The disclosure is in the field of immunology and provides means and methods for the treatment of multiple sclerosis. More in particular, the disclosure relates to means and methods for inducing immune tolerance to an antigen, wherein the antigen is covalently attached to a sialylated oligosaccharide, in particular, 6′-sialyl-N-acetyllactosamine. More in particular, the disclosure provides means and methods for inducing immune tolerance against an antigen derived from myelin, such as a myelin component, such as myelin oligodendrocyte glycoprotein, a well-known target in experimental autoimmune encephalomyelitis, a murine multiple sclerosis model.
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) that mainly affects young adults, and is generally diagnosed between the ages of 20 and 40 years.[1] Experimental autoimmune encephalomyelitis (EAE), induced by immunization of susceptible mouse strains with myelin oligodendrocyte glycoprotein peptides (MOG 35-55) or other myelin components, provides a useful animal model for human multiple sclerosis.
Self-reactive encephalitogenic CD4-positive (also called CD4+) T cells are critically involved in the initiation and development of EAE. In addition to the role of self-reactive effector CD4-positive T cells in the progression of EAE, other cell types such as macrophages, resident microglia and astrocytes also contribute to immuno-pathogenesis in MS/EAE. When activated, these cells can act as antigen-presenting cells (APC), producing pro-inflammatory cytokines and chemokines in the local environment.[2,3]
Thus far, there are no effective therapeutics that can stop the progression of MS or significantly restore neurological function.[7] Soluble peptides representing encephalitogenic epitopes administered orally and via other routes have proved effective in suppressing EAE in mouse models during the induction phase of EAE;[4-6] however, the effectiveness of this strategy was elusive in clinical trials involving MS patients.[7]
Several mechanisms have been proposed to explain the phenomenon of such immune tolerance. Evidence from animal models suggests that immune tolerance is associated with anergy and deletion of self-reactive T cells and generation of regulatory T cells, which can be induced by partial or complete blockade of co-stimulatory signaling.[8-10] In addition, immunomodulatory cytokines TGF-beta and IL-10 are strongly associated with regulatory T cells and immune tolerance.[9] The transcription factor Foxp3 is critical to CD41 CD251 regulatory T-cell differentiation, probably through inhibition of NF-kB activation and nuclear translocation.[11] Thus, T-cell anergy, deletion, generation of regulatory T cells and production of anti-inflammatory cytokines mediate immune tolerance in physiological and pathological conditions.
As CD4+ T cells are key contributors to the underlying pathogenic mechanisms responsible for the onset and progression of most autoimmune diseases, they are the prime target for therapeutic strategies. One method for restoring self-tolerance is to exploit the endogenous regulatory mechanisms that govern CD4+ T-cell activation. Turley and Miller[12] discuss tolerance strategies with the common goal of inducing antigen (Ag)-specific tolerance, which focus on the use of peptide-specific tolerance strategies.
One technique for restoring self-tolerance is to exploit the endogenous regulatory mechanisms that govern CD4+ T-cell activation. Typically, endogenous ligation of the T-cell receptor (TCR) by peptide/MHC class II alone produces a signal of insufficient strength to activate a CD4+ T cell and can instead induce functional anergy or deletion. As a consequence, additional APC-derived co-stimulatory signals (e.g., CD80/86 engagement of CD28) are required to lower the threshold required for successful T-cell activation.
This “two-signal” hypothesis predicts that TCR stimulation in the absence of costimulatory signals leads to CD4+ T-cell anergy, tolerance, and/ or depletion.[13] Therefore, either TCR ligation in the absence of costimulatory signals or exogenous targeting of the costimulatory pathway would appear to be a logical target of therapeutic strategies to down-regulate the pathologic functions of autoreactive CD4+ T cells. In light of this, various therapeutic approaches have been designed to block autoreactive CD4+ T-cell function during autoimmune disease, including the administration of blocking antibodies directed against a variety of epitopes including CD3, CD4, CD28, CD40, CD80, CD86, CD154, ICOS, OX40, and 4-1BB, as well as CTLA4-Ig.[14, 15]
However, these treatment strategies, if administered over a long time period, often result in either non-specific immune suppression or other undesirable side effects.
Turley and Miller[12] also discuss techniques with the common purpose of inducing Ag-specific tolerance by specifically targeting the TCR to avoid detrimental influences on non-specific/bystander immune processes. The direct targeting of autoreactive T cells is a promising treatment strategy for autoimmune disease, resulting in Ag-specific unresponsiveness without global immunosuppression.
There are currently four different protocols employed for inducing peptide-specific immune tolerance: altered peptide ligand (APL)-induced tolerance, mucosal (oral-nasal)-induced tolerance, soluble-peptide-induced tolerance, and ECDI-coupled-cell-induced tolerance.[12]
Moreover, Bar-Or et al.[16] describe the induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein. They investigated the immune modulation by BHT-3009, a tolerizing DNA vaccine encoding full-length human myelin basic protein, in patients with multiple sclerosis (MS). BHT-3009 was found to be safe and well tolerated, provided favorable trends on brain MRI, and produced beneficial antigen-specific immune changes. These immune changes consisted of a marked decrease in proliferation of interferon-gamma (IFN-gamma)-producing, myelin-reactive CD4+ T cells from peripheral blood and a reduction in titers of antigen (myelin)-specific autoantibodies from cerebral spinal fluid. Moreover, a concordant reduction of inflammatory lesions on brain MRI was observed.
Jiang Z. et al.[17] describe how intravenous administration of MOG(35-55) peptide suppresses experimental autoimmune encephalomyelitis. They induced tolerance by intravenous administration of MOG(35-55) peptide and determined the effect of this approach on intracellular signaling pathways of the IL-23/IL-17 system, which is essential for the pathogenesis of MS/EAE.
Despite the availability of many promising leads for the treatment of multiple sclerosis, there is still a need for improved means and methods that increase the tolerance of the MS patient for antigens of the central nervous system (CNS self-antigens), in particular, myelin-derived antigens like MOG.
The disclosure provides a compound comprising a sialylated oligosaccharide covalently attached to an antigen, for use in the treatment of multiple sclerosis, wherein the antigen is derived from myelin and wherein the sialylated oligosaccharide is 6′-sialyl-N-acetyllactosamine, also known as Neu5Ac(α)2-6Gal(β)1-4GlcNAc or 6′-SLN.
It was found that such sialylated antigens could be exploited to prevent or dampen inflammation in an antigen-specific manner.
The term “sialylated antigen” is used herein to refer to an antigen that is covalently attached to a sialylated oligosaccharide, in particular, Neu5Ac(α)2-6Gal(β)1-4GlcNAc.
Sialic acid is a generic term for the N- or O-substituted derivatives of neuraminic acid, a monosaccharide with a nine-carbon backbone. It is also the name for the most common member of this group, N-acetylneuraminic acid (Neu5Ac or NANA). Sialic acids are found widely distributed in animal tissues and to a lesser extent in other organisms, ranging from plants and fungi to yeasts and bacteria, mostly in glycoproteins and gangliosides (they occur at the end of sugar chains connected to the surfaces of cells and soluble proteins).
In humans, the brain has the highest sialic acid concentration where they have an important role in neural transmission and ganglioside structure in synaptogenesis. In general, the amino group bears either an acetyl or a glycolyl group, but other modifications have been described. These modifications, along with linkages, have shown to be tissue-specific and developmentally regulated expressions, so some of them are only found on certain types of glycoconjugates in specific cells.
Sialic acids are the outermost monosaccharides on glycan chains of glycoproteins and glycolipids, attached to the underlying glycans with α2-3-, α2-6- or α2-8-linkage[19] and, as such, the recognition elements for selectins and Sia-binding Ig-like lectins (siglecs).[19,20]
As a proof-of-principle, a well-accepted model system was employed for multiple sclerosis wherein a fragment (amino acid 35 -55) of the antigen myelin oligodendrocyte glycoprotein (MOG 35-55, SEQ ID NO:1) was sialylated by covalently attaching a sialylated oligosaccharide, in particular 6′-Sialyl-N-acetyllactosamine (6′-SLN or Neu5Ac(α)2-6Gal(β)1-4GlcNAc). This sialylated oligosaccharide is commercially available as SLN306 from Dextra Laboratories Ltd., Reading UK.
MOG is one of the well-known targets of autoreactive T cells in experimental autoimmune encephalomyelitis (EAE), a murine multiple sclerosis model.[18] In the examples section, the preparation of an α-2,6-Sia MOG 35-55 peptide (also referred to herein as α-2-6-sia-MOG) is shown.
The term “derived from myelin” as used herein refers to compositions and molecules that may be derived from myelin, either in the manufacturing sense of the word “derived” or in the theoretical sense. A peptide fragment that is synthetically manufactured on the basis of a given sequence of a myelin molecule is considered herein as being “derived” from myelin. In other words, an antigen is derived from myelin if myelin is the source, either in a practical sense, such as a purification process, or in an intellectual sense, for instance, when a sequence of a particular fragment is selected and subsequently manufactured. In yet other terms, “derived” means to obtain a chemical substance actually or theoretically from a parent substance.
Well-known antigens that may be derived from CNS antigens are, in particular, antigens that may be derived from myelin. Such antigens are, for instance, Myelin Oligodendrocyte Glycoprotein (MOG), Myelin Basic Protein (MBP), Myelin-Associated Glycoprotein (MAG), spinal cord homogenate (SCH), purified myelin, myelin Proteolipid Protein (PLP) or peptides of these proteins.
Without wanting to be bound by theory, the hypothesis was made that pro-inflammatory, myelin-reactive CD4+ T-cells, in particular, pathogenic (IL-17 producing) Th17 and (IFN-γ-producing) Th1 cells are involved in disease pathogenesis.[2] These T-cells can be directed against myelin-containing antigens such as myelin oligodendrocyte glycoprotein (MOG)[8] or myelin basic protein (MBP)[9] or proteolipid protein (PLP) (Reeks et al., Clinical Immunology 2015, S1521-6616), which are candidate auto-antigens in MS, as enhanced levels of IFN-γ producing MOG-specific T-cell and MBP-specific T-cells have been found to be important in MS.
It is demonstrated herein that the sialylation of an antigen, notably a peptide, changes the program of antigen-presenting cells (APCs) such as dendritic cells (DCs) toward a tolerogenic, suppressive stage.
For that purpose, DC were pulsed with α-2-6-Sia-MOG35-55 and a non-sialylated MOG 35-55 peptide as a control, and cultured for six days with MOG-responsive CD4+ T cells (2D2 T cells (Bettelli et al., J. Exp. Med., 2003).
It was observed that DCs exposed to non-sialylated MOG peptide stimulated MOG-specific CD4 T cells, as these T cells start to produce significant amounts of IFN-γ (
When DC were exposed to the α-2-6-Sia-MOG35-55, no MOG effector T cells were induced (only 0.3%).
However, the majority of the CD4 T cells co-express Foxp3, which is a hallmark for immune suppressive T cells (
Analysis of the culture supernatants of the DCs exposed to non-sialylated MOG35-55 or α-2-6-Sia-MOG that were co-cultured with MOG-specific CD4+ (2D2) T-cells confirmed that only T cells primed by non-sialylated MOG produced significant amounts of IFN-γ (
Notably, CD4+ T cells primed by α-2-6-Sia-MOG35-55-loaded DCs showed a reduction of this effector T-cell cytokine.
Furthermore, qRT-PCR analysis of MOG-specific CD4+ T cells, isolated on day 6 of co-culture with DCs pulsed with unsialylated (native) MOG- or α-2-6-Sia-MOG, confirmed the data that higher mRNA levels of the effector cell marker Th1 lineage-specific transcription factor T-bet, were detected in T cells activated by DCs pulsed with non-sialylated MOG35-55 than in T cells primed by DCs loaded with α-2-6-Sia-MOG35-55 (
Instead, DCs exposed to α-2-6-Sia-MOG35-55 instructed the T cells to express high levels of Foxp3, the marker for suppressive activity of the CD4T cells (
This finding shows that sialylation of antigens (MOG) may also be exploited to dampen existing effector cells. As stated hereinbefore, Th1 and Th17 are the effector CD4T cells that cause inflammation in MS. Therefore, Th1 (
To examine this even further, testing was performed to determine whether DCs exposed to α-2,6-Sia-MOG35-55 were able to inhibit MOG-specific effector T cells that were obtained from splenocytes from mice suffering from experimental autoimmune encephalomyelitis (EAE). To this effect, CD4 effector T cells were harvested from splenocytes of mice at various EAE clinical scores, representing different stages of effector T cell number and activity, wherein score 1 is the onset of disease and score 2 and 3 are the more severe phases of the disease.
Testing was performed to determine whether DCs ex vivo loaded with Sia-MOG could inhibit the proliferation of the MOG-specific effector CD4 T cells that were obtained from EAE mice.
DCs loaded with α-2-6-Sia-MOG35-55 or non-sialylated MOG35-55 were cultured with EAE splenocytes and, after 4 days of culture, [3H]thymidine incorporation was determined as a measure of proliferation and division of CD4 T cells (
To determine the functionality of the MOG-reactive effector cells, IFN-γ production was measured (
It was observed that DCs loaded with non-sialylated MOG peptide enhance the ex-vivo MOG-reactive effector T cells in EAE mice with different scoring. Also in this case, DCs loaded with α-2-6-Sia-MOG35-55 suppressed the production of IFN-γ, indicating that α-2-6-Sia-MOG35-55 instructs DC with an immune suppressive programming that induces the differentiation of FoxP3 MOG-specific suppressive T cells that are functionally active and are able to inhibit inflammatory MOG-specific T cells that cause EAE or MS.
As total splenocytes were incubated with the α-2-6-Sia-MOG35-55-loaded DCs for four days, it is likely that the observed suppression was not mediated via de novo-induced CD4+ Tregs. However, DCs loaded with α-2-6-Sia-MOG35-55 promoted the induction of Foxp3 mRNA and protein expression in naïve, non-sialylated MOG35-55-responsive 2D2 T cells[22] (
Notably, DCs only gained tolerogenic properties when a sialylated oligosaccharide was covalently coupled to the antigen and not when the sialylated oligosaccharide and the antigen were provided separately.
These data show that covalent coupling of a sialylated oligosaccharide to an antigen, wherein the sialylated oligosaccharide preferably comprises Neu5Ac(α)2-6Gal(β)1-4GlcNAc, instruct DCs in an antigen-specific tolerogenic programming, enhancing Treg and reducing inflammatory T cells. It was also demonstrated that providing DCs with a thus sialylated antigen has a potent dual tolerogenic function: strongly promoting de novo Treg induction while simultaneously inhibiting effector T-cell differentiation, even under inflammatory conditions.
The data show that, in particular, DCs instigate the switch in T-cell quality as was demonstrated that DCs become tolerogenic upon uptake of soluble sialylated antigens. Thus, sialylated glycans drastically alter DC and T cell responses and provide a novel target for modulation in a broad range of immunopathologies.
The data also show that the effect is antigen-specific. When ovalbumin (OVA) was used as a control antigen, the immune response against OVA remained completely intact, whereas the immune response against the antigen (such as MOG), covalently coupled to a sialylated oligosaccharide was suppressed.
Vice versa, when OVA was coupled to a sialylated oligosaccharide such as 6′-Sialyl-N-acetyllactosamine (6′-SLN or Neu5Ac(α)2-6Gal(β)1-4GlcNAc), the same phenomenon was observed, namely, DCs that were exposed to α-2-6-Sia-OVA were capable of inducing immune tolerance against OVA while leaving the immune reactivity against other antigens completely intact. In addition, it was also here observed that α-2-6-Sia-OVA induced only tolerance against OVA (see above) and not to MOG.
The data presented here should not be interpreted as narrow as that only a MOG peptide may be used to induce immune tolerance. Identical effects were observed with completely unrelated antigens, such as CNS antigens, such as myelin, Myelin Oligodendrocyte Glycoprotein (MOG), Myelin Basic Protein (MBP), spinal cord homogenate (SCH), Myelin-Associated Glycoprotein (MAG), purified myelin, myelin Proteolipid Protein (PLP) and peptides of these proteins.
To obtain sialylated MOG (Sia-MOG), maleimide-activated 6′-sialyl-N-acetyllactosamine (SLN306; Neu5Ac(α)2-6Gal(β)1-4GlcNAc; DEXTRA Labs, UK) and 3′-sialyl-N-acetyllactosamine (SLN302; Neu5Acα2-3Galβ1-4Glc) were conjugated to thio-modified MOG35-55 peptide through thiol-ene reactions. The glycans were activated with the bi-functional cross-linker 4-N-maleimidophenyl butyric acid hydrazide (MPBH, Pierce, USA). The MOG35-55 sequence was modified with an added cysteine at the N-terminus to allow for the coupling with the activated glycans.
The hydrazide moiety of MPBH was covalently linked to the reducing end of the carbohydrate via reductive amination at a 3:1 molar ratio. Briefly, a mixture of MPBH (3 eq.), 3′-sialyl-N-acetyllactosamine (or 6′-sialyl-N-acetyllactosamine) (1 eq.) and picoline borane (10 eq., Sigma-Aldrich, Germany) dissolved in DMSO/AcOH (8:2) and 1% TFA was incubated for 2 hours at 65° C. After cooling down to room temperature, 4 volumes of dichloromethane (Biosolve) were added and the mixture was vortexed thoroughly. Subsequently, 10 volumes of diethyl ether (Biosolve) were added and stirred briefly until glycan-MPBH had completely precipitated. MPBH-glycans were pelleted by centrifugation (2 minutes at 14,000 rpm ˜20,000 g) and washed twice with diethyl ether. The obtained glycan-MPBH pellet was resuspended in aqueous buffer with 0.1% TFA (trifluoroacetic acid, Sigma) and lyophilized, followed by purification over a 22×250 mm Vydac MS214 prep C18 column (Grace Alltech, elution water/acetonitrile, gradient 3% to 50% of acetonitrile in 40 minutes) on a Dionex prep 3000 HPLC system. The fractions containing the glycan-MPBH were pooled and lyophilized. The derivatization and purity of the MPBH-glycans was confirmed by HPLC (Vydac 218MS C18 5 μm 4.6×250 mm, Grace Alltech) and MS spectrometry (LCQ-Deca XP lontrap Thermo Finnigan mass spectrometer in positive mode using nanospray capillary needle).
The primary sequence of human MOG 35-55 is: Met-Glu-Val-Gly-Trp-Tyr-Arg-Pro-Pro-Phe-Ser-Arg-Val-Val-His-Leu-Tyr-Arg-Asn-Gly-Lys (SEQ ID NO:1). A cysteine residue was attached to the N-terminus. Cysteine-modified MOG35-55 peptide was produced by solid phase peptide synthesis using Fmoc chemistry with a Symphony peptide synthesizer (Protein Technologies Inc., USA). When the experiments were repeated with mouse MOG (Met-Glu-Val-Gly-Trp-Tyr-Arg-Ser-Pro-Phe-Ser-Arg-Val-Val-His-Leu-Tyr-Arg-Asn-Gly-Lys (SEQ ID NO:2)), the results were identical.
The final reaction of MOG35-55SH with the MPBH-carbohydrates was performed at a molar ratio of 1:1.5. Briefly, the peptide (1 eq.) was dissolved in DMSO and added to the carbohydrate-MPBH (1.5 eq.) with 50 mM TEA. After 2 hours of reaction at room temperature, the glycated peptide was purified by HPLC using a Vydac MS214 prep C18 column 10×250 mm (Grace Alltech, elution water/acetonitrile, gradient 10% to 50% of acetonitrile in 40 minutes). The fractions containing the glycopeptide were pooled and lyophilized. The derivatization and purity of the glycated peptide were confirmed by HPLC (Vydac 218MS C18 5 μm 4.6×250 mm, Grace Alltech) and ESI-MS spectrometry (LCQ-Deca XP Iontrap Thermo Finnigan mass spectrometer in positive mode using nanospray capillary needle).
Antigen-specific nave CD4+CD62LhiCD25− T cells were purified from spleen and LN cell suspensions obtained from 2D2 mice using the Dynal mouse CD4+ CD62L+ T cell isolation kit II mouse (Miltenyi Biotec, Bergisch Gladbach, Germany) or by sorting on a MoFlo (DakoCytomation, Glostrup, Denmark). The resulting naïve CD4+ CD62L+CD25− T cell populations were typically 95% pure as assessed by flow cytometry. Naïve CD4+ T cells (5×104) were added to wells containing DCs (1×104) that were pulsed with indicated concentrations of antigen modified with a sialylated oligosaccharide or native antigen 3 hours prior. After 2 days, 10 U/ml recombinant mouse IL-2 (Invitrogen, Bleijswijk, The Netherlands) was added. T-cell polarization was evaluated on day 6 by intra-cellular staining for Foxp3 and IFN-γ following 5 hours restimulation with phorbol 12-myristate 13-acetate (PMA; 30 μg/ml)/ionomycin (Sigma; 500 ng/ml) in the presence of Brefeldin A (Sigma; 5 μg/ml). For inhibition of effector Th1 and Th17 cells, Naïve 2D2 T cells were converted in Th1 or Th17 cells by culturing; one week later, effector T cells re-stimulated with DC pulsed with MOG or Sialylated MOG. After 24 hours, the supernatant was harvested for presence of IFN-γ or IL 17 as measure of activity of Th1 and Th17 effector cells, respectively.
Splenocytes from mice that suffered EAE were re-stimulated ex-vivo with DCs loaded with either non-sialylated MOG or α-2-6-Sia-MOG35-55 and as a control, DC with no antigen. DC and T cells were cultured as described in Example 2, as described above, for 4 days. 3H and IFN-γ was determined as described above.
Cytokine production by T cells and DCs was assessed by cytometric bead arrays using the CBA Th1/2/17 kit and mouse inflammation kit, respectively (BD Biosciences), or by ELISA using specific antibody pairs (eBiosciences) following the manufacturers' instructions.
C57BL/6 mice were purchased from Charles River Laboratories (Maastricht, The Netherlands) and used at 8-12 weeks of age. 2D2 TCR transgenic mice were bred and housed in the animal facilities of VUmc, Erasmus MC, and the TWINCORE Institute under specific pathogen-free conditions. All experiments were approved by the Animal Experiments Committee of the Erasmus MC and VUmc and performed in accordance with national and international guidelines and regulations.
Splenic DCs: Spleens isolated from C57BL/6 mice were incubated in HE medium (RPMI1640 media containing 10% FCS, 10 mM EDTA, 20 mM HEPES, 50 U/ml penicillin, 50 μg/ml streptomycin) supplemented with 1 WU/ml Liberase-TL (Roche Diagnostics GmbH, Manheim, Germany) and 50 μg/ml DNase I (Roche) for 30 minutes at 37° C. or until digested. Red blood cells were lysed using ACK lysis buffer and undigested material was removed by filtration. DCs were purified by positive selection using anti-CD11c MACS microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany) according to the manufacturer's protocol. The resulting CD11c+MHC-II+ populations were typically 94% pure as assessed by flow cytometry.
Bone marrow-derived DCs: BMDCs were cultured as described by Lutz et al. with minor modifications as described earlier (Singh et al., Mol. Immunol. 47:164, 2009).
The FITC-labeled antibodies used were anti-CD11c (N418), anti-PDL2 (122), anti-CD25 (PC61.5); the PE-labeled antibodies were anti-CD8b (H35-17.2), anti-CD4 (GK1.5), anti-CD80 (16-10A1), anti-CD86 (GL1), anti-CD40 (1C10), anti-MHC class II (MS/ 114.15.2), anti-PDL1 (MIH5), anti-Vβ5 (MR9-4); the APC-labeled antibodies were anti-CD62L (MEL-14), anti-FoxP3 (FJK-169), and anti-IFN-γ (XMG1.2). Biotin-labeled anti-Vα2 TCR (B20.1) was detected using ALEXA FLUOR® 488-labeled streptavidin (Jackson Immunoresearch, West Grove, Pa., USA). Anti-CD86, -MHC-II, -Vα2, -Vβ5, -CD62L and -IFN-γ antibodies were purchased from BD Pharmingen (BD Biosciences, San Jose, Calif., USA); all other antibodies were obtained from eBiosciences (eBiosciences, San Diego, Calif., USA).
Cytokine production by T cells and DCs was assessed using the mouse CBA Th1/2/17 kit and inflammation kit, respectively (BD Biosciences). The FITC-labeled antibodies used were anti-CD11c (N418), anti-PDL2 (122), anti-CD25 (PC61.5) -CD4 (RM4-5),-CD8b (eBIOH35); PE-labeled antibodies used: anti-CD8b (H35-17.2), anti-CD4 (GK1.5), anti-CD80 (16-10A 1), anti-CD86 (GL1), anti-CD40 (1C10), anti-MHC class II (MS/114.15.2), anti-PDL1 (MIH5); APC-labeled antibodies used: anti-CD62L (MEL-14), anti-Foxp3 (FJK-169), and anti-IFN-γ (XMG1.2). Anti-CD86, -MHC-II, -CD62L and -IFN-γ antibodies were purchased from BD Pharmingen (BD); all other antibodies were obtained from eBiosciences (eBiosciences, San Diego, Calif., USA).
Prism 5.0 software (GraphPad, San Diego, Calif., USA) was used for statistical analysis. The Student's t-test and one-way ANOVA with Bonferroni correction were used to determine statistical significance. Statistical significance was defined as P<0.05.
The experiments as described herein were also performed with ovalbumin as a control antigen. They showed that the antigen response against ovalbumin is specifically down-regulated after immunization with sia-2,3 and 2,6-conjugated ovalbumin (sia-OVA) and is not due to general suppression of the immune system.
For that purpose, dendritic cells were loaded with sia-OVA and subsequently challenged in the presence of specific CD4+ T cells with either OVA or with a myelin oligodendrocyte glycoprotein peptide (MOG 35-55).
The thus-loaded dendritic cells were then co-cultured with naive MOG-specific CD4+ T cells (called 2D2) in the presence of MOG 35-55 or with naive OVA-specific CD4+ T cells (called OT-II) in the presence of ovalbumin (OVA).
Subsequently, it was determined whether sia-OVA-loaded dendritic cells were able to induce tolerogenic T cells in an antigen-specific manner. This was done by determining the percentage of Foxp3+ CD4+ T cells by flow cytometry.
It was found that dendritic cells loaded with sia-OVA and subsequently challenged with OVA, induced about 10% of tolerogenic cells in a population of OT-II cells, whereas dendritic cells loaded with sia-OVA and subsequently challenged with MOG 35-55 did not induce tolerogenic cells above background levels in a population of 2D2 cells (
The appropriate negative control experiment with OVA-loaded dendritic cells challenged with OVA did not induce tolerogenic cells above background levels in a population of OT-II cells (
It may be concluded from these experiments that loading dendritic cells with sia-OVA induced immune tolerance against OVA and that loading dendritic cells with sia-OVA does not induce tolerance against an unrelated antigen (MOG 35-55).
In other terms, this shows that a sia α-2,6-conjugated antigen may be used for suppressing an immune response specifically directed against the antigen in a patient in need of such a treatment.
Mostarica-Stojkovic. Astrocytes stimulate interleukin-17 and interferon-gamma production in vitro. J. Neurosci. Res. 2007; 85:3598-3606.