This disclosure relates to a method for the surface treatment of workpieces, in particular of coated metal workpieces, for hot forming.
Hot forming is a known and frequently used method for the plastic deformation of metal materials. In contrast with cold forming, hot forming takes place at temperatures above the recrystallization temperature of the material that is to undergo the forming, so that even very high degrees of forming can be achieved. Owing to the heating of the workpieces that is required for the hot forming, there is the risk that parts of the coating will peel away and stick to the heated workpieces as contamination. Such contaminants may damage the (pressing) tool during a subsequent hot-forming operation or reduce the surface quality and dimensional accuracy of the components produced, and should therefore be avoided.
DE 10 2007 012 180 B3 for example discloses a method for the heat treatment of semi-finished metal products in a continuous furnace. The continuous furnace described has two zones, which when looking in the direction in which the workpiece is fed through the furnace, are arranged one behind the other and which are largely separated from one another by an intermediate wall. The intermediate wall can be displaced, so that its position can be adapted to the size of the semi-finished products that are transported through the furnace. Heaters are provided in both zones of the continuous furnace, and are configured as gas burners with which different temperatures can be set in the two zones.
According to the teaching of DE 10 2007 012 180 B3, a fan may be provided on the upper side in each of the two zones by which an air stream can be generated and directed onto the semi-finished products that are located in the zone. The furnace has feed lines, with which air or an inert gas can be fed in from the outside. There are also return lines, with which gas can be drawn off out of the furnace and returned into the furnace again—that is to say recirculated. In this case, a cooling of the recirculated gas may take place. Both lines open out into the furnace in the region of the fans. Therefore, the fans and the feed and return lines mean that there are different possibilities for treating the semi-finished products. After the heated semi-finished products leave the continuous furnace, the semi-finished products are to be fed to a downstream treatment or forming process.
The solution that is known from DE 10 2007 012 180 B3 has various disadvantages. One disadvantage of the solution described is that the air stream generated by the fans always impinges on the semi-finished products perpendicularly, that is to say at an angle of approximately 90°. Other angles, on the other hand, which may for example be desirable for reasons of flow mechanics, cannot be set. Another disadvantage is that a directed pressurized jet cannot be generated by the fans, but only a turbulent air stream with a very low pressure.
Disclosed herein is a method for the surface treatment of a coated metal workpiece for hot forming. In one embodiment, the method comprises at least partially heating the workpiece to a temperature of at least Ac1, cleaning at least one surface of the heated workpiece with at least one pressurized air jet, forming the heated and cleaned workpiece, and cooling down the formed workpiece.
One object of the present disclosure is to provide a method for the surface treatment of workpieces, in particular of coated metal workpieces, for hot forming, that provides an improved surface treatment of the workpieces.
The present invention is described in detail below with reference to the attached drawing figures, wherein:
A method according to the present disclosure is a method for the surface treatment of workpieces, in particular of coated metal workpieces, for hot forming. The surface treatment of the workpieces may particularly concern the cleaning of the workpiece surface. Metal workpieces that are intended to undergo hot forming after the treatment are treated in particular. The treatment is therefore intended to serve as preparation for the hot-forming operation. The workpieces may be for example sheets or thin plates of steel, the thickness of which is less than 3.5 mm, in particular less than 2.5 mm. The workpieces may have a coating, which particularly contains zinc, aluminum or magnesium (or alloys thereof).
The method according to the invention has at least the following steps: b) partially or completely heating the workpieces to a temperature of at least Ac1; c) cleaning the workpiece surfaces of the heated workpieces with at least one pressurized air jet; d) forming the heated and cleaned workpieces; and e) cooling down the formed workpieces.
Step b) concerns the heating up of the workpieces and may take place in a furnace, for example in a roller hearth furnace or in a “batch furnace.” The workpieces must be heated to a temperature above their recrystallization temperature, since a hot-forming operation can only take place in this temperature range. Depending on the nature of the material and its precise alloy composition, the recrystallization temperature differs. The workpieces should therefore be partially or completely heated to at least Ac1, preferably to at least Ac3. In the case of steels, as referred to here, Ac1 is understood as meaning that (transformation) temperature at which the formation of austenite begins during the heating. In the case of steels, Ac3 is understood as meaning that (transformation) temperature at which the transformation of ferrite into austenite ends during the heating. The cleaning of the workpiece surfaces takes place by means of a pressurized air jet. A pressurized air jet is understood as meaning any jet that contains air; however, other constituents apart from air may also be present. The pressurized air jet is preferably generated with a working or compacting pressure of at least 4 bar, in particular at least 6 bar. Preferably, each pressurized air jet also has a volumetric flow of at least 100 l/min, in particular at least 200 l/min Blasting with pressurized air has often not been used in the past because it leads to rapid cooling down of the workpieces (heat transmission by “convection”). However, the cooling down can be reduced, or prevented completely, for example by the blasting with pressurized air taking place inside a furnace and/or by air that has been heated up being used for the blasting. In this way, the temperature of the workpieces can even be increased further by the pressurized air jets. The “pressurized air spray” has the effect that the workpieces are freed of contaminants that attach themselves to the workpieces and could damage the (pressing) tool during a subsequent hot-forming operation or could reduce the surface quality and dimensional accuracy of the finished components. One reason of the contaminants is the partial detachment of coatings, for example a zinc-oxide layer or a zinc-manganese-oxide layer or aluminium-oxide layer. Following the cleaning, a hot-forming operation takes place (step d) and a cooling down (step e) of the workpieces. Steps d) and e) may take place one after the other or at the same time.
According to one form of the method, it is provided that the pressurized air jet in step c) has an angle of inclination in the range between 10° and 80°, in particular in the range between 20° and 70°. The angle of inclination is understood as meaning the angle between the surface of a planar workpiece and the central axis of the jet. Even in the case of workpieces with a surface that is not planar, the angle of inclination is understood as meaning the angle between the surface of a planar workpiece in this case imaginary—and the central axis of the jet. In the case of a roller hearth furnace, the angle of inclination therefore always corresponds—irrespective of the geometry of the workpiece—to the angle between the transporting plane of the workpieces that is formed by the rollers and the central axis of the jet. This inclination of the pressurized air jets within the specified ranges of angles achieves the effect that the contaminants are removed very thoroughly from the workpiece. An angle of inclination of 90°, on the other hand, would merely press the contaminants perpendicularly onto the workpiece surface.
A further form of the method provides that the workpiece surfaces in step c) are cleaned with multiple pressurized air jets, which have different angles of inclination. The setting of different angles of inclination allows particularly effective removal of the contaminants to be achieved. For example, the angle of inclination of a first pressurized air jet can be optimized with regard to the detachment of the contaminants from the workpiece surface, while the angle of inclination of a second pressurized air jet can be optimized with regard to blowing away the already detached contaminants from the workpiece surface. As an alternative or in addition to different angles of inclination, the pressurized air jets may also have different directions and for example be aligned laterally, in order to blow the contaminants away from the workpieces at the side.
In a further form of the method it is provided that the pressurized air jet in step c) is directed onto the workpiece surfaces at a temperature above the ambient temperature. In other words, the pressurized air jet should be heated or preheated. A heated pressurized air jet has the advantage that the already heated workpiece does not cool down to a temperature below the recrystallization temperature, because such strong cooling down would make a subsequent hot-forming operation impossible, and consequently would partially negate the previously carried out energy-intensive heating of the workpiece. The pressurized air jet is preferably directed onto the workpiece surface at a temperature that corresponds at least to the temperature to which the workpiece has been heated. Setting the temperature of the pressurized air jets above the temperature of the workpiece can even achieve the effect of heating the workpieces further.
A further teaching of the method provides that the pressurized air jet in step c) contains preheated air from a furnace intended for the heating of the workpieces. The use of already heated-up air from the furnace makes it possible to waive a separate device for heating the pressurized air jet. At the same time, it can be achieved that the pressurized air jet always has the same temperature as the interior of the furnace, and consequently also has approximately the same temperature as the workpieces heated up in the furnace. The pressurized air jet may consist exclusively of hot furnace air or have other constituents apart from the hot furnace air (for example a mixture of hot furnace air and cold ambient air).
According to a further form of the method, it is proposed that step c) is carried out in a furnace intended for the heating of the workpieces. The blasting with pressurized air inside a furnace has several advantages. One advantage is that a cooling down of the workpieces is prevented, because heating of the workpieces by the furnace can continue to take place during the blasting with pressurized air. A further advantage is that the furnace forms a completely or largely closed cocoon around the workpieces, which allows the contaminants blasted from the workpiece to be collected in an environmentally friendly and safe manner. Moreover, there is a reduced risk of fire and explosion, which presents a hazard as a result of the large surface area of the contaminants whirled up.
A further form of the method provides that the pressurized air jet in step c) is enriched with oxygen. The admixing of oxygen has the effect for example that the formation of oxides and/or nitrides can be prevented. Oxides and/or nitrides are very hard compounds, which can lead to greater abrasive damage to the pressing tools during the hot-forming operation.
A further form of the method is characterized by the following step: ca) suction of contaminants that are removed from the workpiece surfaces by the pressurized air jet in step c). The suction likewise serves the purpose of reducing the environmental and health risks. The suction may take place continuously or at specific time intervals, that is to say intermittently. In the case of a roller hearth furnace, the contaminants may preferably be collected and extracted underneath the rollers, since the contaminants gather in any case in this area due to gravitational force.
According to a further form, the method may be supplemented by the following step, which is carried out before step b): a) forming the cold workpieces. A preceding cold-forming operation has the advantage that the workpieces can already be pre-formed and only have to be slightly formed or calibrated in the hot-forming operation.
Finally, according to a further form of the method, it is provided that the coating of the workpiece contains zinc or zinc alloys. Zinc coatings offer particularly effective corrosion protection and are therefore usually used. However, individual constituents of zinc coatings may become detached from the surface of the workpieces during the heating, so that the cleaning of the workpieces by pressurized air jets is particularly advantageous in the case of zinc coatings.
The present disclosure is explained in further detail below with reference to the attached drawing figures, which represent various preferred exemplary embodiments of the present disclosure.
In
Arranged inside the furnace 4 are two nozzles 6, from each of which there emerges a pressurized air jet 7, which is directed onto the already heated workpieces 2. The nozzles 6 have in each case a central axis, which is inclined with respect to a transporting plane formed by the rolls 5 by an angle of inclination α—not represented in
In the case of the installation 1 that is represented in
Finally, the installation 1 that is shown in
In
Number | Date | Country | Kind |
---|---|---|---|
10 2014 101 159 | Jan 2014 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4995201 | von Borcke et al. | Feb 1991 | A |
5758530 | Yoshikawa | Jun 1998 | A |
6742236 | Dion | Jun 2004 | B1 |
7399535 | Yoshikawa | Jul 2008 | B2 |
20050116397 | Kimura et al. | Jun 2005 | A1 |
20070113610 | Rittner | May 2007 | A1 |
20090014037 | Richter | Jan 2009 | A1 |
20120152410 | Sikora | Jun 2012 | A1 |
20120186705 | Sikora | Jul 2012 | A1 |
20120234069 | Matsumoto | Sep 2012 | A1 |
20130008568 | Suwa | Jan 2013 | A1 |
20140203482 | Blumenau | Jul 2014 | A1 |
20150052717 | Noe | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
102006019544 | Jun 2007 | DE |
102007012180 | Jun 2008 | DE |
102010043229 | May 2012 | DE |
102009015160 | Sep 2019 | DE |
0385561 | Sep 1990 | EP |
201225977 | Feb 2012 | JP |
2010020212 | Feb 2010 | WO |
20120858247 | Jun 2012 | WO |
WO 2012152508 | Nov 2012 | WO |
WO 2013156316 | Oct 2013 | WO |
Entry |
---|
English machine translation of WO 2012152508 A1. |
Machine Translation of WO 2013/156316, Translated Jan. 9, 2018, 6 Pages. |
Machine Translation of JP2012-025977, Akioka, Koji, Translated Aug. 15, 2018, 5 Pages. |
English translation of abstract for DE 102007012180 (B3). |
English translation of abstract for DE 102010043229 (A1). |
Number | Date | Country | |
---|---|---|---|
20150209840 A1 | Jul 2015 | US |