1. Field of the Invention
The present invention relates to a method for touch contact tracking, and more particularly, to a method for prediction-based touch contact tracking for touch screens.
2. Description of the Prior Art
When an external conductive object touches or approaches a touch screen, the touch screen will detect the location of the external conductive object. Since the touch screen may be affected by noise interference, the detected location of the external conductive object may have certain offset. Referring to
From the above it is clear that prior art still has shortcomings. In order to solve these problems, efforts have long been made in vain, while ordinary products and methods offering no appropriate structures and methods. Thus, there is a need in the industry for a novel technique that addresses these problems.
Due to noise interference, the locations generated by the signals of a touch screen may have jitters. Thus, a coefficient is employed to carry out a filtering process, whereby a new reported location is shifted backwards towards a latest reported location based on a detected location to reduce or filter the jittering of the reported locations caused by noise in the signals of the touch sensor. When the number of external objects increases, the time spent for detecting the detected location of each external object also increases, so the coefficient is adjusted such that the more external objects that are detected, the closer a reported location is to a detected location.
The above objective of the present invention can be achieved by the following technical scheme. A method for touch contact tracking in accordance with the present invention may include: continuously detecting the number of external objects touching or approaching a touch screen and a detected location corresponding to each external object; continuously determining a coefficient less than one based on the number, wherein the larger the number of the external objects, the smaller the coefficient; and continuously generating a reported location based on the coefficient and the respective detected location of each external object, wherein the smaller the coefficient, the closer the reported location is to the detected location.
The above objective of the present invention can be further achieved by the following technical scheme. A method for touch contact tracking in accordance with the present invention may include: continuously detecting the number of external objects touching or approaching a touch screen and a detected location corresponding to each external object; continuously determining a coefficient less than one based on the number, wherein the larger the number of the external objects, the smaller the coefficient; and continuously generating a virtual detected location between a latest detected location corresponding to the same external object and a previously detected location corresponding to the same external object; continuously generating a respective reported location based on the coefficient and the detected location of each external object, wherein the smaller the coefficient, the closer the reported location is to the detected location; and continuously generating a virtual reported location based on the coefficient and the respective virtual detected location of each external object, wherein the smaller the coefficient, the closer the virtual reported location is to the virtual detected location.
With the above technical means, the present invention includes at least the following advantages and benefits: jittering is addressed by filtering processes, and the degree of filtering is adjusted according to the number of external objects detected, so that when jittering is prominent, jittering can be reduced. On the other hand, when jittering is not prominent, the distance between a reported location and a detected location can be reduced.
Some embodiments of the present invention are described in details below. However, in addition to the descriptions given below, the present invention can be applicable to other embodiments, and the scope of the present invention is not limited by such, rather by the scope of the claims. Moreover, for better understanding and clarity of the description, some components in the drawings may not necessary be drawn to scale, in which some may be exaggerated relative to others, and irrelevant parts are omitted.
In order to overcome the prior-art issues, a filtering process is usually employed to reduce or filter out the jittering problem as mentioned before. Referring to
Therefore, in an embodiment of the present invention, a prediction-based touch contact tracking method is provided to address the issue of linear jittering while shortening the distance between the output and input tracks.
Referring to
In other words, the prediction and filtering processes just described may employ a linear Bezier curve. Given points L0 and L1, a linear Bézier curve is a straight line between these two points. This line is given by the following equation: B(t)=(1−t)L0+tL1. When the prediction process is carried out, L0 and L1 are the detected locations (e.g. the detected locations I1 and I3 above), wherein t>1 (e.g. 1.5), and the resulting B(t) is a new predicted location. When the filtering process is carried out, L0 and L1 are the latest reported location and the latest predicted location (e.g. the reported location O2 and the predicted location P3), respectively, wherein coefficient t∈[0,1], and the resulting B(t) is a new reported location.
One with ordinary skill in the art can appreciate that there are other ways of predicting a predicted location based on at least two detected locations and other filtering methods. For example, a quadratic Bézier curve can be used. For example, the path of a quadratic Bézier curve is tracked by B(t) as a function of given points L0, L1 and L2: B(t)=(1−t)2L0+2t(1−t)L1+t2L2. When the prediction process is carried out, L0, L1 and L2 are the detected locations, wherein t>1, and the resulting B(t) is a new predicted location. When the filtering process is carried out, L0 and L1 are the two latest reported locations and L2 is the latest predicted location, wherein coefficient t∈[0,1], and the resulting B(t) is a new reported location.
Comparing
With reference to the first embodiment, in a second embodiment of the present invention, at least one virtual detected location is added between each pair of adjacent detected locations among the detected locations. The detected locations and the virtual detected location form continuous input locations. The virtual detected location can be at the middle of each pair of adjacent detected locations, or generated in accordance to the above Bézier curves. Accordingly, the number of detected locations becoming the input locations can be effectively doubled. One with ordinary skill in the art can appreciate that the number of virtual detected location added between each pair of adjacent detected locations can be one, two or more.
Referring now to
The prediction process for predicting a predicted location and the filtering process for generating a reported location have already been described in the first embodiment, so they will not be repeated herein. It can be seen from
The technical means of the present invention can be applied to most types of the touch screens, for example, resistive, surface acoustic, infrared, optical, surface capacitive, projected capacitive or other types of touch screen that are capable of reporting locations in order to display an output track. Moreover, the present invention can be used to report the output track (or tracks) of one or more external conductive objects.
Referring to
Referring to
In an example of the present invention, a predicted location is generated by multiplying the vector of the two most recently generated detected locations by a predetermined factor greater than 1. In other words, in two detected locations, a new vector is generated by multiplying a vector produced from using the older detected location as the starting point and the newer detected location as the end point by a predetermined factor greater than 1. The predicted location is at the end point of the new vector that is based on the older detected location. In the present invention, generating another location from two locations can be carried out using the example shown above or other methods; the present invention is not limited as such.
In another example of the present invention, a predicted location is generated by multiplying the vector of the two detected locations by a predetermined factor greater than 1, wherein there is at least one detected location between the two detected locations. As such, the two detected locations for generating a predicted location can be adjacent or not adjacent to each other; the present invention is not limited as such.
In contrast to the predicted location being generated by multiplying by a predetermined factor that is greater than 1, a reported location is generated by multiplying by a predetermined factor that is less than 1. For example, a reported location is generated by multiplying the vector of the most recently generated reported location and the most recently generated predicted location by a predetermined factor that is less than 1.
In the example of
Referring to
Referring further to
In an example of the present invention, a virtual predicted location is generated by multiplying the vector of the two most recently generated virtual detected locations by a predetermined factor greater than 1. In another example of the present invention, a virtual reported location is generated by multiplying the vector of the most recently generated virtual reported location and the most recently generated virtual predicted location by a predetermined factor that is less than 1. As such, the two virtual detected locations for generating a virtual predicted location can be adjacent or not adjacent to each other; the present invention is not limited as such.
Moreover, in contrast to the virtual predicted location being generated by multiplying by a predetermined factor that is greater than 1, a virtual reported location is generated by multiplying by a predetermined factor that is less than 1. For example, a virtual predicted location is generated by multiplying the vector of the two virtual detected locations by a predetermined factor that is greater than 1, wherein at least one virtual detected location resides between the two virtual detected locations.
Since a virtual reported location is between reported locations, so the latest (most recently generated) virtual reported location can be regarded as preceding the latest (most recently generated) reported location. Accordingly, the present invention further includes continuously providing a latest virtual reported location and a latest reported location, wherein the latest virtual reported location is provided before the latest reported location.
Furthermore, the predicted locations, the reported locations, the virtual predicted locations and the virtual reported locations mentioned before can be generated by quadratic Bézier curves.
During the detection of a capacitive touch screen, the number of reported locations provided in a unit time is called the reporting rate. The reporting rate can be fixed or variable. For example, in the detection method disclosed in U.S. patent application Ser. No. 12/499,981, the duration of the detection varies with the number of external objects approaching or touching a touch screen, the larger the number of external objects, the longer the detection duration. Even though the detection duration is longer, the number of locations detected is greater, so the overall reporting rate is not necessary lower, but is not fixed.
However, from the perspective of each individual external object, it will take longer to detect a new detected location. Assuming the external object is moving at a uniform speed, the distance between a newly detected location and another location detected immediately before this will be longer. If said coefficient t∈[0,1] is not changed, the reported location will lag the detected location by a considerably amount.
Thus, a touch contact tracking method is proposed by the present invention, wherein the coefficient t is adjusted according to the number of external object detected from the signals of a touch screen, such that when the number of external object detected is larger, the reported locations will be closer to the detected locations. For example, when the number of external objects is small, for example, 1, then a larger coefficient is used, as shown in
Referring now to
In an example of the present invention, the reported location of each external object is generated based on the latest reported location and a detected location. For example, reported location=(latest reported location×(1−coefficient)+detected location×coefficient). The reported locations can also be generated by quadratic Bézier curves; the present invention is not limited as such. Moreover, the reported location can also be generated by prediction-based methods such as those described in
Referring to
In an example of the present invention, the virtual reported location of each external object is generated based on the latest virtual reported location and a virtual detected location. For example, virtual reported location=(latest virtual reported location×(1−coefficient)+virtual detected location×coefficient). The virtual reported locations can also be generated by quadratic Bézier curves; the present invention is not limited as such. Moreover, the virtual reported location can also be generated by prediction-based methods such as those described in
Furthermore, the present invention further includes continuously providing a newly generated virtual reported location corresponding to each external object, and continuously providing a newly generated reported location corresponding to each external object, wherein the newly generated virtual reported location corresponding to each external object is provided before the newly generated reported location corresponding to each external object.
With the above methods, jittering is addressed, and the coefficient is adjusted according to the number of external objects detected, so that when jittering is prominent, jittering can be reduced. On the other hand, when jittering is not prominent, the distance between a reported location and a detected location can be reduced.
The above embodiments are only used to illustrate the principles of the present invention, and they should not be construed as to limit the present invention in any way. The above embodiments can be modified by those with ordinary skill in the art without departing from the scope of the present invention as defined in the following appended claims.
This application claims the benefit of U.S. Provisional Application No. 61/702,301, filed on Sep. 18, 2012, which are herein incorporated by reference for all intents and purposes.
Number | Date | Country | |
---|---|---|---|
61702301 | Sep 2012 | US |