This patent application claims the benefit of PCT Application No. PCT/EP99/09864, filed on Dec. 13, 1999, which claims priority to German patent application 198 57 609.9 filed on Dec. 14, 1998.
The present invention relates to a method for the treatment of cerebral ischaemia and a drug for the treatment of cerebral ischaemia in mammals, in particular in humans, such as occur for example in the case of stroke patients.
In the case of an ischaemic brain infarction, the damaged regions are divided into the ischaemic core zone and the so-called penumbra which surrounds the core. The size of the ischaemic core plus penumbra determines the extent of the damage after ischaemic insult.
Erythropoietin, also called “EPO” for short, is a glycoprotein which occurs naturally in the body with a molecular weight of 30,000 Dalton (W. Jelkman, “Erythropoietin: Structure, Control of Production, and Function”, Physiological Reviews, 1992, Volume 72, Pages 449 to 489). It is an essential growth factor for the production of erythrocytes and was isolated for the first time in 1977.
Erythropoietin has been in frequent clinical use for many years in the case of patients with renal anaemia on kidney dialysis, in order to obtain larger quantities of autologue blood before planned operations and it also hit the newspaper headlines as a blood-doping agent.
Erythropoietin proved itself thereby to be exceedingly well tolerated. The side effects which are relevant are in particular the often therapeutically desired stimulation of the haematopoiesis with polyglobulia and an arterial hypertension which is seldom to be seen. Both effects are to be expected mainly after chronic erythropoietin administering. If necessary, they are relatively easy to remedy by medicinal treatment or by blood-letting.
Intolerance reactions or anaphylactic reactions constitute rarities in the case of erythropoietin.
To date there is no effective therapy for cerebral ischaemia, such as for example for the treatment of stroke patients without operating on the head region of the patient.
In PNAS 1998, Volume 95, No. 8, pages 4635 to 4640, Sakanaka et al. disclose that central administration of erythropoietin in animal experiments offers a protective effect on cerebral neurons. Because of the knowledge that the blood brain barrier cannot be surmounted by larger proteins, erythropoietin is administered directly to the brain tissue, i.e. by direct infusion, in experiments; however such direct infusion is ruled out in humans because of the high risks which are associated with the application and the maintenance of a temporary ventricle drainage, for example of infections or bleeding.
DelMastro L. et al. disclose in Oncologist 1998, 3/5, pages 314-318 that the preventive administering of erythropoietin can prevent anaemia in cancer patients who have been treated with chemotherapy and hence can preventively reduce the risk of such patients with respect to cerebral ischaemia as a result of anaemia caused by chemotherapy. A therapy for an already present cerebral ischaemia, in particular in the case of patients not treated with chemotherapy, is not disclosed therein.
It is thus the object of the present invention to make available a method for the treatment of cerebral ischaemia, a drug for usage in the treatment of cerebral ischaemia and also a means for producing a drug for the treatment of cerebral ischaemia, which can be applied simply and with as few side effects as possible and which is also risk-free.
The invention is directed to a method for the treatment of cerebral ischaemia in mammals comprising administering erythropoietin to a mammal. The erythropoietin is administered peripherally to the mammal. In one embodiment, the erythropoietin is administered intravenously to the mammal.
The starting point of the method according to the invention and the usages of erythropoietin according to the invention is that, after an ischaemia has taken place, for example after a stroke, as much as possible of the damaged brain tissue, in particular the penumbra, should be saved as soon as possible. It was found that peripheral administering of erythropoietin has a distinctly protective effect on the cerebral tissue affected by the ischaemia. Erythropoietin has the effect thereby that the region of the damaged cerebral tissue, in particular in the penumbra, is dramatically reduced relative to conventional measures in the case of cerebral ischaemia without erythropoietin administration.
This unexpected tissue-saving effect of peripherally administered erythropoietin in cerebral ischaemia in humans should not be taken for granted since erythropoietin is usually not able to surmount the blood brain barrier as it is known as a larger protein with a molecular weight of approximately 30,000 Dalton. A directly intraventricular administering of erythropoietin, i.e. direct infusion of erythropoietin into the brain tissue, is however ruled out in humans usually because of the risks which are associated with the application and the maintenance of a temporary ventricular drainage, such as of infections or bleeding.
It is the contribution of the present invention to detect and make it feasible that, surprisingly for the treatment of a cerebral ischaemia which has occurred, erythropoietin can be given peripherally as a drug directly after the damaging occurrence and then it passes into the damaged brain area and becomes effective.
Peripheral administering of erythropoietin, i.e. on this side of the blood brain barrier, is effected advantageously intramuscularly or vascularly. A directly vascular administering, which as is known advantageously with drugs should generally be effected intravenously, is presented here directly in order to bring erythropoietin in contact with the damaged cerebral tissue in one high dose within a short period of time i.e. as quickly as possible after the damaging occurrence.
It can thus be assumed therefrom that erythropoietin can surmount the blood brain barrier in the damaged regions directly after damage to the brain tissue by ischaemia. It is therefore possible to administer a drug which contains erythropoietin to the patient who has for example been damaged by a stroke, the erythropoietin actually reaching the damaged brain tissue.
Hence for the first lime an effective therapeutic agent is available for cerebral ischaemia in mammals, particularly in humans such as for example in the case of a stroke.
It is furthermore advantageous thereby that the intact blood brain barrier in the non-damaged cerebral tissue regions effectively prevents furthermore penetration of the erythropoietin which is not required there and therefore the tissue regions which are not affected by the ischaemic infarction are not affected by the therapy, i.e. no side effects or only greatly reduced side effects can occur.
Erythropoietin is applied as a drug advantageously with a dosage at an amount of 5,000 to 100,000 units, ideally 35,000 units, per dose, possibly with a daily dose in the first days, for the first time possibly within 8 hours after the stroke. Merely a few doses of erythropoietin suffice thereby to produce the therapeutic effect. Furthermore this has the advantage that the side effects and risks, which are mainly observed in lengthy continuous treatments of other syndromes according to the above-described state of the art, cannot occur or only slightly when using erythropoietin for treating cerebral ischaemia.
Erythropoietin is known from prior art. Human erythropoietin was first isolated from urine (T. Miyake et al 1977, J. Biol. Chem., Volume 252, pages 5558-5564). Today production is effected by DNA recombination. Using this method it can be produced in adequate quantities and be used according to the invention. Further variants of erythropoietin with an altered amino acid sequence or structure or also fragments with the functional sequences portions which are relevant for the biological function of erythropoietin can be used for the usage according to the invention and should be included in the term “erythropoietin” as is used in this application. Variability of the erythropoietin variants which can be used according to the invention is produced furthermore from modifications in glycosilation of erythropoietin.
Consequently the erythropoietin to be used according to the invention can concern inter alia human erythropoietin, as it occurs naturally, or else erythropoietin products or erythropoietin analogues (in general: erythropoietin variants or derivatives), which have modifications of natural human erythropoietin, such as for example modifications to the sequence such as deletions and substitutions, or else modifications to the carbohydrate compositions. Such erythropoietin products can be produced by different production methods. Such production methods for erythropoietin variants, derivatives or analogues which can be used according to the invention are for example described in the patent applications WO 86/03520, WO 85/02610, WO 90/11354, WO 91/06667, WO 91/09955, WO 93/09222, WO 94/12650, WO 95/31560 and WO 95/05465, the disclosures of which should all hereby be contained in their entirety in the disclosure content in the present patent application by reference hereto and should be included in the present patient application.
In the following, examples of the method according to the invention and the usages according to the invention are given.
In
In
Taking into account the logarithmic scale used in the illustration in
It is the contribution of the present invention to recognise that in the case of a cerebral ischaemia the blood brain barrier is permeable for erythropoietin so that in order to treat a cerebral ischaemia directly after the damaging occurrence erythropoietin can pass peripherally as a drug into the damaged brain area and can become effective.
The patient was infused intravenously approximately 8 hours after a stroke with 35,000 IE human recombinant erythropoietin (preparation “Neorecommon” of the Hoffmann LaRoche AG company). Approximately 24 hours and 48 hours after the stroke a further equally large dose of erythropoietin respectively was given.
In
Number | Date | Country | Kind |
---|---|---|---|
198 57 609 | Dec 1998 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP99/09864 | 12/13/1999 | WO | 00 | 6/28/2001 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO00/35475 | 6/22/2000 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4806524 | Kawaguchi et al. | Feb 1989 | A |
5013718 | Adamson et al. | May 1991 | A |
5614184 | Sytkowski et al. | Mar 1997 | A |
5661125 | Strickland | Aug 1997 | A |
5750376 | Weiss et al. | May 1998 | A |
20030072737 | Brines et al. | Apr 2003 | A1 |
Number | Date | Country |
---|---|---|
198 57 609 | Jun 2000 | DE |
P9503088 | Dec 1995 | HU |
05-246885 | Sep 1993 | JP |
05246885 | Sep 1993 | JP |
WO 8502610 | Jun 1985 | WO |
WO 8603520 | Jun 1986 | WO |
WO 9011354 | Oct 1990 | WO |
WO 9106667 | May 1991 | WO |
WO 9109955 | Jul 1991 | WO |
WO 9309222 | May 1993 | WO |
WO 9412650 | Jun 1994 | WO |
9412650 | Aug 1994 | WO |
94025055 | Nov 1994 | WO |
WO 9505465 | Feb 1995 | WO |
WO 9531560 | Nov 1995 | WO |
WO 9622104 | Jul 1996 | WO |
WO 9714307 | Apr 1997 | WO |
WO 9921966 | May 1999 | WO |
00035475 | Jun 2000 | WO |
WO 0061164 | Oct 2000 | WO |