This application claims priority to German Patent Application No. DE 10 2014 217 078.8, filed on Aug. 27, 2014, and International Patent Application No. PCT/EP2015/069556, filed on Aug. 26, 2015, both of which are hereby incorporated by reference in their entirety.
The present invention relates to a method for producing a tubular member from a metal sheet. The invention further relates to such a tubular member.
Usually a fluid flows in a tubular member. Accordingly, tubular members are used in applications in which the flow of a fluid is required. Such a tubular member can be used, for example, in a tempering device through which a fluid flows for tempering purposes. Tubular members can be made of plastic. Frequently however tubular members are made of a metal in order to achieve a high stability and/or media resistance of the tubular member. In order to produce such a tubular member, a metal sheet can be used which is formed into a tube and then soldered or welded. However, the soldering and the welding of the metal sheet require a high energy requirement as a result of the high temperatures required and thus result in increased production costs. Furthermore, additional means are necessary for this, e.g. the application of a soldering agent, or solder for short, for soldering, which necessitates a previous degreasing and/or de-oxidation to break up an oxide layer. Usually chemical substances which are harmful to health are used, which constitute a corresponding hazard for the persons involved in the manufacture and must be removed without any residue. These types of joining additionally require a subsequent checking of the tubular member for tightness and a possible reworking of the tubular member to ensure tightness which also requires additional working steps and resources.
Known from U.S. 2004/148992 A1 is a method for producing a tubular member in which a metal sheet is provided with joining sections at the ends, which are then brought into engagement with one another and adhesively bonded in order to form the tubular member.
U.S. Pat. No. 2,998,339 A discloses a method for producing a tubular member in which are plurality of metal sheets are successively wound around a common core so that the metal sheets lies one above the other. The superposed metal sheets are then connected to form the tubular member by heating an adhesive.
The present invention is therefore concerned with the problem of providing a method for the production of a tubular member, preferably a tempering device, and to provide improved or at least different embodiments for such a tubular member which are characterized by a more cost-effective and/or simple manufacture.
This problem is solved according to the invention by the subject matter of the independent claim(s). Advantageous embodiments are the subject matter of the dependent claims.
The present invention is based on the basic idea of producing a tubular member from a metal sheet and thermally bonding the metal sheet to form the tubular member. For this purpose at least one adhesive layer is used which joins the two joining sections of the metal sheet to one another. According to the invention it is provided that an adhesive layer is applied to at least one such joining section and the metal sheet is formed into the tubular member. In this case, the adhesive layer can be applied before the forming, during the forming and after the forming of the metal sheet. In this case, the forming of the metal sheet takes place in such a manner that at least two associated joining sections are arranged on one another to form the tubular member. For joining the joining sections the adhesive layer is heated in order to achieve the thermal bonding. Consequently, an inexpensive, effective production of the tubular member using relatively few resources is possible. In particular, the use of additional chemical agents, for example, for degreasing or for removal of an oxidation layer of the metal sheet can be dispensed with.
The heating of the adhesive layer preferably results in a change in shape and/or change in structure of the adhesive layer which enables and in particular facilitates a joining of the joining sections. Such a change in the adhesive layer is for example a softening and/or a melting and/or an expansion and/or a hardening of the adhesive layer.
The joining between the associated joining sections by means of the adhesive layer preferably achieves a stable state after the adhesive layer cools following heating. This is in particular the case when the adhesive layer cures.
This process, that is the change in shape and/or change in structure and/or the curing of the adhesive layer, can be reversible. As a result, the joining of the joining sections can be released if required by appropriately heating the adhesive layer.
As a result of the method according to the invention it is possible to use adhesive layers having a small layer thickness. In particular, it is possible to use adhesive layers which have a layer thickness of a few micron. In this case, variants are preferred in which the layer thickness of the adhesive layer is between 5 μm and 500 μm.
When heating the adhesive layer for joining the joining sections, a temperature which lies above the operating temperature of the tubular member is advantageously required. That is, the tubular member during operation reaches extremely high temperatures which are advantageously below the melting point of the adhesive layer. In this way, it is ensured that the join between the joining sections is not released during operation of the tubular member.
The adhesive layer comprises at least one adhesive. In this case, the adhesive layer, in particular the at least one adhesive is selected and/or conditioned in such a manner that a temperature between 120° C. and 400° C. during heating of the adhesive layer is sufficient to join the associated joining sections. Examples for such adhesives are Makrofol®, Bayfol®, Kleberit 701.1-701.9 and the like.
The adhesive layer advantageously comprises those adhesives which have thermoplastic properties. That is, the adhesive can be deformed above an adhesive-specific temperature which preferably corresponds to the temperature during heating of the adhesive layer for joining the components.
The adhesive layer is applied in an arbitrary manner to the associated joining sections. Preferably the adhesive layer is configured as an adhesive foil or an adhesive film. In this way, it is possible to provide the associated joining section with the adhesive layer in a simple and reliable manner, in particular in a surface-covering manner. It is hereby in particular ensured that the joining sections are joined stably and tightly to one another so that an appurtenant tightness of the tubular member is ensured.
In preferred variants the adhesive layer, in particular such an adhesive foil and/or such an adhesive film is laminated onto the associated joining sections. Lamination of the adhesive layer to the associated joining section enables a rapid and simple application of the adhesive layer to the joining section. In particular, many joining sections can thus be provided with such an adhesive layer in a short time.
Naturally it is also possible to join a plurality of joining sections with the same adhesive layer to one another. As a result, the expenditure for producing the tubular member is reduced appreciably. In particular, the measures and/or resources required for joining a plurality of joining sections to one another are reduced.
Embodiments are preferred in which the adhesive layer is heated for less than 10 minutes for joining the joining sections. Such a short duration of the heating of the adhesive layer results in reduced energy consumption for producing the tubular member so that the tubular member can be produced inexpensively and in an environmental friendly manner. Such a short required duration of the heating is achieved in particular by a corresponding choice of adhesive layer and/or layer thickness of the adhesive layer.
According to the invention, the adhesive layer is heated with the aid of a roll, which in particular can be configured as a roller. To this end, the roll, in particular the roller, can be heated. For heating the adhesive layer, the roll is rolled over the metal sheet formed into the tubular member, preferably over the associated joining section. By this means it is possible to successively heat a plurality of joining sections and/or different regions of such a joining section successively.
In order to ensure a better or more stable joining between the associated joining sections, these joining sections are preferably pressed against one another with a contact pressure during the joining process. This can take place before the heating of the adhesive layer. It is also feasible to press the joining regions against one another during and/or after the heating. This results in a better or more stable joining of the joining sections with the adhesive layer and/or with one another.
The contact pressure in this case can be arbitrarily large or small. The limits of the contact pressure are here given on the one hand by the fact that the contact pressure should result in an improved joining of the joining sections and on the other hand no undesired damage should be caused to the joining sections. The method is preferably configured in such a manner that contact pressures between 0.1 N/mm2 and 0.7 N/mm2 are applied for this purpose.
The contact pressure can be produced in an arbitrary manner. For this purpose, for example, the first roll can be used, which in addition to heating the adhesive layer also brings about the pressing of the joining sections against one another. For this purpose, for example, the roll can have a corresponding weight.
It is also feasible to achieve the contact pressure by a second roll. The use of such a separate roll has the advantage that the heating of the adhesive layer and the production of the contact pressure can take place separately, in particular independently. In this case, it is in particular possible that the first roll and the second roll simultaneously act on the adhesive layer or on the joining sections in which, for example, the first roll acts on such joining sections whereas the second roll acts on another joining section wherein these joining sections are not necessarily associated.
Alternatively, initially the first roll and then the second roll can be used. In this case, it is possible that the first roll and the second roll act on the same joining section. It is also possible that the first roll acts on such a joining section whilst the second roll acts on the associated joining section.
An acceleration of the joining process and/or a shortening of the time required for joining the joining sections can be achieved by cooling the adhesive layer following the heating. Such a cooling is usually accompanied by the termination of the heating of the adhesive layer. It is also conceivable to actively cool the adhesive layer. For this purpose, the adhesive layer, in particular the tubular member can be exposed to a lower ambient temperature by bringing the tubular member for example into a cooled environment. It is also conceivable to bring the tubular member, in particular the joining sections or the adhesive layer, in contact with a cooled object.
In advantageous variants, the cooling of the adhesive layer is accomplished by the second roll. This is achieved, for example, by the second roll having a lower temperature than the first roll. That is, in particular that the second roll is not heated. It is also conceivable to cool the second roll in order to thus achieve a corresponding active cooling of the adhesive layer.
In further variants, the heating of the adhesive layer takes place in a furnace. By this means it is possible to join a plurality of associated joining sections in the furnace simultaneously or consecutively by heating the associated at least one adhesive layer. Also associated joining sections of a plurality of tubular members can be joined simultaneously by simultaneously or consecutively heating the respective adhesive layers. This can be implemented for example by introducing a plurality of formed metal sheets and/or metal sheets provided with the adhesive layer simultaneously or consecutively into the furnace.
The use of the furnace for heating the adhesive layer can be accomplished in this case in such a manner that the respective adhesive layer is guided through the furnace for a predefined time, wherein the predefined time in particular corresponds to the time required for heating the adhesive layer for joining the associated joining sections. As a result, it is in particular possible to implement the heating of the adhesive layers in the manner of an assembly line which passes through the furnace.
In order to arrange associated joining sections of the metal sheet on one another, it is conceivable to bend the metal sheet during forming. In this case, the metal sheet can be bent differently at different points. That is, the bent sheet metal can have different bending radii. The respective bending radius is arbitrarily large or small provided that a corresponding arrangement of associated joining sections on one another is possible. As a result, it is in particular possible to configure the tubular member as a folded tube or as a flat tube. Such a flat tube in this case has a width in cross-section which is greater than the height. Preferably the width is twice to five times greater than the height. The length is preferably at least twice, in particular at least five times the width.
It is understood that in addition to the method for producing the tubular member according to the invention, such a tubular member produced according to the invention also pertains to the scope of the invention.
Further important features and advantages of the invention are obtained from the subclaims, from the drawings and from the relevant description of the figures with reference to the drawings.
It is understood that the aforesaid features and those still to be explained can be used not only in the respectively given combination but also in other combinations or alone without departing from the scope of the present invention.
Preferred exemplary embodiments of the invention are presented in the drawings and are explained in detail in the following description where the same reference numbers relate to the same or similar or functionally the same components.
In the figures, schematically
According to
As shown in
The application of the adhesive layer 5 is followed by forming, in particular bending of the metal sheet 2 provided with the adhesive layer 5 to form the tubular member 1, as shown in
To this end, the adhesive layer 5 is initially heated in the area of at least one such joining section 9. In the present example, the heating of the adhesive layer 5 is achieved with the aid of the first roll 10, which is heatable and can be configured as first roller 10′. For heating the adhesive layer 5 the first roll 10 is rolled over the associated joining region 9 or the adhesive layer 5 on the corresponding joining region 9. In the example shown, the first roll 10 is positioned on the adhesive layer 5 which is applied to such a joining section 9′ where this joining section 9′ is arranged with the adhesive layer 5 on the associated joining section 9″. During heating of the first roll 10, the adhesive layer 5 arranged between the joining sections 9 is therefore heated via the joining section 9′ arranged between the adhesive layers 5. The heating is accomplished in such a manner that the adhesive layer 5 arranged between the joining sections 9 is heated to a temperature between 120° C. and 400° C. At these temperatures a change in shape and/or a change in structure of the adhesive layer 5 takes place. In particular, the adhesive layer 5 is softened and/or melted or activated as a result. The associated joining sections 9 are then pressed against one another with a contact pressure. In the example shown in
When the associated joining sections 9 are pressed against one another, contact pressures are produced which preferably lie between 0.1 N/mm2 and 0.7 N/mm2. As a result, a stable joining between the joining sections 9 is possible where no undesired formings and/or damage to the metal sheet 2 or tubular member 1 are caused.
In addition, as shown in
In all the embodiments shown a more rapid joining and/or more stable joining of the joining sections 9 is achieved by cooling the adhesive layer 5 between the joining sections 9. In this case, the cooling of the adhesive layer 5 can be accomplished with the aid of at least one such second roll 11.
As shown in
In this way, as shown in
In
Overall the adhesive layer 5 for producing the tubular member 1 and the adhesive layer 5 for joining the component 20 to the tubular member 1 can be heated simultaneously and/or in a common process step in order to produce the tubular member 1 on the one hand and the tempering device 18 on the other hand. That is, the tempering device 18 and the tubular member 1 are in this respect produced jointly. For this purpose the tempering device 18 shown in
It can be further identified in
Number | Date | Country | Kind |
---|---|---|---|
10 2014 217 078.8 | Aug 2014 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/069556 | 8/26/2015 | WO | 00 |