Not applicable
Not applicable
Cables are usually made in the form that their conductor (core) is drawn through an extruder, which applies at least one insulation layer onto the conductor which consists of a suitable plastic material. After the extrusion, the cable or the extrudate is guided through a cooling path or a vulcanisation- or dry crosslinking path. The sheathing must have a minimum wall thickness, for reasons of insulation safety for instance. On the other hand, it is avoided to make the wall thickness too large without necessity, for reasons of materials saving or weight. It is therefore necessary to monitor the wall thickness or the diameter of a cable or extrudate permanently, and to provide measures which perform a correction when the preset values are exceeded or fallen below.
In plants for the manufacture of cables, it is known to arrange a measuring device for the external diameter in a small distance after the extruder in the production direction. This arrangement has the advantage that it yields measurement values for the operator instantly when the extrusion plant is set up, and that it permits a rapid regulation. However; it is a disadvantage that the arrangement of a measuring device between the extruder and the crosslinking- or cooling path, respectively, is undesired just on that location for different reasons. It is therefore also known to arrange a diameter measuring apparatus behind the cooling path. This has the disadvantage that only a very slow regulation is achieved. From EP 0 400 310 A2, it is known to arrange a first diameter measuring apparatus between extruder and cooling path, and a second diameter measuring apparatus behind the cooling path. Via a delay line memory, the measurement value of the first diameter measuring apparatus is input into a comparator device, into which the measurement value of the second diameter measuring apparatus is input also. The difference is input into a second comparator device, which is fed by the first measurement value and by a desired diameter value as well. The difference goes as system deviation to a control unit for the plant. The same regulates the rotational speed of the extrudes; for instance.
It is also known to measure the wall thickness of the sheathing of a cable. When a sheathing is mentioned in the following, a single-layer sheathing is to be understood for the sake of simplicity. Of course, the insulation of a cable can also consist of plural layers, which are formed by coextrusion or by means of several extruders arranged one after the other. Besides, it is also known to apply semiconductor layers on the conductor or on the outer insulation layer.
An X-ray measuring device is suitable for measuring the wall thickness, by way of which it is possible to determine the thickness of the individual layers of a sheathing and the diameter of the core. However, it is also possible to determine the thickness of a layer of a sheathing by measuring the diameter only, provided that at the same time, the diameter of the core can be assumed to be known or is measured before the extruder in the line direction. In order to take into account fluctuations of the diameter of the conductor (the core diameter), it is further known to compare the measured diameter values of the conductor via a delay line memory with the measurement value of the external diameter, so that the difference of external diameter and core diameter can be associated to the same location on the cable,
At given core diameter; the wall thickness of the sheathing depends on the output capacity of an extruder and on the so-called line speed. The output capacity depends primarily on the rotational speed of the extruder (the rotational speed of the screw). The line speed is preset by the drives which haul the conductor from a drum and draw the cable through the extruder and the cooling path to a take-up reel. Thus, the wall thickness results from the following formula:
In this formula is Wv=wall thickness,
As already mentioned, it is known to provide a wall thickness adjustment by measuring the real value for the wall thickness after the cooling path, with an X-ray device for instance, and comparing the real value with a preset desired value for the wall thickness. A PI controller outputs a corresponding correcting variable to the extruder, for changing the rotational speed of the screw thereof, for instance. Through this, its output volume is changed also, and consequently the wall thickness of the sheathing. As cooling paths can have a great length, hundred meters and more for instance, such a regulation is slow, of course, in particular when cables with large diameter of the sheathing are produced, which are extruded with line speeds of 10 to 100 m per minute for instance, at maximum output capacity of the extruder. The regulation could be made faster if a wall thickness measuring device could be arranged immediately behind the extruder. This is undesired for different reasons.
Pipes or tubes from plastic material are also manufactured with an extruder. Even in production plants for such extrudate material, measuring devices can often not be positioned immediately following the extruder, which would be desirable per se for reasons of measurement technique.
The present invention is based on the objective to indicate a method for the operation of a production plant to produce an extrudate, for cables in particular, by which the external diameter and/or the wall thickness of at least one layer of the extrudate or of the sheathing of the cable, respectively, can be brought to the desired rated value faster than conventionally, even though a measurement of the diameter or of the wall thickness immediately behind the extruder is omitted.
In the method of the present invention, a model of the extruder is memorised in a computer. Each extruder is characterised through the dependence of its output volume capacity (output volume per unit time) on the rotational speed of its screw. The ratio of rotational speed to output volume capacity is not persistently linear, but can be mapped by a function. If for instance a conductor with a preset diameter is coated in an extruder with a preset rotational speed and line speed, there results a predictable wall thickness. The described variables, like wall thickness and/or diameter; the extruder's rotational speed, the line speed, the internal diameter and/or the core diameter are measured and mapped in an algorithm, which is deposited in the software of the computer.
The volume output capacity of an extruder is further depending on the material, the temperature of the material (the mass temperature) and on the power of the drive of the extruder. The temperature and/or the drive power can be measured of course, the latter via the current acceptance of the drive motor, for instance.
In the manufacture of an extrudate, of a cable for instance, the line operator knows which wall thickness value is to be achieved for the layer wall or for the sheathing of the cable, respectively. At given core diameter, the wall thickness value to be achieved results from the preset speeds for the line and the rotational number of the extruder screw and from the further, parameters mentioned above. When there is no core, the internal diameter of the layer can be preset otherwise. When the line speed is increased about a certain percentage in the run-up of the production plant, the line operator must increase the rotational speed of the extruder correspondingly, in order to achieve the desired wall thickness. Due to the nonlinearity of the extruder, the rotational speed of the extruder must be increased about a certain greater percentage in order to maintain the desired wall thickness. With the aid of the extruder model, the wall thickness value achieved at each time can be calculated and displayed instantly, even during the operation in the starting period. This wall thickness value results form the algorithm expressed in the extruder model, by means of which the respective wall thickness is calculated depending on the production data of the extruder, the line speed and external and core diameter, respectively, said wall thickness changing above all with the rotational speed value of the extruder, as is well known. As a result, with the aid of the extruder model, the wall thickness value can be advanced by the line operator in a time as fast as possible to that value which is preset as a rated value for him/her. This takes place either by manual actuation for the adjustment of the rotational speed (the screw's rotational speed) of the extruder, or even alternatively with the aid of a suitable control and regulation, which provides that the extruder is triggered and controlled such that the calculated value corresponds to the rated value, or the rated value is achieved after a regulation process, respectively.
According to the present invention, it can be switched over to automatic operation still before running tip the plant to production speed. For the automatic operation, it is provided according to the present invention to memorise the algorithm of an (inverse) extruder model in the computer, from which the relation of the extruder's rotational speed to the value for the diameter and/or the wall thickness emerges in accordance with the inside or core diameter, respectively, the line speed and the rotational speed dependent output capacity of the extruder. The extruder is controlled with a desired rotational speed, which is calculated in the (inverse) extruder model for the preset values of wall thickness and/or diameter, line speed and inside or core diameter, respectively. When beginning the automatic operation, the extruder is controlled with the calculated desired rotational speed, so that a wall thickness is thus generated which corresponds to the rated wall thickness to a large extent, due to the calculation in the extruder model, without that a measurement had been performed for this. The latter can take place only when the output with the predicted wall thickness has reached the measuring head in a greater distance to the extruder. The measuring head measures the real value for the diameter and/or the wall thickness of the layer or sheathing, respectively. Due to the approach to a large extent of the wall thickness that was calculated with the aid of the extruder model to the rated wall thickness or the rated diameter, respectively, the difference between real and desired value is relatively small. The deviation or difference is used for adjusting the extruder more accurately to the desired value for diameter or wall thickness. This may take place optionally by a regulation or by adaptation (correction) of the extruder model in accordance to the measurement values from the measuring head. For instance, the measured wall thickness is compared with a predicted wall thickness in a regulation, wherein it is essential that the wall thickness value, predictable or calculated in advance, is compared with the measurement value of the measuring head on the location of the measuring head. For instance, this takes place in that the wall thickness value calculated in the extruder model is given up via a shift register to a comparators device, into which the measured wall thickness value is input also. In the “location-adjusted” comparison, further process relevant data like the rotational speed of the extruder's screw, hauling speed etc. have to be taken into account as far as possible. Namely, the same might have changed more or less significantly in the course of the time in which the extrudate or the cable, respectively, has covered the path between extruder and measuring head. They are therefore continuously supplied to a memory which is similar to a delay line memory. The delay time of the information corresponds to the line speed, so that the same arrives on the location of the measuring head in a time-adjusted manner with the extrudate or the cable, respectively. By doing so, the real value of the wall thickness or of the diameter can be compared with the previously calculated values and the basic data on which the calculated values are based in a location-adjusted manner, in order to derive an error signal. The error signal causes a correction of the extruder model and/or of the desired value presettings for the extruder's rotational speed and/or for the line speed.
In the method of the present invention, it is assumed that the extruder model represents a relatively accurate approximation of the real production values (output capacity) of the specific extruder which is used. In the method of the present invention, the rotational speed of the extruder, which is desired to yield the desired wall thickness values at known output capacity, given internal or core diameter, respectively, and given line speed as well as at further given basic data mentioned above, is therefore obtained through a mathematical approximation at first. Examination and correction take place with the aid of actual measurement values, which are obtained by way of the measuring head in a distance to the extruder, for instance at the end of the cooling path. The method of the present invention has the advantage that in the beginning of the production, by presetting the extruder's rotational speed from the extruder model, the wall thickness can be controlled to a value which is only affected with a minimal error. A fine adjustment takes place thereafter, with the aid of the measurement values of the measuring head. In other words, the method of the present invention works as if a measuring head (a virtual measuring head) were arranged between extruder and cooling path, which indicates the cold wall thickness directly, which is not the case in reality. The virtual measuring head presets the desired rotational speed for the wall thickness and/or diameter control for each line speed. The measuring head behind the cooling path determines the real value through which the desired rotational speed of the extruder model is adjusted. For instance, this takes place by adaptation of the extruder model, or by way of regulation technique through a comparison of the measured real value of the wall thickness with the desired value for the wall thickness. The regulation portion in the adjustment of the extrudes according to the present invention is small. The delay time of the regulation path is therefore not particularly significant.
It is obvious that for the implementation of the extruder model, the parameters of the extruder, in particular its rotational speed, the line speed of the extrudate as well as the inside diameter or the thickness of the core, respectively, and if need be the material, its temperature and the mass pressure in the extruder must be known, and have to be measured by suitable measuring apparatuses if needed.
It is also obvious that the implementation of the extruder model functions also when the desired value of the line speed is predicted instead of the desired value for the extruder screw's rotational speed, and is correspondingly adapted, corrected or regulated when there is a deviation from the desired value of the wall thickness and/or of the diameter, respectively.
For instance, when the rotational speed of the extruder is significantly decreased or increased in the operation, for instance because the supply roll for the conductor in the cable manufacture must be changed, it has naturally to be taken care that the wall thickness and/or the diameter of the cable does not change in this. A rapid decrease of the rotational speed of the extruder does not result in an analogously rapid reduction of the output volume per unit time. Therefore, there is the danger of a so-called excessive wall thickness. To the reverse, an extruder cannot immediately “respond” to the sudden increase of its rotational speed with a corresponding output capacity, through which an insufficient wall thickness results. In the state of the art, one manages this for instance in that the extruder's rotational speed as well as the line speed are changed as slowly that the dynamic behaviour of the extruder does no more play any role. However, in this it must be considered that due to the nonlinearity of the extruder at different line speeds, the ratio of line speed and extruder's rotational speed must be changed correspondingly, in order to maintain a desired wall thickness in the static operation.
One embodiment of the present invention provides to detect and to model the dynamic behavior, i.e. the behaviour of the extruder output capacity at a rapid change of the screw's rotational speed. The output capacity behaves similar to a low-pass of the n-th order when the rotational speed changes. The parameters of such a low-pass model can be determined by way of the response of the extruder to a rapid change of the rotational speed (a jump function). Then, this model can serve to impart the same dynamic behaviour to the line speed by way of a control, in order to compensate the delayed behaviour of the extruder in the dynamic operation such that the wall thickness or the diameter remains essentially constant. Through this, the danger of an excessive or insufficient wall thickness is eliminated.
Thus, with the aid of the method of the present invention, the dynamic behaviour of an extruder can be introduced in a simple manner into the control and regulation of the wall thickness or of the diameter, respectively.
The present invention is explained in more detail in the following by means of an example of its realisation, depicted in drawings.
a shows a block diagram similar to that of
While this invention may be embodied in many different forms, there are described in detail herein a specific preferred embodiment of the invention. This description is an exemplification or the principles of the invention and is not intended to limit the invention to the particular embodiment illustrated.
In
The volume output per unit time (the output capacity) of the extruder 10 depends of course on its screw's rotational speed, amongst others. The wall thickness of the sheathing of the cable 14 further depends on the speed by which the core 12 is guided through the extruder 10, as well as on the diameter of the core 12. At given line speed VL and preset core diameter, the wall thickness can therefore be changed by changing the rotational speed nex of the extruder's 10 screw.
In the arrangement after
The regulation of the extruder and the adaptation of the extruder model will be explained in more detail by way of the
The virtual measuring head 36 according to
In
By switching over the switch 50, the rotational speed desired value transmitter 34 becomes noneffective. In
In analogy to the method described just now, the rotational speed of the extruder screw can of course also be used as the guide value, and the extruder model predicts then the line speed. Deviations between the real wall thickness and the predicted wall thickness regulate the rotational speed of the extruder's screw and/or the haul-off speed, or there is a correction of the extruder model.
When knowing the core diameter, wall thicknesses can be simply converted into diameter values when such display values or regulations are required.
In the arrangement according to
As shown in
The realisation example above is related to a cable production. The present invention can be utilised to the same degree in the production of arbitrary extrudates from plastic material, which are extended in an extruder; for instance pipes or tubes.
A diameter measuring device can also be used, instead of an X-ray measuring device 32.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 058 754.5 | Dec 2006 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP07/09623 | 11/7/2007 | WO | 00 | 11/2/2009 |