The invention relates to a method and an apparatus to sterilize a product packaged in a packing, where the package comprising the product and the packing is subjected to a heat treatment at a specific temperature and for a specific duration.
It has been know for a long-time to subject products packaged in portions such as food to a so-called autoclave method. Cans, for example, that have been filled with a food product, are hereby exposed to a specific temperature in an autoclave for a specific duration to safely kill the germs in the package. Cans have particularly proven themselves for this purpose as they are insensitive to the conditions in the autoclave (high temperature, high humidity).
If, however, food products, or other products that require sterilization, are not packaged in cans but in a different packing, the packing must first be sterilized—requiring a relatively high amount of additional efforts—, then the product must be filled into the packing and eventually the packing must be closed aseptically.
The carton or plastic composite packages are also able to hold products such as milk or mashed vegetables for a longer period of time.
The object of the invention is to enhance and develop this method and the corresponding apparatus to sterilize a package in order to also allow the use of packages that would usually not be able to withstand the conditions in an autoclave.
In regards to the method, the object is solved by means of the following steps:
In regards to the apparatus, the object is solved with one of each of the following units downstream of the filling unit: one repackaging unit, one evacuation unit, one autoclave unit and, if required, one unpacking unit.
According to the invention, the repackaged product to be sterilized, such as a carton composite package filled with food products to be sterilized, and sensitive to water, is protected from the penetration of water and gas. The protective casing prevents any negative impairment of the carton composite package due to the autoclave water. The additional packing of the protective casing ensures that neither water nor gas can penetrate into the packing material of the package. This ensures that neither the form of the package nor the quality of the product is impaired.
Thanks to the adaptable form of the protective casing and the creation of a low pressure (vacuum) between the product to be sterilized and the protective casing, the protective casing wraps itself very closely around the product to be sterilized. The very close “protective skin” enables a good heat transmission from the energy carrier, the autoclave hot water, or the autoclave steam, to the protective casing, and, due to the heat conduction through the protective casing, to the product to be sterilized, or to its packing. A good heat transmission increases the efficiency of an autoclave through the reduction of the autoclave cycle time.
Flexible or semi-flexible packages to be sterilized such as carton/plastic composite packages (for example for food products), bags (for example for infusion solutions or other pharmaceutical products), aluminum trays, food trays etc require a so-called counterpressure (dependant on the product that is packaged in the packing) during the autoclave method to prevent crushing and deformation or even bursting. This counterpressure is also called holding pressure or supporting pressure. According to the invention, the protective casing is capable of creating the required counterpressure on the package to be sterilized and thereby prevents a damage to the package.
An additional teaching of the invention provides a separate protective casing for each package. The protective casing can either be removed from the package after the autoclaving, or can remain on the packaged product—for example as a protection during transport, or from humidity, germs, aromas etc.
Another embodiment of the invention provides a protection system comprising a protective casing and a base plate to receive multiple packages for the following autoclaving. In this solution according to the invention, a protective casing with respective dimensions also ensures at the same time the protection of multiple packages that have been positioned at a distance to each other. According to a further teaching of the invention, such a protection system comprises at least one base plate to receive multiple packages and at least one protective casing that wraps the packages, wherein the space between base plate and protective casing(s) can be evacuated.
In the following, the phrase “base plate” not only comprises elements with the form of a plate, but includes all elements formed like a frame or a rack, which carry the weight of the packages to be sterilized, but also ensure their distance to each other.
A preferred embodiment of the invention provides that the base plate is metal plate. This ensures a good heat transmission also in the area where the package has direct contact to the base plate.
Another teaching of the invention provides that the base plate is essentially positioned horizontally and that the packages are placed on top of the base plate with a distance to each other. When, as described in a further embodiment of the invention, the base plate has multiple openings for the reception of packages, and the packages in the base plate are held by the at least one protective casing, the base plate in the protection system can essentially have a horizontal or vertical orientation.
In a horizontal orientation, the protective casing must ensure that the packages to be sterilized are held reliably below the openings. In this case, a part of the protective casing, or an additional casing, or a “cover”, ensures the required counterpressure in the area of the base plate's openings above the packages to be sterilized. In this embodiment, the packages can be wrapped completely with the protective casing, without being in immediate contact with the base plate.
In a vertical orientation of the base plate, the protective casing only needs to support the packages, which are placed in the openings of the base plate, from the side, while the weight of the packages is essentially held by the base plate.
The protective casing can be made from various materials or material combinations. The material of the protective casing must essentially be impermeable to water, water steam and gas, and, preferably, a flexible foil is used. In addition, the protective casing must have a certain mechanic solidity under autoclave conditions. Preferably, the protective casing comprises a plastic foil with a barrier layer. The protective casing can consist of polypropylene (PP), polyethylene terephtalate (PETP), or another copolymer or a mixture thereof. According to another teaching of the invention, the protective casing consists of a thin duroplastic foil. It is also possible to use rubber for the protective casing. A barrier against gas or water can be achieved through a metallic coating.
Following, the invention is described in more detail by means of a drawing that only shows the preferred embodiments. In the drawing shows
An alternative embodiment of the protection system according to the invention is shown in
Finally,
Number | Date | Country | Kind |
---|---|---|---|
102 05 458.4 | Feb 2002 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP03/01223 | 2/7/2003 | WO | 9/29/2004 |