The invention relates to a method for producing and removing a temporary protective layer for a cathodic coating on supporting metals.
EP 1 561 542 A1 has disclosed a method for removing a layer of a component. It involves a layer composed of an organic binding agent, which is to be removed from a substrate without damaging the substrate. To this end, a blasting jet of dry ice particles is guided over the surface so that the action of the dry ice particles removes material from the layer containing an organic binding agent. The dry ice removal is intended to avoid a contamination with foreign substances and to not harm the metallic base body of the component.
EP 1 321 625 B1 has disclosed a method for removing a metal layer in which a layer system includes the metal layer and a substrate coated by the metal layer and in which the removal process is a blasting process. The blasting process here can be a sand blasting process in which the metal layer is powerfully cooled in order to achieve a low-temperature embrittlement of the coating in relation to the substrate.
EP 1 034 890 A2 has disclosed a method and device for blasting with different blasting media. Its intent is to achieve an abrasive blast treatment with blasting media in which the abrasive action of the blasting media lies between that of blasting media that are in fluid form under normal conditions and that of blasting media that are in a solid aggregate state under normal conditions. In this case, a mixture of a first blasting medium such as dry ice and a second abrasive blasting medium such as sand is used.
DE 199 46 975 C1 has disclosed a device and method for removing a coating from a substrate, which is intended to be gentle to the material and suitable for removing both soft and hard coatings. According to this method, a cold treatment is carried out by blasting with a coolant, which results in an embrittlement of the coating, and then an abrasive cleaning action is carried out with a machining tool; because of the cold treatment, the mechanically abrasive machining can be carried out with tool parts that are not as hard as machining tools according to the prior art.
DE 199 42 785 A1 has disclosed a method for removing solid machining residues, surface coatings, or oxide layers; the intent is for a cleaning to take place only in locations where solid machining residues are present. The cleaning in this case can be carried out with steam jets, dry ice jets, or by cleaning with technically induced shock waves, so-called laser cleaners. The CO2 cleaning can be carried out using intrinsically known dry ice pellets.
DE 102 43 035 B4 has disclosed a method and device for removing layers that form on metal components due to heating and cooling. When removing for example cinders, oxide silicate, and slag coatings on metal work pieces and in particular, metal work pieces with uneven surfaces such as axle components and autobody components for motor vehicles, since the solid particles in abrasive compressed gas jets do not completely remove the layers from metal work pieces in all cases, the flow of compressed gas used to project e.g. dry ice particles at the metal work piece to be cleaned should be preheated and should have a temperature that is greater than the temperature of the air surrounding the metal work piece and/or the surface temperature of the metal work piece. This should assure on the one hand, that the metal work piece is not cooled too intensely and on the other hand, that the compressed gas is at least essentially free of moisture so as to avoid an undesirable formation of condensation. The layers to be removed from the surface of the metal piece are removed by means of the mechanical action of the dry ice particles, which strike it at a high velocity and therefore have an abrasive action, and by means of the dry ice particle-induced, localized cooling of the surface and coating.
WO 2005/021822 of the applicant has disclosed a method for protecting a cathodic anticorrosion layer by adding—within certain limits—oxygen-affinity elements to the metal composing the cathodic protective layer in order to protect the cathodic protective layer during the hardening of a component manufactured from the cathodically protected metal. To harden components of this kind, they must be heated to a temperature above the austenitizing temperature of the base metal, in this case steel. Particularly with high-hardening steels, this temperature is above 800° C. At such temperatures, most cathodic protective layers are destroyed by evaporation or oxidation so that a component treated in this way would not have any cathodic protection after hardening. Because oxygen-affinity elements have been added, the oxygen-affinity elements diffuse out of the compound composing the cathodic protective layer and migrate to the surface, forming a very fine protective layer there. This very fine protective layer can, for example, be composed of magnesium oxide, aluminum oxide, or mixtures thereof. WO 2005/021820 has also disclosed using a method of this kind in roll profiling.
The object of the present invention is to create a method with which it is possible to improve paint adhesion to hardened steel components provided with a cathodic protective layer.
The invention is based on the recognition that under certain conditions, the paint adhesion can be less than optimal in cathodic protective layers provided with a fine surface-protecting coating. On the other hand, there is no alternative to the formation of these thin layers since otherwise, the only possible option would be to carry out a secondary galvanizing of these components, which is very complex and expensive.
The invention is also based on the discovery that under certain circumstances, such a protective layer for a cathodic protective layer inherently complicates a phosphating pretreatment for the painting process.
According to the invention, therefore, the fine protective layer is composed of one or more oxygen-affinity elements so that it can be removed again, i.e. is present only temporarily, in order to assure a protection of the cathodic layer during the heating to a temperature above the austenitizing temperature, i.e. annealing process.
According to the invention, this thin protective layer is composed of at least one oxide of the oxygen-affinity elements so that cracks and/or defects form in this layer. These cracks permit the flakes delimited by these cracks and/or defects to be loosened from the oxide by means of dry ice blasting.
With the latest cathodic protective coatings, which have a protective layer of oxides of oxygen-affinity elements, however, the conventional sandblasting fails or can only be used to a limited degree since the conventional cleaning processes of the abrasive type would remove a majority of the cathodic layer. In addition, sandblasting also has a negative impact on the dimensional consistency of the components and also requires a secondary cleaning.
According to the invention, the blasting is carried out only with dry ice, without additives; the dry ice particles penetrate through the cracks and/or defects into the cavities beneath the protective layer and sublimate, increasing in volume by up to 800 times. As a result, the possibly loose particles or particles to be loosened are blasted off from the oxide of the oxygen-affinity element(s), along with zinc oxide particles that may be present. The additional thermal shock due to the supercooled dry ice particles results in additional thermal stresses in the layer composed of the oxide of the oxygen-affinity element(s) and consequently promotes the removal of undesirable materials. An abrasive removal should and must be avoided, though, since it attacks the cathodic protective layer.
This does not influence or remove the zinc or zinc-iron layer that is both desirable and required for the cathodic corrosion protection. With the method according to the invention, it is thus possible to achieve a selective removal of the poorly adhering oxides. Oxides with good adhesion to the surface, however, remain on the surface and also have no negative influence on the paintability.
According to the invention, it has turned out that producing the cracks in the layer requires process steps that must be carried out on the component itself, long before the production of the cathodic layer. While the cavities always form under the fine protective layer, which is due to the ongoing iron-zinc reaction in the cathodic anticorrosion layer during annealing in the radiation furnace, the present invention has led to the discovery that the thickness and cracking of the fine protective layer composed of the oxide of the oxygen-affinity element(s) depend on the pretreatment of the blank steel band and its influence on the interface boundary kinetics and development between the zinc and the steel substrate during the hot-dip coating and on the zinc surface.
“Pretreatment” is understood here to mean a preoxidation of the blank steel band as described in DE 100 59 566 B3 and in EU Search Report No. 7210-PA/118. This type of pretreatment is conventionally used to optimize the properties of high-strength steels. This improves the adhesion properties of the zinc coating in the hot-dip coating process, particularly with steel bands containing high levels of alloy constituents.
As a result, the inhibiting layer formation can affect the thickness and cracking of the fine protective layer. An “inhibiting layer” refers to a layer that, due to an addition of aluminum to the zinc bath, forms between the steel substrate and the zinc layer during the continuous hot-dip coating process and the possibly subsequent heat treatment. The purpose of the inhibiting layer in general is to slow an excessively powerful alloying or reaction between iron and zinc.
If this inhibiting layer is too thick, the reaction of zinc with iron during the heating to a temperature above the austenitizing temperature occurs in a decelerated fashion, as a result of which the iron-zinc phases being produced cause little or no damage to the superposed, slowly accreting layer of the oxide of the oxygen-affinity element(s). Consequently, the thickness of the fine protective layer increases only slowly and also, no intense cracking occurs since the now rather thin Al2O3 layer lies like a thin skin over the iron-zinc phases. The same effect occurs if too thick a zinc deposit is selected.
The invention will be explained by way of example in conjunction with the drawings.
The surface shown in
If the aluminum oxide layer is thicker and has more cracks, then the scanning electron microscope image shows a continuous Al2O3 layer without dark patches. In the case shown in
The method according to the invention is shown in
According to the invention, the pretreatment and hot-dip coating process are carried out so that during the preoxidation, a FeO layer of greater than 100 nm but less than 1,000 nm forms, and preferably an inhibiting layer forms, which has an aluminum content of 0.15 g/m2 to 0.4 g/m2. During the heating to a temperature above the austenitizing temperature in the radiation furnace, an intensified zinc-iron reaction occurs, which results in a breaking-up of the Al2O3 protective layer. Higher aluminum contents lead to a state of the type described in
Preferably, the zinc layer deposit for carrying out the method according to the invention is between Z100 and Z200, i.e. between 7 μm and 14 μm per side. At higher deposits, the thorough reaction of the zinc-iron phases is delayed all the way to the surface as a result of which the Al2O3 layer is damaged only slightly and therefore remains thin. At lower deposits the cathodic corrosion protection can be insufficient.
From a purely general standpoint, it can also be mentioned that through the proliferation of cracks and/or defects in the Al2O3 layer, this layer grows from underneath due to oxygen diffusion. Thicker Al2O3 layers, moreover, already tend to form cracks due to thermal stresses during the heating to a temperature above the austenitizing temperature. With a thinner Al2O3 layer, few cracks in the Al2O3 layer form during the heating to a temperature above the austenitizing temperature and the low level of oxygen diffusion results in only a thin Al2O3 skin over the zinc-iron mixed phases.
The invention will be explained by means of examples.
A sheet of 22MnB5 steel 1.0 mm thick is subjected to a preoxidation and a hot-dip coating with approx. 0.2 wt. % aluminum in a zinc bath. The preoxidation is carried out so that a FeO layer thickness of greater than 100 nm but less than 1,000 nm is produced. The galvanizing here is carried out so that a zinc deposit Z200, i.e. 14 μm per side, is achieved. The aluminum content of the inhibiting layer is set to 0.3 g/m2. The sheet is then placed for four minutes in a radiation furnace heated to 910° C., with a normal air atmosphere. As a result, a layer formation according to
A sheet of 22MnB5 steel 1.0 mm thick undergoes a preoxidation and a hot-dip coating process with approx. 0.2 wt. % aluminum in the zinc bath. The preoxidation of the blank sheet is carried out so that a FeO layer thickness of greater than 100 nm and less than 1,000 nm is produced. The galvanizing here is carried out so that a zinc deposit Z200, i.e. 14 μm per side, is achieved. The aluminum content of the inhibiting layer is set to 0.8 g/m2 and annealing conditions correspond to example 1. As a result, an aluminum oxide-rich surface with little zinc oxide is achieved, which only responds poorly to being cleaned with dry ice. As a result, the surface corresponds to
A steel sheet corresponding to examples 1 and 2 is embodied with a zinc deposit of Z300, i.e. 21 μm per side, instead of a zinc deposit of Z200. On the other hand, the preoxidation of the blank steel band is carried out so that a FeO layer thickness of greater than 100 nm and less than 1,000 nm is produced. The aluminum content of the inhibiting layer is set to 0.3 g/m2. The sheet is then placed for four minutes in a radiation furnace heated to 910° C., with a normal air atmosphere. Here, too, the Al2O3-rich surface not according to the invention forms with little zinc oxide; it responds poorly to being cleaned with dry ice and corresponds to the surface shown in
The invention has the advantage that a method for producing and removing a temporary protective layer for a cathodic coating is created, which successfully creates a hardened steel component with a cathodic protection; the cathodic protective layer protects the steel—even during the heating—from oxidation and particularly from cinder formation and after a heat treatment and hardening of the steel component, a very highly paintable surface is produced with simple means.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 022 174 | May 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/000721 | 1/30/2008 | WO | 00 | 3/7/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/138412 | 11/20/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20070256808 | Fleischanderl et al. | Nov 2007 | A1 |
Number | Date | Country |
---|---|---|
19942785 | Mar 2001 | DE |
10243035 | Jan 2006 | DE |
1034890 | Sep 2000 | EP |
1321625 | Sep 2004 | EP |
1561542 | Aug 2005 | EP |
06-269839 | Sep 1994 | JP |
10140311 | May 1998 | JP |
1240412 | Jun 1986 | SU |
2005021820 | Mar 2005 | WO |
2005021822 | Mar 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20110139308 A1 | Jun 2011 | US |