The invention provides a method for separating one or more triorganophosphite components from a crude phosphite mixture containing acidic hydrolysis products, the method comprising:
Description
BRIEF DESCRIPTION OF THE FIGURE
FIG. 1 is a graphical representation showing the fraction of hydrolysis products remaining in the organic phase after contact with a control (brine) as compared to contact with a basic additive.
Claims
1. A method for separating one or more triorganophosphite components from a crude phosphite mixture containing acidic hydrolysis products, said method comprising:
contacting said crude phosphite mixture with a basic additive to produce a second mixture comprising a first phase and a second phase, wherein said first phase comprises the basic additive and one or more components independently selected from the group consisting of (R2O)(R3O)POH, (R1O)(HO)PO(H) and H3PO3, wherein R1, R2 and R3 are independently selected from the group consisting of C1 to C18 alkyl, C6 to C18 aryl and hydroxyaryl, and C3 to C18 cycloalkyl and hydroxyalkyl radicals, and wherein R2 and R3 can optionally be connected to each other directly by a chemical bond or through an intermediate divalent group R9; andsaid second phase comprises one or more triorganophosphite components independently selected from the group consisting of (R4O)(R5O)P(OR6) and ((R7O)(R8O)PO)nA, wherein R4, R5, R6, R7 and R8 are independently selected from the group consisting of C1 to C18 alkyl, C6 to C18 aryl and C3 to C18 cycloalkyl radicals, wherein each of R4, R5 and R6 can optionally be connected to one or both of the other two directly by a chemical bond or through an intermediate divalent group R10, wherein R7 and R8 can optionally be connected to each other directly by a chemical bond or through an intermediate divalent group R11, wherein A is an optionally substituted or unsubstituted aliphatic, aromatic or heteroaromatic radical, wherein n is an integer greater than 1; andwherein R9, R10, and R11 are independently selected from the group consisting of —O—, —S—, and —CH(R12)—, wherein R12 is selected from the group consisting of H, C6 to C18 aryl, and C1 to C18 alkyl.
2. The method of claim 1 wherein the basic additive comprises at least one compound selected from the group consisting of NaOH, KOH, Na2CO3, K2CO3, Ca(OH)2, NH4OH, CaCO3, a strongly basic anion-exchange resin, and combinations thereof.
3. The method of claim 1 wherein the basic additive comprises a strongly basic anion-exchange resin.
4. The method of claim 3 wherein said strongly basic anion-exchange resin comprises polymer-bound tetraorgano-ammonium hydroxide groups.
5. The method of claim 1 wherein said basic additive and said crude phosphite mixture are contacted at a temperature of from about −10° C. to about 30° C.
6. The method of claim 1 wherein said first phase is maintained at or above a pH of about 13.5.
7. The method of claim 1 further comprising the step of contacting said crude phosphite mixture with water before contacting the crude phosphite mixture with said basic additive.
8. The method of claim 1 further comprising the steps of:
b) separating said first phase from said second phase; andc) contacting said second phase with the basic additive.
9. The method of claim 8 further comprising the step of:
d) contacting the second phase with a brine solution.
10. The method of claim 1 further comprising contacting the second phase with a transition metal or a transition metal compound to produce a transition metal-triorganophosphite catalyst or catalyst precursor.
11. A method for preparing triorganophosphites, said method comprising:
a) contacting an alcohol with PCl3 in the presence of a triorganoamine to produce a first reaction product comprising one or more organophosphites and triorganoamine hydrochloride;b) removing the triorganoamine hydrochloride from the first reaction product to produce a second reaction product optionally containing one or more triorganophosphites, diorganohydrogenphosphite (R2O)(R3O)POH, organodihydrogenphosphite (R1O)(HO)PO(H) and H3PO3, wherein R1, R2 and R3 are independently selected from the group consisting of C1 to C18 alkyl, C6 to C18 aryl and hydroxyaryl, and C3 to C18 cycloalkyl and hydroxyalkyl radicals, and wherein R2 and R3 can optionally be connected to each other directly by a chemical bond or through an intermediate divalent group R9, wherein R9 is selected from the group consisting of —O—, —S—, and —CH(R12)—, wherein R12 is selected from the group consisting of H, C6 to C18 aryl, and C1 to C18 alkyl; andc) removing at least a portion of one or more of the compounds diorganohydrogenphosphite (R2O)(R3O)POH, organodihydrogenphosphite (R1O)(HO)PO(H) and H3PO3 by contacting the second reaction product with a basic additive.
12. The method of claim 11, wherein the basic additive comprises at least one compound selected from the group consisting of NaOH, KOH, Na2CO3, K2CO3, Ca(OH)2, NH4OH, CaCO3, a basic ion-exchange resin, and combinations thereof.
13. The method of claim 11, wherein step c) is repeated.