A. Field of the Invention
This invention relates to a method and apparatus for a thin film negative temperature coefficient (NTC) thermistor.
B. Problems in the Art
The current process of making a negative temperature coefficient of resistance thermistor has a number of deficiencies. In the current process, a mixture of metal oxide powders is weighed and mixed with organic materials being added as binders. Once mixed, the mixture is ground and tape casted to turn the metal oxide powder into a thin and flexible tape-like material. These thin tapes of metal oxide materials are then cut into pieces, stacked one on top of each other and pressed. The resulting product at this point of the process is called a raw wafer. The raw wafer is then fired at approximately 1100° C. for nearly seven days. This includes the ramp up and ramp down time to and from that temperature. The aforementioned process is considered to be the preprocessing of the thermistor. After preprocessing, a thick film glass dielectric is sprayed on the top and the bottom of the preprocessed wafer. Then parts are diced to the desired width and broken into strips. Glass dielectric is then sprayed on the edges. The resulting pieces are then cut to a length to obtain the correct and desired resistance values. Termination is then performed on the open edges, that is the edges without glass dielectric, by dipping the edges into platable silver ink. The thermistor is later fired at approximately 650° C. and electroplated with Nickel and tin-lead, or other solder material.
This current process produces a number of problems and deficiencies. One problem is that the process takes too long due to the long time period of firing.
Another problem is that the resistance value is dependent in part upon the physical size of the resulting thermistor.
Another problem is that because of the thickness of the device, the thermistor takes a longer amount of time to heat up than is desirable.
Another problem is the resistance tolerance associated with the thermistor. Because the material composition in a particular thermistor can vary, the resistance varies as well, resulting in a tolerance that is greater than desired.
Thus it is a primary objective of the present invention to provide a negative temperature coefficient of resistance thermistor which improves upon the state of the art.
Yet another objective of the present invention is to provide a thermistor which is predictable.
Another objective of the present invention is to reduce material costs in manufacturing.
Another objective of the present invention is to reduce labor costs associated with manufacturing.
Another objective of the present invention is to make a thermistor with a tighter resistance tolerance.
Another objective of the present invention is to provide a thermistor with reduced manufacturing time required.
Another objective of the present invention is to provide a negative temperature coefficient of resistance thermistor that can be manufactured with thin film techniques.
Another objective of the present invention is to provide a thin film thermistor having the advantage of reduced heating time.
It is another objective of the present invention to provide a negative temperature coefficient thermistor having the advantage of reduced thickness.
It is another objective of the present invention to provide a negative temperature coefficient resistor having increased sensitivity to temperature changes.
These and other objectives, features, or advantages of the present invention will become apparent from the specification and claims.
The present invention is a method and apparatus for a negative temperature coefficient thermistor. The invention provides for a thin film negative temperature coefficient of resistance thermistor. The NTC thermistor of the present invention results in the ability to have standardized sizes of resistors in that the resistance value need not be dependent upon the physical size of the thermistor. The present invention also provides for the advantages of having tighter resistance tolerance and increased sensitivity to temperature change. In addition the present invention provides for reduced material costs, reduced labor costs, and reduced manufacturing time.
With reference to the drawings, the same reference numerals or letters will indicate the same parts or locations throughout the drawings unless otherwise indicated.
The preprocessed NTC thermistor of the present invention also includes conductor termination 18. Conductor termination 18 may consist of platinum, gold, or an alloy, or other conductive metal, that is applied through a sputtering process.
The preprocessed NTC thermistor of the present invention also includes a passivation layer 20. The passivation layer 20 is a deposited scratch resistant material such as silicon nitride, silicon dioxide, or other material such as may be known in the art. The passivation layer is used to protect the NTC thermistor's electronic properties from deterioration from external contaminants. The present invention also contemplates that the passivation layer need not be used. It is to be appreciated that a thin film NTC thermistor without the passivation layer will not have lower performance.
The manufacturing process of the present invention is detailed in FIG. 3. The process includes the preprocessing steps 40. In preprocessing steps 40, first planarization of the substrate occurs. The planarization process smoothes the contours of the wafer surface. This can be done by applying silicon nitride to the clean surface of the substrate. After the planarized step 42, metal oxide film is deposited in step 44. The metal oxide film is deposited after photoprocessing (or solder masking) such as is known in the art. The metal oxide film, as previously discussed, may be a manganese oxide and nickel oxide mixture at a ratio of 82% to 18%. The precise ratio selected affects the resistance of the thin film NTC thermistor at various temperatures. Thus, different mixtures of metal oxides may be used to achieve different properties in the resulting NTC thermistor. Modification of the mixture using other metal oxide films at other ratios may be performed. The particular mixture selected based on the desired properties of the thermistor such as the size of the thermistor and the associated curve of the thermistor as is later discussed.
Next, the terminals for the top conductor are created in step 46 according to a photo process and sputtering step, such as is known in the art. Referring back to
After preprocessing, additional steps are applied to the thermistor. These additional steps are thin film processing steps such as are known in the art as applied to other types of devices. In step 52, laser trimming is used to trim the film. In step 54, the Tokyo Paint is printed and the Minico Dielectric or other dielectric is also printed. The present invention contemplates that other inks or materials may be used such as are well known in the art. In step 56 marking occurs to prepare for separation. In step 58 the back conductor is sputtered on to the back of the device. In step 60, the wafer is broken into strips. In step 62 sputtering around the conductor is performed. In step 64 the wafer is broken into chips. In step 66 the thin film NTC thermistor chip is electroplated with nickel. In step 68 the thin film NTC thermistor is solder plated.
It will be readily apparent to those skilled in the art that different types and mixtures of metal oxide films may be used. It will also be clear to those skilled in the art that different types of substrate materials, passivation layer materials, terminal conductor materials, electroplated barrier materials and solder plating materials may be used, and other variations such as may be required by particular applications and environments, or to develop thermistors with particular properties.
As previously explained, different compositions of metal film materials can be used to achieve different resistances. Thus the present invention allows for thermistors having different resistances at a given temperature to be the same physical size. This relationship between resistance and temperature generally being quantified with a curve, such as is known in the art. This advantage of the present inventions permits NTC thermistors having different curves to be manufactured in the same size. Thus a particular size of thermistor may be made from different mixtures of film materials thus yielding different negative temperature coefficient versus temperature curves.
Thus an apparatus and method for a thin film NTC thermistor has been disclosed which solves problems and deficiencies in the art.
Number | Name | Date | Kind |
---|---|---|---|
3109227 | Goodyear | Nov 1963 | A |
3510820 | Jonker et al. | May 1970 | A |
3574930 | Riddel et al. | Apr 1971 | A |
3629585 | Desvignes et al. | Dec 1971 | A |
4423403 | Miyake et al. | Dec 1983 | A |
4498071 | Plough et al. | Feb 1985 | A |
4805296 | Jinda et al. | Feb 1989 | A |
5024966 | Dietrich et al. | Jun 1991 | A |
5206624 | Patel et al. | Apr 1993 | A |
5273776 | Yonezawa et al. | Dec 1993 | A |
5994756 | Umezawa et al. | Nov 1999 | A |
6004471 | Chaung | Dec 1999 | A |
6099164 | Rosen et al. | Aug 2000 | A |
6309695 | Singh | Oct 2001 | B1 |
6314637 | Kimura et al. | Nov 2001 | B1 |
Number | Date | Country |
---|---|---|
0 609 776 | Aug 1994 | EP |
2150748 | Jul 1985 | GB |
07109560 | Nov 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20020130758 A1 | Sep 2002 | US |