The invention relates to a method for transferring fluids between a first ship, called a barge, and a second ship, called a shuttle, according to which the shuttle is positioned at a predetermined distance from the barge and guides at least one flexible fluid transfer conduit from it to the shuttle. The invention also relates to a transfer system for implementing that method.
According to methods of this type, which are known, the shuttle is positioned so as to be arranged substantially in the axis of the barge approximately 70 to 80 meters away from it before connecting the flexible conduits to the connection device provided on the shuttle. The latter is moored to the barge by a hawser during the transfer or is positioned dynamically. However, the tandem positioning has major drawbacks. In fact, given that the barge and the shutter are positioned according to the wind, currents and swell, there is a great risk of the shuttle being located in the zone of the direction of the flame generated by the flare, which is part of the standard equipment of the barge, on the one hand, and of the shuttle, by moving forward accidentally, frontally colliding with the rear portion of the barge. These risks already make the transfer of crude oil from the barge to the shuttle problematic, but also make it practically impossible to transfer liquefied natural gas (LNG) from the barge to the shuttle.
The invention aims to propose a solution to the problems stated above.
To achieve that aim, the method according to the invention is characterized in that the shuttle is placed in a position wherein the shuttle is laterally offset from the barge while being essentially parallel to the longitudinal axis of the barge, and a fluid transfer system is provided, which enables the shuttle to be moved in the lateral and longitudinal directions in relation to the barge, during a transfer.
According to one feature of the invention, cryogenic hoses are used as flexible transfer conduits to transfer liquefied natural gas.
The system according to the invention for implementing the method is characterized in that the barge supports a device for storing at least one flexible conduit, if applicable a cryogenic hose, with a length comprised between 60 and 120 meters, the conduit outlet mechanism of which rotates around a vertical axis and in that the device receiving the connecting tip of the conduit, provided on the shuttle, also rotates around a vertical axis.
According to one feature of the system according to the invention, the storage device is in the form of a wheel with a diameter comprised between 20 and 50 meters, around which the conduit is wound and from which the latter can be unwound during a fluid transfer, said wheel rotating around a horizontal axis and being able to pivot around a vertical axis.
According to another feature of the invention, the flexible conduit is wound in a peripheral slot of the wheel in a coil.
According to still another feature of the invention, the wheel includes a plurality of juxtaposed storage slots, if applicable to store several flexible conduits.
The invention will be better understood, and other aims, features, details and advantages thereof will appear more clearly in the following explanatory description done in reference to the appended diagrammatic drawings provided solely as examples and illustrating one embodiment of the invention and in which:
The invention will be described below, as a non-exclusive example, in its application to a transfer of liquefied natural gas (LNG) from a first ship, a LNG production barge 1, to a second ship, a shuttle 2.
As shown in
The shuttle 2 is kept in position relative to the barge 1 by a dynamic positioning system provided on the shuttle 2. To that end, the latter is equipped with lateral thrusters 42 automatically controlled by the positioning system, for example bow thrusters. The dynamic positioning system automatically steers the shuttle during surges, sway and yaw by acting on the different propellers, such as the main and side propellers, so as to keep the shuttle in a predetermined position and/or on a predetermined course relative to a fixed or mobile reference, in the present case the barge 1. The position of the reference as well as the position of the shuttle is known by combining information from positioning systems (by satellite, GPS, inertial units, radars and similar).
According to the invention, the dynamic positioning system is used to maintain the shuttle, relative to the barge, in a position laterally offset from the barge and oriented substantially parallel thereto without the shuttle being connected to the barge by mechanical means such as a hawser. Thus, according to the invention, a fluid transfer between the shuttle and the barge, owing to the possibilities for dynamic positioning of the shuttle, then only requires that the longitudinal axis of the shuttle be pointed toward the stern of the barge.
To implement a LNG transfer from the barge 1 to the shuttle 2, the barge includes, on the end portion on which the flare 3 is installed, but close to the edge opposite the shuttle 2, by way of storage device for the transfer hoses, two large wheels 9 with a large storage capacity, having a diameter for example comprised between 20 and 50 meters, which each house, in two peripheral slots 10 of the rim 11, two cryogenic hoses 7.
Each wheel is rotatably mounted around a horizontal axis 12 supported at the top of a structure in the shape of a tower 13 arranged on an element in plate form 14, which is rotatably mounted around a vertical axis on a base 15 situated close to the edge 16 of the ship. Thus the axis of rotation 12 of the wheel can pivot around a vertical axis.
In the illustrated example, each wheel includes two peripheral grooves for housing a hose 7 whereof one end is fixed to the rim and connected to the piping of the barge while the other end is free and supports a tip 17 for connecting to the receiving device provided on the shuttle. As shown in particular in
To ensure the correct winding of each hose in the groove of the wheel rim, on the one hand, and for correct alignment between the unwound hose and the wheel, on the other hand, it includes a device 22 for guiding each hose when it comes out of its storage groove, which essentially includes a guide sleeve 23 through which the hose passes and which is maintained by a support bar structure 24 in a position in which the sleeve is axially aligned with the tangent of the storage groove for the hose corresponding to the outlet location of the hose of that groove.
The wheel is also associated with a winch 26 that is placed on the rotary support plate 14 of the wheel and the function of which is to rotate the wheel using a cable 27 whereof one end is fixed to the wheel and the other end of which is wound around the winch. This winch also takes into account the fact that, in the idle state of the wheel in which the hoses are completely wound around the rim in their respective grooves, the free end bearing the connecting tip 17 hangs freely vertically from the wheel. Of course, the device for rotating the wheel can be completed by motor means for driving the axis 12 of the wheel, which could operate in parallel with the winch or in case of failure thereof.
In reference in particular to
It emerges from the description provided above and from the figures that the storage on the wheels being able to have a diameter comprised between 20 and 50 meters, with a very large hose length, comprised between 60 and 120 meters, allows the shuttle to make significant movements, relative to the barge, longitudinally and transversely, during a LNG transfer. On the other hand, the possibility of the storage wheels on the barge and the head 28 for receiving the hoses on the shuttle has the extremely advantageous consequence that the wheels and the head are always oriented so that the hoses are not subjected to lateral or torsional stresses and always extend in a chain during a transfer between their two ends, one secured to the wheel and the other connected to the receiving head of the shuttle. The conveyance of the hose tips from the barge to the shuttle is done using the cable 34, the free end of which will be transported to the barge and fixed to the tip of the pin of the support assembly of the tips of the hoses and pulled into the tube 32 using the winch 33. Of course, the process of unwinding the hoses can be controlled, automatically, by appropriate control devices provided on the barge and/or the shuttle.
Owing to the use of the dynamic positioning system, allowing positioning with a lateral offset of the barge and substantially parallel thereto, the invention makes it possible to eliminate the formidable risk of the known transfer systems. The latter are designed to perform the loading operations, for example with oil, of the shuttles by providing positioning of the shuttle and the barge in tandem. The shuttle is enslaved to keep its longitudinal axis pointed toward the stern of the barge while being connected thereto by a hawser.
Although the shuttle is equipped with a dynamic positioning system, when the shuttle unduly travels forward toward the barge, the shuttle operators must try to regain control of the shuttle, in manual mode, in order to prevent the collision. But the significant inertia of the shuttles makes those maneuvers too long to avoid the collision.
As described above, the invention proposes another transfer configuration using the possibilities of dynamic positioning of the ship to no longer point the longitudinal axis of the shuttle toward the stern of the barge, but to keep its course substantially identical to the course of the barge and with a lateral offset. In case of failure of the dynamic positioning system, the proposed configuration makes it possible to minimize the risk of collision, since the shuttle is no longer enslaved to point toward the barge, but laterally offset and parallel thereto. By also equipping the transfer device, for example at the end of the hoses on the shuttle side, with emergency disconnect means, particularly advantageous in the case of liquefied natural gas transfer, an accidental movement of the shuttle relative to the barge is not problematic, even in the case of a relatively short hose.
Of course, various modifications can be made to the transfer system according to the invention as it is shown as an example in the figures. For example, it is possible to provide, in place of the wheels and to store the hoses, very long booms, supported by towers mounted on the barge, of the type described in French patent FR 2824529, on the condition the shuttle is positioned laterally offset from the barge and substantially parallel to the axis thereof is maintained, so that during an accidental movement of the shuttle, a collision with frontal impact thereof and the barge can be avoided. To prevent lateral contact between the shuttle and the barge from being able to produce significant damage, it is possible to provide, on the edge of the barge opposite the shuttle, defense elements 40 such as compressible blisters. The hoses extend in aerial chains as described but, if necessary, also in underwater or floating chains.
Number | Date | Country | Kind |
---|---|---|---|
09 53175 | May 2009 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR2010/050932 | 5/12/2010 | WO | 00 | 12/28/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/130960 | 11/18/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3211121 | Dozier | Oct 1965 | A |
3982402 | Lang et al. | Sep 1976 | A |
4190090 | Tuson | Feb 1980 | A |
4261398 | Haley | Apr 1981 | A |
4376452 | Tax et al. | Mar 1983 | A |
5634421 | Velarde | Jun 1997 | A |
6637479 | Eide et al. | Oct 2003 | B1 |
6817914 | Breivik | Nov 2004 | B2 |
6976443 | Oma et al. | Dec 2005 | B2 |
6994506 | de Baan | Feb 2006 | B2 |
7147021 | Dupont et al. | Dec 2006 | B2 |
7299835 | Dupont et al. | Nov 2007 | B2 |
20040011424 | Dupont et al. | Jan 2004 | A1 |
20070289517 | Poldervaart et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
1 705 112 | Sep 2006 | EP |
1 569 861 | Jun 1969 | FR |
WO 0078603 | Dec 2000 | WO |
WO 0134460 | May 2001 | WO |
WO 03078244 | Sep 2003 | WO |
WO 2008007033 | Jan 2008 | WO |
Entry |
---|
European Patent Office; International Search Report in International Patent Application No. PCT/FR2010/050932, (Jan. 6, 2011). |
Number | Date | Country | |
---|---|---|---|
20130025726 A1 | Jan 2013 | US |