The present invention relates to the field of wear-resistant metallic materials, especially cast steels resistant to wear by abrasion and impact for mining applications. More particularly, the present invention relates to a method for producing cast steel, by means of which a wear-resistant steel is obtained, with a predominantly martensitic microstructure and a suitable balance of chemical composition which, in conjunction with microalloying additions, makes it possible to obtain high hardenability and full hardening in large components of complex geometry used in mining applications, such as grinding, crushing and all those applications that require large components with high abrasive and impact wear resistance. In particular, the method and the steel of the present invention are used for making large components used in ball mills, concaves for crushers and covers of semi-autogenous mills, also known as SAG mills. Even more particularly, the present invention relates to a cast steel of predominantly martensitic structure, with high hardness and wear resistance under conditions of abrasion and impact, for use in the aforementioned applications.
Various methods of production of steels for mining applications are known in the prior art. However, the useful life of the components obtained by these methods is unable to satisfy production requirements. In particular, the known methods do not provide martensitic steels of high abrasive and impact wear resistance and whose hardenability is sufficient to ensure high hardness throughout the cross section of components of large thickness and complex geometry fabricated with this steel, typically up to 14 inches in thickness, when they are treated by air hardening and tempering.
No methods have been identified for production of air-hardening cast martensitic steels that are able to provide an alloy with high hardness and excellent wear resistance, for use in mining applications that require large components that are subject to abrasion and impact, such as antiwear liners for grinding and crushing, such as is provided by the present invention.
In general terms, the cast steels that are usually employed in the aforementioned mining applications may be classified as: i) austenitic manganese steels of the Hadfield type; ii) Cr—Mo low-alloy steels with predominantly pearlitic microstructure; and iii) low-alloy steels with low to medium carbon content with martensitic microstructure. None of these steels effectively solves the problems mentioned above, as is explained in detail hereunder.
Austenitic manganese steels of the Hadfield type, such as those described in standard ASTM A128, possess high toughness and high capacity for hardening by cold deformation, and are mainly used in liners of ore crushing equipment. However, when the mechanical stress is not sufficient to generate a high level of hardening by cold deformation, the austenitic manganese steels inevitably display low wear resistance.
For their part, the Cr—Mo low-alloy steels with predominantly pearlitic microstructure correspond to steels with a chemical composition typically given by 0.55-0.85% C, 0.30-0.70% Si, 0.60-0.90% Mn, 0.0-0.20% Ni, 2.0-2.50% Cr, 0.30-0.50% Mo, less than 0.050% P, less than 0.050% S, which are obtained by a heat treatment of normalizing and tempering, reaching Brinell hardnesses in the range 275-400 BHN. These steels have been widely used in shells of SAG mills during the last 30 years with acceptable results, without any large changes being made.
The main limiting factor in the use of Cr—Mo low-alloy steels with predominantly pearlitic microstructure is that it is not possible to increase their wear resistance by increasing the hardness, without having an adverse effect on toughness.
Finally, another type of steel commonly used in the mining industry corresponds to low-alloy steels with low to medium carbon content with predominantly martensitic microstructure. These steels are obtained by a heat treatment of severe hardening and tempering, reaching Brinell hardnesses in the range 321-551 BHN, depending on the specific chemical composition of the alloy and on the conditions used in heat treatment. At present, these steels are widely used in concaves for crushers, shovel teeth of earth-moving equipment, discharge chutes and anti-abrasive plates, all of which are components with thicknesses typically less than 8 inches (20.3 cm). However, the main limiting factors of these steels are:
Thus, although methods of production of steels for mining applications exist in the prior art, the inventors have not detected any disclosure of a method capable of producing a cast steel of the composition and microstructure specified in the present invention and which, moreover, displays the advantages that will be discussed hereunder.
As an example, document JP 2000 328180 of TAMURA Akira et al. relates to a wear-resistant cast steel of predominantly martensitic microstructure, for use in components of mills used by the cement industry, ceramic industry, etc. However, the chemical composition of this steel is substantially different from the steel obtained by the method of the present invention. The steel described in JP 2000 328180 has a chromium content preferably between 3.8 and 4.3% w/w. Moreover, said document teaches that although a chromium content greater than 5.0% w/w increases the abrasion resistance, the toughness of the steel is degraded. In contrast, the present invention describes steels with predominantly martensitic microstructure with chromium concentrations between 4.5 and 6.5% w/w, more preferably between 4.8 and 6.0% w/w, and with high hardness and excellent wear resistance in large components subjected to abrasion and impact.
Moreover, the steel described in document JP 2000 328180 does not disclose microadditions of titanium, zirconium and/or niobium, like those considered in the present invention. This document also does not disclose optional additions of boron and/or rare earths.
Conversely, Chilean patent application No. 2012-02218 of the present inventors relates to a method for the production of a cast steel of increased wear resistance with a predominantly bainitic microstructure and a suitable balance of toughness and hardness for large components in mining operations such as grinding, crushing or others that involve severe abrasion and impact, whose chemical composition, expressed in percentage by weight, comprises: 0.30-0.40% C, 0.50-1.30% Si, 0.60-1.40% Mn, 2.30-3.20% Cr, 0.0-1.00% Ni, 0.25-0.70% Mo, 0.0-0.50% Cu, 0.0-0.10% Al, 0.0-0.10% Ti, 0.0-0.10% Zr, less than 0.050% P, less than 0.050% S, less than 0.030% N, optionally less than 0.050% Nb, optionally 0.0005-0.005% B, optionally 0.015-0.080% rare earths, and residual contents of W, V, Sn, Sb, Pb and Zn less than 0.020%, and the remainder iron.
However, both the chemical composition and the microstructure of the steel obtained by the method described in application CL No. 2012-02218 are different from those described in the present application. The document of the prior art describes steels of predominantly bainitic microstructure with high wear resistance under severe abrasion and impact, and with a suitable balance of toughness and hardness, whereas the present application relates to martensitic steels with high hardness and excellent wear resistance under abrasion and impact. Moreover, the steel of CL No. 2012-02218 has a far lower chromium content than the steel disclosed in the present document.
Document WO 89/03898 of JOHANSSON, Börje, et al. discloses the use of a cast tool steel for making large forging dies for stamping steel plates for automobile bodywork. Said steel can be processed by air hardening of the complete component or can be hardened locally by flame hardening or induction hardening, also permitting the application of surface coatings by chemical vapor deposition (CVD) or nitriding to obtain a thin surface film of high hardness. In contrast to the steel obtained by the method of the present invention, which includes carbon contents between 0.35 and 0.55% w/w, the steels in the examples in WO 89/03898 have a carbon content greater than or equal to the maximum content considered by the present invention. Furthermore, said document discloses that carbon contents lower than those established therein do not allow sufficient hardness to be reached.
In addition, the steel described in document WO 89/03898 does not disclose microadditions of titanium, zirconium and/or niobium, such as those considered in the present invention.
For its part, document EP 0 648 854 of DORSCH, Carl J. et al. discloses a hot-working tool steel for use in the manufacture of injection dies for molten metal and other components of tools for hot working, and a method of manufacture thereof. Said steel is obtained by techniques of powder metallurgy and includes prealloying particles that have a sulfur content of between 0.05 and 0.30% w/w. The purpose of this invention is to provide a highly machinable steel that has an improved combination of impact toughness, machinability and high-temperature fatigue strength.
In contrast to the present application, document EP 0 648 854 describes a steel with Rockwell C hardness in the range from 35 to 50 HRC (equivalent to 327-481 HBN), whereas the steel obtained by the method of the present invention can reach hardnesses of about 630 HBN, depending on the specific characteristics of the components and the heat treatment conditions applied. Moreover, it should be emphasized that the steel of the present invention comprises lower contents of molybdenum and sulfur than those required for the steels described in EP 0 648 854.
Finally, document JP 06088167 of YUSAKU, Takano discloses a steel of high mechanical strength and heat resistance whose composition is 0.05-0.3% w/w C, less than 0.3% w/w Si, 0.1-1.5% w/w Mn, less than 1% w/w Ni, 4-6% w/w Cr, 0.05-1% w/w Mo, 0.5-3% w/w W, 0.05-0.3% w/w V, and 0.01-0.2% w/w Nb, for use in components usually exposed to high temperatures, such as gas turbines and steam turbines. Said steel is processed by hot plastic forming of ingots and billets obtained by melting and casting in a mold, followed by oil quenching from a temperature of 900-1100° C. and tempering at a temperature of 550-700° C. In contrast, the present invention does not consider a hot forming process and does not consider oil quenching.
In addition, the steel described in document JP 06 088167 has, relative to the present invention, lower contents of carbon and silicon and large additions of up to 3% w/w tungsten with the aim of producing tungsten-rich secondary precipitates that are stable at high temperature, in order to increase its creep strength. However, although document JP 06088167 specifies a chromium content similar to that of the present invention, this element is added with the primary aim of improving the resistance to oxidation and corrosion at high temperature and improve its creep strength, and not with the aim of achieving an increase in abrasive and impact wear resistance, as proposed by the present invention.
As noted above, the method of the present invention provides a steel that differs from the abrasion-resistant cast steel described in document JP 2000 328180, and from other medium-alloy and medium-carbon steels that are air hardenable and are widely used in tooling for cold or hot working, such as those described in documents WO 8903898, EP 0648854, JP 06088167, in that the invention makes use of the synergistic effect of a number of mechanisms of hardening using air hardening, which makes it possible to obtain a steel of high hardness, hardenability and excellent abrasive and impact wear resistance in large components of complex geometry.
Accordingly, the present invention provides a method for the production of martensitic cast steel that overcomes all the drawbacks mentioned above, since it possesses high hardness and excellent abrasive and impact wear resistance, for use in mining applications that require large components.
The method and the steel of the present invention provide a solution to the limitations of the conventional wear-resistant steels used at present, which do not give a suitable combination of high hardness, hardenability and excellent wear resistance in components of large thickness, typically up to 14 inches (35.56 cm).
The present invention overcomes these drawbacks with a method for the production of steel that provides a martensitic cast steel of high hardness and excellent wear resistance, for mining applications, such as grinding and crushing. In particular, the present invention can be used for making components of ball mills, concaves for crushers and covers of SAG mills, among others.
One of the aims of the present invention is to provide a martensitic cast steel that has a suitable balance of chemical composition in conjunction with microalloying additions to obtain high hardenability and full hardening in castings of large size, used in mining applications that require components with high abrasive and impact wear resistance, such as grinding and crushing.
For the purpose of describing the method of the present invention with greater clarity, a detailed description of the invention is given below, together with embodiment examples, which are illustrated in the accompanying figures, where:
One of the aims of the present invention is to provide a method for the production of martensitic cast steel with high hardness and excellent abrasive and impact wear resistance.
Another aim of the present invention is to provide a method for the production of steel with a suitable balance of chemical composition and with microalloying additions for obtaining high hardenability and full hardening in castings of large size and complex geometry.
Another aim of the present invention is to provide a cast martensitic steel with high hardness and excellent wear resistance.
Yet another aim of the present invention is to provide large steel components for mining applications, such as crushing, grinding, and all those applications that require large components with high abrasive and impact wear resistance; and a method for the production of said steel.
The method of the invention provides a martensitic steel of high hardness and excellent abrasive and impact wear resistance that has the following chemical composition:
Preferably, in the present text, the concept “rare earths” refers to commercial mixtures of cerium, lanthanum and yttria.
Some of the basic criteria considered for limiting the chemical composition in the range described by the present invention were as follows:
The method of production of the present invention, which provides a martensitic steel with the chemical composition detailed above, comprises the following steps:
followed by adjustment of the chemical composition; followed by addition of master alloy of an element that is a strong nitride former—preferably titanium—to form a slag with high capacity for nitrogen. Then, the slag formed is removed and, next, the operation of deoxidation and pouring of the metal in the ladle is carried out.
Thus, the invention makes use of the synergistic effect of a number of mechanisms of hardening, making it possible, by mild hardening, to obtain a steel of high hardness, hardenability and excellent abrasive and impact wear resistance in large components of complex geometry, by:
Various tests of the method of the present invention were carried out, using chemical compositions within the ranges that are disclosed here.
Two steels with the compositions described in the prior art and six example steels with chemical compositions within the ranges disclosed for the present invention are compared below. All these steels underwent the method of production described in the present application.
As pointed out, the tests were carried out under the operating conditions of air hardening, at a cooling rate of 0.10° C./s. Table 1 shows the chemical compositions used in each case, expressed in % w/w.
For its part, Table 2 shows the phase distribution and hardnesses obtained under the heat treatment conditions applied, with cooling rate corresponding to those typically occurring in components of large thickness.
The critical quenching rate shown in Table 2 was obtained by constructing CCT diagrams for each alloy and corresponds to the minimum cooling rate that must be applied to obtain a microstructure free from pearlite and bainite. That is, the minimum value of the ratio of the average cooling temperature (THC) to the average cooling time (tHC) for the formation of 1% bainite and 1% ferrite-pearlite, given by the formula:
where AC3 corresponds to the limit of the Ferrite/Austenite phase field under cooling.
It can be seen from Table 2 that the steels supplied by the present invention generally have a predominantly martensitic microstructure and higher Brinell hardness for relatively low cooling rates, which will make it possible to produce components of large thickness, typically of up to 14 inches (35.56 cm) in thickness, without a significant decrease in hardness toward the interior of the component and using lower cooling rates, which means a lower tendency to form cracks and a lower level of residual stresses. However, when the method of the invention was carried out using the compositions described in the prior art, in the best case it was only possible to obtain a steel with 34% martensitic structure. Consequently, the steels with chemical compositions of the prior art obtained by the present invention have much lower hardnesses than the steels of the invention.
In addition, since hardenability is inversely proportional to the critical quenching rate, the steels described in the invention also possess greater hardenability than those described in the prior art, particularly in documents EP 0648854 (Steel Prior Art 1) and JP 2000 328180 (Steel Prior Art 2).
The foregoing is clearly demonstrated in
Moreover, dry abrasive wear tests were carried out according to standard ASTM G65, test method A. These tests compared the volume loss and relative wear rate of a martensitic steel defined according to the present invention, a bainitic steel described in patent application CL No. 2012-02218 and a conventional Cr—Mo pearlitic steel widely used in liners of semi-autogenous mills (SAGs).
Table 3 shown below gives the results obtained from said dry abrasive wear tests, which confirm that the martensitic steels described by the present invention possess excellent wear resistance, whereas a conventional Cr—Mo pearlitic steel displays a wear rate 2.48 times greater than the present invention and a bainitic steel described in patent application CL 2012-02218 has a 1.47 times higher wear rate. The data in Table 3 are shown in the form of a graph in
The above description presents the aims and advantages of the present invention. It is to be understood that various embodiments of this invention may be implemented and that all the subject matter disclosed herein is to be interpreted as illustrative and not in any way limiting.
Number | Date | Country | Kind |
---|---|---|---|
3184-2012 | Nov 2012 | CL | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CL2013/000049 | 7/31/2013 | WO | 00 |