The present invention relates to a method for manufacturing a cast brake disk and to a brake disk made of a cast material.
Brake noise and excessive wear in disk brake systems are often attributable to the phenomenon of shielding. Shielding is understood as an axial distortion of the brake disk caused by radial thermal expansion.
Shielding may be reduced considerably by decoupling the friction ring from the brake disk hub. DE 199 31 140 A1, for example, describes the manufacture of a composite cast brake disk made of a hub and a friction ring. A hub is provided in this case with radial retaining bolts and is placed into a casting mold. A casting is then made around the hub in the region of the retaining bolts, and the friction ring is formed. Although in this brake disk there is a separation between hub and friction ring, the radial expansion is limited by the rigid retaining bolts.
DE 195 05 112 A1 describes a method for composite casting for a brake disk. A tooth-shaped metal band is inserted between the hub and friction ring, and a casting is made around the metal band, which is then exposed again. Since the metal band does not bond with the casting, the hub and the friction ring are decoupled after the band is exposed. The disadvantage here is the complicated procedure, and a tight axial fit is difficult to ensure.
An object of the present invention is to provide a method for manufacturing a brake disk and a brake disk which considerably reduces shielding and which may cost-effectively be suitable for mass production.
According to the method of the present invention, a plurality of pairs of bodies inserted into one another and axially movable with respect to one another are placed in a casting core. The bodies inserted into one another are placed in the casting core in such a way that their axis of movement with respect to the brake disk points largely in a radially outward direction.
The casting core is placed in a casting mold which is filled with liquid metal, preferably a ferrous metal, in the conventional manner. After solidifying, the core is removed and the bodies remain at least partly cast in as joining elements between a friction ring and a brake disk hub.
The brake disk hub and the friction ring are decoupled by the use of the method according to the present invention, whereby shielding is reduced, and they may be manufactured and/or joined via composite casting in a single operation, which considerably reduces production costs. As a rule, no additional joining agent is needed.
In principle, a pre-manufactured single component, such as the brake disk, the brake disk hub, or the friction ring, may be placed in the casting mold and joined during casting via the bodies inserted into one another. One particular advantage of the method is that the brake disk hub and the friction ring are cast and joined in a single casting operation.
The core and the casting mold are shaped such that they are filled together preferably via a gate. After solidifying, a bridge is thus formed between the brake disk hub and friction ring, which is later removed preferably via a machining operation. A particularly homogeneous and low-shrinkage joint may be achieved using this filling method.
In another embodiment of the method according to the present invention, it is also possible to feed the brake disk hub and the friction ring separately through a branched gate. No bridge requiring subsequent removal is needed in this case; however, the casting procedure is slightly more complex.
The bodies inserted into one another are preferably placed in a core box; core shooting is subsequently performed, the bodies being fixed by the molded and solidified core. This method is easy to automate and is therefore cost-effective.
The present invention further provides a brake disk characterized by the fact that a brake disk hub and a friction ring are joined by two or more pairs of bodies inserted into one another and axially movable with respect to one another. The brake disk hub is joined to one of the two bodies inserted into one another, and the friction ring is joined to the other body. Since the two bodies are axially movable with respect to one another, the brake disk hub and the friction ring may also radially expand with respect to one another. This considerably reduces shielding between the brake disk hub and friction ring. The resulting advantages are lower brake noise, the reduction of brake-pad wear, and the reduction of microcracks in the friction ring caused by shielding. In particular, the reduction in microcracks results in a longer service life of the brake disk.
The bodies inserted into one another are preferably cast between the brake disk hub and the friction ring. The two components are thus firmly joined.
The bodies inserted into one another preferably have a round, particularly preferably circular, cross section. Accordingly their geometric shape is cylindrical, an outer body being designed as a hollow cylinder (bushing) and an inner body also as a hollow cylinder or as a solid cylinder (bolt). Such an arrangement is advantageous for unimpeded mobility of the bodies with respect to one another.
Advantageous embodiments of the present invention are explained in detail with reference to the figures below and the example.
Ten pairs of two bodies each inserted into one another in the shape of cylindrical bushing pairs are placed in a core box in an annular shape (8, 10 in
The core is placed in a casting mold; the brake disk is cast using a method known per se. The metal is cast from a bottom of a friction ring area; the melt flows upward via bridge channels, which form bridges 12 in the cast brake disk, to a hub area. The cast brake disk is then cooled down in a controlled manner.
Core 14 is molded in such a way that there is a cavity in inner bushing 10, which is cast out via a stud 18. Stud 18 is firmly joined to inner bushing 10. Friction ring 6 is firmly joined to outer bushing 8.
In a subsequent operation, core 14 is removed and bridges 12 are wrung off.
In another embodiment of the present invention according to
In the previous example, the bodies inserted into one another are shown having round cross sections. In addition to the round cross section, any other cross section is generally conceivable; however, the cross sections of the bodies should be concentric and should not change along an axis of movement. Furthermore, a rail joint, for example, in the form of a dovetail joint, may be expedient.
The term brake disk hub is normally used for a retaining part which is used for joining the brake disk to a vehicle.
The brake disk is preferably cast using a ferrous metal; therefore, the joining bodies are also preferably made of a ferrous metal. Light metal castings may also be used in the present invention. The individual components of the brake disk may be made of different materials.
The bridges illustrated in
Number | Date | Country | Kind |
---|---|---|---|
102 27 529 | Jun 2002 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP03/04439 | 4/29/2003 | WO | 00 | 7/13/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO04/000490 | 12/31/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2753959 | Johnson | Jul 1956 | A |
3994370 | Gebhardt et al. | Nov 1976 | A |
4280598 | Pollinger | Jul 1981 | A |
5823303 | Schwarz et al. | Oct 1998 | A |
6158124 | Austin | Dec 2000 | A |
7040466 | Saame et al. | May 2006 | B2 |
20030159893 | Tironi | Aug 2003 | A1 |
20040178030 | Pacchiana et al. | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
43 32 951 | Aug 1994 | DE |
195 05 112 | Aug 1998 | DE |
199 31 140 | Feb 2000 | DE |
1 122 456 | Aug 2001 | EP |
Number | Date | Country | |
---|---|---|---|
20060175159 A1 | Aug 2006 | US |