1. Field of the Invention
DE 101 26 049 A1 already discloses an annular connection flange having a tubular portion for mounting to an end of a tubular component, in particular for a pylon segment for constructing a pylon of a wind power installation, wherein it is formed with a flange collar radially adjoining one end of the portion and having a flange surface oriented axially away from the tubular portion.
2. Description of the Related Art
To produce such an annular connection flange, the state of the art uses an element in the form of a circular ring which is substantially quadrangular in its cross-section (profile) and that element in the form of the circular ring is then machined so that the annular connection flange is left. In the machining operation material is removed from the element in the form of the circular ring, in a not insignificant amount, in order then to obtain in the cross-section (profile), the desired profile of the annular connection flange, in one piece. It is therefore accordingly known for a connection flange to be turned in one piece from a metal semifinished product, to produce the connection flange.
Above-mentioned DE 101 26 049 also discloses an annular connection flange in which the outside wall of the tubular portion is conical, in particular for mounting to a component which is also conical.
The invention is based on the realization that, at its free end, the flange collar has to transmit only relatively low forces and possibly even no forces at all. Therefore in terms of the strength and the stability of the connection flange, it is harmless if the thickness of the flange collar at its free end is less than in the region where the flange collar forms a transition into the tubular portion. That can also provide that the starting material which can be used for production of the connection flange is not for example just a segment in the form of a circular ring which is of a substantially rectangular cross-sectional configuration, but it can also be substantially of a triangular cross-section.
The particular advantage is that in that way the cutting or turning operations for producing the connection flange from the semifinished product are considerably reduced. When the semifinished product is of a substantially triangular cross-section, it is also markedly better than a previous semifinished product because at the initial stage the semifinished product does not need to have as much material as hitherto. Further configurations are the subject-matter of the appendant claims.
The views in
All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, are incorporated herein by reference, in their entirety.
From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
103 25 032.8 | Jun 2003 | DE | national |
This application is a continuation of U.S. patent application Ser. No. 11/293,872, filed Dec. 2, 2005, and a continuation of U.S. patent application Ser. No. 12/268,569, filed Nov. 11, 2008, which both claim priority from the International Application PCT/EP2004/002862, filed Mar. 19, 2004. Each of these applications is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11293872 | Dec 2005 | US |
Child | 12577026 | US | |
Parent | 12268569 | Nov 2008 | US |
Child | 11293872 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2004/002862 | Mar 2004 | US |
Child | 11293872 | US |