefore also a layered metal product slab, particularly a coin blank, comprising a central layer and surface layers. The layered structure is formed by casting surface layers 3 onto central layer 2. The cast layer metal strip is used especially as the central part 11 of coin blanks, as for example the one-euro piece. The strip in question comprises two surface layers 3 made of nickel copper, where the copper content is 75% and the nickel content is 25%. Between the surface layers there is a central layer 2, which consists of at least 99.2% nickel, and no more than 0.2% iron. The thickness of the central layer of the final product is typically below 10%, preferably 6.3-7.7%, of the total thickness of the layered structure. One other example is the 2-euro piece, in connection with the production of which the method according to the invention can be utilized.
After casting, the layered metal strip undergoes further processing. The slab is hot rolled, after which the surface of the strip is milled. Then the strip is cold rolled. The rolled strip is cut into narrow strips. The coin blanks are punched from the narrow strips and finished, for example edged, heat treated and polished.
For a professional in the field, it is obvious that the invention can be used to produce other metal product blanks as well as coin blanks.
Number | Date | Country | Kind |
---|---|---|---|
20002796 | Dec 2000 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI01/01074 | 12/11/2001 | WO | 00 | 6/19/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/055753 | 7/18/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1939628 | Liebmann | Dec 1933 | A |
2128942 | Hudson | Sep 1938 | A |
2995816 | Ma | Aug 1961 | A |
3050848 | Wilkins | Aug 1962 | A |
3237298 | Ma | Mar 1966 | A |
3367397 | Hansson | Feb 1968 | A |
3561399 | Federman | Feb 1971 | A |
3608183 | Lemelson | Sep 1971 | A |
3621561 | Higbee et al. | Nov 1971 | A |
3634890 | Conradt et al. | Jan 1972 | A |
3695337 | Grand | Oct 1972 | A |
3753669 | Churchill | Aug 1973 | A |
RE28188 | Higbee et al. | Oct 1974 | E |
3995679 | Brinkmann et al. | Dec 1976 | A |
4102033 | Emi et al. | Jul 1978 | A |
4552788 | Sato et al. | Nov 1985 | A |
4719962 | Haour et al. | Jan 1988 | A |
4976306 | Pleschiutschnigg et al. | Dec 1990 | A |
5077094 | McCall et al. | Dec 1991 | A |
5480496 | Ward | Jan 1996 | A |
5665437 | Frommann et al. | Sep 1997 | A |
5669436 | Papich et al. | Sep 1997 | A |
5850869 | Pleschiutschnigg et al. | Dec 1998 | A |
5855238 | Pleschiutschnigg et al. | Jan 1999 | A |
6095232 | El Gammal et al. | Aug 2000 | A |
6161608 | Pleschiutschnigg | Dec 2000 | A |
6209620 | Pleschiutschnigg | Apr 2001 | B1 |
Number | Date | Country |
---|---|---|
198 14 988 A 1 | Jul 1999 | DE |
0 149 064 | Jul 1985 | EP |
0 603 564 | Jun 1994 | EP |
63-97340 | Apr 1988 | JP |
2001205399 | Jul 2001 | JP |
WO 95 05100 | Feb 1995 | WO |
Number | Date | Country | |
---|---|---|---|
20040031582 A1 | Feb 2004 | US |