Method for the thermal cracking of heavy oil

Information

  • Patent Grant
  • 4127473
  • Patent Number
    4,127,473
  • Date Filed
    Wednesday, September 21, 1977
    47 years ago
  • Date Issued
    Tuesday, November 28, 1978
    46 years ago
Abstract
A method for the batch thermal cracking of heavy oils, such as steam blowing for production of binder pitch, employing a reactor having a rotary injection pipe which is rotatable within the reactor. Upon completion of the thermal cracking and withdrawal of the reaction product, the injection pipe ejects preheated raw material under pressure against the interior wall surfaces of the reactor while in rotation to remove coke which has deposited on the reactor walls during the previous cracking operation.
Description

FIELD OF THE INVENTION
This invention concerns a method for the thermal cracking of heavy oils.
BACKGROUND OF THE INVENTION
Generally, where heavy hydrocarbons such as asphalt, coal tar, heavy oils and crude petroleum are thermally cracked in a reactor, coke is formed and the coke deposits on the inner wall of the reactor. Accordingly, in order to operate the reactor efficiently it is necessary to remove the coke from the inner wall of the reactor.
In the prior art method for removing coke from the inner wall of the reactor, the operation of the reactor is suspended and after cooling the reactor, the coke is mechanically removed by a conventional cleaning method employing, for example, a waterjet. Such a method, however, suffers from the disadvantage that the reactor requires temporary shutdowns.
SUMMARY OF THE INVENTION
Therefore, it is an object of the present invention to provide a method for the thermal cracking of heavy oils by which coke is not accumulated on the inner wall surface of the reactor during the operation.
This and other objects of the present invention will become clear from the following description.
According to the present invention, there is provided a batch method for the thermal cracking of a heavy oil. The method includes: providing in a reactor a rotary injection pipe having means for spraying a fluid into the interior of the reactor; thermally cracking the heavy oil by contacting the heavy oil with superheated steam in the reactor; blowing an inert fluid through the spray means of the injection pipe during the thermal cracking operation in the reactor to prevent clogging of the spray means; after withdrawal from the reactor of the thermally cracked product, injecting preheated raw material of 300.degree.-350.degree. C. through the spray means of the injection pipe under pressure against the interior wall surfaces of the reactor while rotating the pipe in the reactor to remove coke which has deposited on the interior surfaces during the thermal cracking; and leaving the injected raw material in the reactor to serve as a precharge for protection against thermal shock upon introduction of the next batch of raw material.





BRIEF DESCRIPTION OF THE DRAWINGS
In the accompanying drawings:
FIG. 1 is a diagrammatic view of a heavy oil cracking reactor used in the present invention, which is provided with a rotary injection pipe; and
FIG. 2 is a fragmentary sectional view on an enlarged scale of a rotary injection pipe with jets formed in its wall.





DETAILED DESCRIPTION OF THE INVENTION
Referring to FIG. 1, there is shown a reaction column (reactor) 1 for the thermal cracking of heavy oil. The construction of the shell of the reaction column 1 itself is conventional and therefore will not be discussed in detail. The reaction column 1 is provided with a rotary decoking injector, which has an injection pipe 4 extending through an opening 2 into the top of the reaction column 1. The injection pipe 4 mounted within the reaction column 1 may be contoured similar to the reactor wall, thereby enabling it to extend along the inner wall surface of the reaction column 1 at a relatively constant spaced distance therefrom. The injection pipe 4 includes a curved shoulder portion, and has a multitude of jets 3 formed through its wall and opening toward the inner wall surface of the reaction column 1. The injection pipe 4 is slowly rotated about the axis of the column 1 at a spaced distance from the inner wall surfaces of the column 1 by a suitable driving means 5, for example, an electric motor which is mounted above the column 1 and has its drive shaft connected to the pipe 4 through a reducer. The upper end of the injection pipe 4 is connected to conduits 10 and 11 through a switching means 6 (shown as dual means in FIG. 1), such as an electromagnetic valve or the like. In addition, the dual valves or switching means 6 shown in FIG. 1 are arranged so that when one valve opens the other valve shuts.
When a heavy oil is to be thermally cracked, the raw material is introduced into the reactor through inlet 12 and superheated steam at a temperature of 400.degree.-2000.degree. C. is introduced into the reactor through inlet 7. During the thermal cracking of the heavy oil, a fluid which is inert to the thermal cracking reaction, for example, nitrogen gas or steam is fed to the injection pipe 4 through the conduit 10 and injected through the jets 3 to prevent the jets from being clogged by the reactor contents. Port 9 provides an outlet for the inert gas and the gaseous products of the cracking operation. Until termination of the thermal cracking, the injection pipe 4 may be held motionless without rotation. When the thermal cracking is completed and the reaction product is withdrawn from the reaction column 1 via outlet 8, the injection pipe 4 is connected to the conduit 11 by the switching means 6 for receipt, under pressure, of a portion of the heavy oil to be charged for thermal cracking in the subsequent batch operation. The injection pipe 4 sprays or spurts the received raw material through the jets 3 while rotating within the column 1, to remove the coke which has deposited on the inner wall surface of the column 1 during the previous cracking operation. Each of the jets 3 formed through the wall of the injection pipe 4 opens toward the inner wall surface of the column at an angle of 25.degree.-90.degree., preferably 45.degree.-75.degree., with respect to the center axis of the injection pipe 4. If the angle is less than 25.degree., or larger than 90.degree., effective removal of the coke is not achieved. Therefore, an angle within the specified range is necessary. While the configuration of the jet 3 may vary, it is preferable that the jets 3 be in the form of holes passing through the wall of the injection pipe 4. On the other hand, if the jet 3 is a construction whereby it projects from the outer surface of the injection pipe 4, coke will deposit on the outer surface of the projecting portion in an amount sufficient to hinder the rotation of the injection pipe 4. FIG. 2 shows a preferred orientation and construction of the jets 3 in the wall of the pipe 4. The number of the jets 3 is determined by a number of factors including the pressure, amount and time of the injection, and the jet diameter.
As clear from the above, one of the features of the invention resides in the injection of a portion of a given raw material heavy oil batch charge as a scrubbing liquid, for the purpose of removing coke deposited during the previous batch operation.
When the decoking operation is finished, the remainder of the raw material heavy oil is admitted in the usual manner via inlet 12 into the reaction column 1 in which the injected heavy oil has collected at the bottom together with the removed coke. Therefore, there is no need for providing additional equipment for the treatment of the spent scrubbing liquid and the operation is simplified to a significant degree.
It has been confirmed that the coke which is allowed to collect at the bottom of the reaction column 1 occupies as little as less than 0.1 wt. percent so that it has almost no adverse affect on the quality of the pitch end product.
For the sake of heat balance, it is preferred that the injected heavy oil be preheated to a temperature in the range of 300.degree. to 350.degree. C. A preheating temperature above 350.degree. C. is not preferred as it would invite coking of the injection pipe itself.
To make the decoking more effective, the injection pipe 4 may be slowly moved up and down, while rotating along the inner wall surfaces of the reaction column 1, by employing any conventional means capable of mechanically reciprocating the pipe 4 axially.
The higher the pressure for the injection of a portion of the raw material (heavy oil) from the jets 3, the higher the coke-removing efficiency; however, as a practical matter, it operates effectively at a pressure of at least 5 kg/cm.sup.2 G. The preferred pressure is between 15 and 30 kg/cm.sup.2 G.
When the rotation of the pipe 4 is too rapid, the coke-removing efficiency is lowered. Accordingly, the peripheral velocity of the movement of the pipe 4 should be less than 500 mm/sec, preferably in the range of 10-100 mm/sec.
A single injection pipe 4 is provided in the embodiment shown in FIG. 1, however, a plurality of such injection pipes may be located at suitable intervals along the inner periphery of the reaction column, particularly where the reactor is of a large diameter. The shape and the number of the injection pipes are therefore to be determined to conform with the shape and size of the reaction column.
The present invention can greatly contribute to the rationalization of the operations involved in the production of a binder pitch by the thermal cracking of heavy oil, in which decoking has been one of the serious problems. The elimination of the decoking problem has great industrial significance in view of the increasing demand for binder pitch due to lack of coking coal for the production of blast furnace coke. The by-product oils can be easily desulfurized by known desulfurizing processes to provide fuel oils of diversified types.
EXAMPLE 1
After preheating to 490.degree. C., a vacuum residue of Khafji crude oil was charged at a rate of 300 kg/hr for 2 hours into a reactor which had a diameter of 600 mm and a height of 5000 mm. For protection against thermal shock, the reactor was precharged with 60 kg of same oil residue which had been heated to 300.degree. C. Steam at 700.degree. C. was blown into the bottom of the reactor at a rate of 120 kg/hr for thermal cracking while removing the cracked gases through the exhaust pipe at the top of the reactor. The temperature of the charged raw material in the reactor was maintained at 425.degree. C. The thermal cracking was allowed to proceed for 2 hours after the completion of the charging operation. The product (pitch) was cooled instantly and entirely withdrawn from the reactor. The same cycle of operation was repeated starting with the precharging of 60 kg of preheated raw material for protection against thermal shock.
The above thermal cracking operation was repeated for 200 hours during which coke deposited on the inner wall surfaces of the reactor to a thickness of 81 mm, thus hindering normal cracking operation.
The same semibatchwise cracking operation was carried out using a reactor, which had an inner diameter of 600 mm and a height of 5000 mm and which was provided with a rotatable injection pipe as shown in FIG. 1. The injection pipe had 18 jets 2.5 mm in diameter formed in its wall at angles of 45.degree. as shown in FIG. 2. During the cracking operation, steam at 350.degree. C. was blown through the jets of the injection pipe at a rate of 60 kg/hr to prevent their clogging. As soon as the thermal cracking was completed, the molten pitch product was cooled. After the pitch was withdrawn from the bottom of the reactor, the injection pipe was rotated at a speed for 4 rpm and preheated raw material at 300.degree. C. was injected for 15 seconds under a pressure of 18 kg/cm.sup.2 G (as measured upstream of the jets) to remove the deposited coke from the reactor wall surfaces. The raw material used for the removing operation was left in the reactor to serve as a precharge for protection against thermal shock.
The above thermal cracking operation was repeated for 200 hours during which coke only deposited on the reactor wall to a thickness less than 5 mm thus confirming the decoking effect of the present invention.
EXAMPLE 2
After preheating to 490.degree. C., a vacuum residue of Khafji crude oil was charged at a rate of 50 tons/hr for 2 hours into a reactor, having an inner diameter of 5500 mm and a height of 14300 mm and provided with a rotary injection pipe as shown in FIG. 1. For protection against thermal shock, the reactor was precharged with 10 tons of the same oil residue which had been heated to 340.degree. C. Superheated steam at 700.degree. C. was blown into the bottom of the reactor at a rate of 16 tons/hr for thermal cracking while the cracked gases were removed through the exhaust pipe at the top of the reactor. The thermal cracking was allowed to proceed for 2 hours after the completion of the charging operation. The injection pipe had 50 jets of 3 mm in diameter formed in its wall at angles of 45.degree. as shown in FIG. 2.
During the cracking operation, steam at 350.degree. C. was injected through the jets of the injection pipe at a rate of 500 kg/hr to prevent jet clogging. As soon as the thermal cracking was completed, the molten pitch product was cooled. After the pitch was withdrawn through the bottom of the reactor, the injection pipe was rotated at a speed of 0.1 rpm (29 mm/sec.) and preheated raw material at 340.degree. C. was injected for 10 minutes in an amount of 10 tons, under a pressure of 18 kg/cm.sup.2 G, to remove the deposited coke from the reactor wall surfaces. The distance between the inner wall surface of the reactor and the injection pipe was 300 mm. The raw material used for the coke removal operation was left in the system to serve as a precharge for protection against thermal shock.
The above thermal cracking operation was repeated for 2700 hours during which time coke deposited on the reactor wall only in a thickness of 50-150 mm.
Claims
  • 1. A batch method for the thermal cracking of heavy oil comprising:
  • (a) providing a reactor having a rotary injection pipe, said pipe having means for spraying a fluid into the interior of the reactor;
  • (b) introducing a charge of heavy oil into the reactor;
  • (c) thermally cracking the heavy oil by contacting the heavy oil with superheated steam in the reactor;
  • (d) blowing an inert fluid through said spray means of said injection pipe during said thermal cracking to prevent clogging of said spray means;
  • (e) after withdrawal from said reactor of the thermally cracked charge, injecting preheated raw material at 300.degree.-350.degree. C. through said spray means of said injection pipe and against the interior wall surfaces of said reactor while rotating said pipe in said reactor to remove coke which has deposited on the interior surfaces during said thermal cracking; and
  • (f) leaving the raw material injected into the reactor in step (e) to serve as a precharge for protection against thermal shock upon introduction of the next batch of raw material per step (b).
  • 2. A method as defined in claim 1, wherein said inert fluid is nitrogen gas or steam.
  • 3. A method as defined in claim 1, wherein said preheated raw material is injected through said spray means under a pressure of 15-30 kg/cm.sup.2 G.
  • 4. A method as defined in claim 1, wherein said injection pipe is rotated in said reactor at a peripheral velocity of 10-100 mm/sec.
Priority Claims (1)
Number Date Country Kind
50-126276 Oct 1975 JPX
CROSS-REFERENCE TO RELATED APPLICATION

The present application is a continuation-in-part of application Ser. No. 733,911, filed Oct. 19, 1976, and entitled "A METHOD AND APPARATUS FOR DECOKING REACTORS FOR THERMAL CRACKING OF HEAVY OILS", now abandoned.

US Referenced Citations (5)
Number Name Date Kind
2326525 Diwoky Aug 1943
2802725 Kappel Aug 1957
3522016 Groves et al. Jul 1970
3835024 Ueda et al. Sep 1974
3920537 Walker Nov 1975
Continuation in Parts (1)
Number Date Country
Parent 733911 Oct 1976