The invention relates to a method for the reinforcement of a wall region of a three-dimensional attachment, especially car seat components for high torque loads, wherein a plate with a substantially evenly curved outer contour is cut out of a flat strip and, subsequently, the plate is formed and fine blanked into a pot-shaped body with projections and/or impressions and/or indentations and/or recesses and/or sinks and/or holes and/or pivots by means of a forming and fine blanking tool including die, counter-die, die plate, V-shaped projection and pressure plate, whereby a circular edge for a toothing is formed at the body.
Conventional seat adjustment components, for example, fixed and swiveling hinge parts of hinge attachments, are produced by forming, fine blanking or stamping with the necessary high dimensional accuracy for their final use (see, for example, EP 0 694 434 B1, DE 32 44 399 C2, DE 28 34 492 C2, DE 32 27 222 C1).
These known hinge parts substantially consist of a pot-shaped body with projections and/or impressions and/or indentations and/or recesses and/or sinks and/or holes and/or pivots. The body is provided with an evenly curved outer contour having a circular edge, into which is formed a toothing which is radially directed to the inner side thereof. This toothing has to functionally transmit very high rotational moments, so that the wall region between edge and body, i.e., the connection to the pot-shaped body, receives substantial loads, which often lead to fractures. This impairs the safety and reliability of the seat adjustment components.
In view of the aforementioned state of the art, it is an object of the invention to provide a method by which hinge attachments with a much higher safety with regard to fracture of the wall region between the edge with an inner toothing and the pot-shaped body of the hinge attachment can be produced in a cost-effective way.
This object is solved by a method of the kind discussed above, wherein a process according to the invention includes cutting a plate out of a flat strip with a substantially evenly curved outer contour and forming and fine blanking the plate into a pot-shaped body with a desired structural configuration including a surface formation, whereby at the body is formed a curved edge for a toothing. The thus formed pot-shaped body includes a wall region between the curved edge and a base thereof. By performing at least a two-staged cold-extrusion process in respectively opposite flow directions angular to a respective die movement prior to said step of forming to cause a purposeful material shifting in an area of the plate corresponding to the wall region to a degree that approximately equalizes runoff of the material caused by the subsequent forming, the wall region of the attachment is reinforced when formed.
In accordance with the hinge attachment produced according to the method of the invention, because the thickness of the wall region between the edge and the pot-shaped body of the attachment reaches a wall thickness approximately equal to the original wall thickness by a purposeful material shifting with at least a two-staged cold-extrusion process in respectively opposite flow directions angular to the die movement despite forming, a hinge attachment is formed without problems and withstands extremely high fracture loads.
The invention provides particular further advantage, in that high rotational moments can be transmitted without problems, so that hinge attachments are provided which are also suitable for special or defined load values, for example, for fixing a safety belt to the back of the seat of a car.
The shifting of material into the wall region of the connection provides additional advantage, in that the cutting becomes possible over the whole thickness of the material, so that the application of fine blanking becomes economically efficient, also, with complex and complicated three-dimensional multi-functional parts.
Further advantages and details will be understood from the following description with reference to the enclosed drawings.
a to 3d each is a schematic diagram of the sequences of the method according to the invention; and
In accordance with the method of the invention, three-dimensional multifunctional hinge attachments 1 for car seat components can be produced, which are fracture-proof at high loads, for example, up to 6000 N.
The plate 2 undergoes a combined forming and fine blanking process in the course of which the three-dimensional hinge attachment 1 is created.
The hinge attachment 1 comprises a pot-shaped body 3, in which projections 4, impressions 5, a depression 6 and a hole 7 are formed by forming operations. The body 3 has a circular edge 8, which is provided with a toothing 9 radially directed to the inner side. Depression 6 and edge 8 are connected by a wall region 10.
The wall region 10 between the edge 8 and the indentation 6 of the pot-shaped body 3 is weakened during forming, i.e., a flow of material takes place from the wall region 10 in the direction of the indentation 6. This, under load, leads to the crack R in the wall region 10, shown in
a to 3d schematically show the sequence of operations of the method according to the invention. According to
In the first step of the method according to this invention, the die 13 moves upward in the direction of die plate 12, whereby a respective material volume V flows into the space 14 sideward of die 13 (see direction of arrow C). This material volume V fills the space 14 and thus at the side G of plate 2 opposite to die 13 occurs a material accumulation 15.
The thus formed plate 2, in the second step of the method according to the invention, additionally is fixed by a V-shaped projection 16 and the material accumulation 15 at the opposite side G by a counter-die 17 is shifted in a direction contrary to the direction of arrow C (see direction of arrow D), so that material flows into a space 18 sideward of die 17 and strengthens the wall region 10 between edge 8 and indentation 5 in the pot-shaped body 3 to the wall thickness s (see
By dimensioning the spaces 14 and 18 the material volume V to be shifted can be determined, whereby it is possible to strengthen the wall thickness s of the wall region 10 to a value that is safe for a defined fracture load. Such a fracture-proof hinge part 1 is shown in
Thus it becomes possible to reach fracture safeties much higher than the fracture load of these wall regions.
Number | Date | Country | Kind |
---|---|---|---|
06090167 | Sep 2006 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4275924 | Lehmann et al. | Jun 1981 | A |
4573739 | Schoettker | Mar 1986 | A |
5531504 | Schmale et al. | Jul 1996 | A |
5611599 | Baloche et al. | Mar 1997 | A |
Number | Date | Country |
---|---|---|
2834492 | Feb 1980 | DE |
3227222 | May 1984 | DE |
3244399 | Jun 1984 | DE |
4140720 | Jun 1993 | DE |
0694434 | Jan 1996 | EP |
0 937 523 | Aug 1999 | EP |
WO 2005077565 | Aug 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080072650 A1 | Mar 2008 | US |