Method for transmitting and receiving signal by terminal supporting dual-connectivity between E-UTRA and NR and terminal performing the method

Information

  • Patent Grant
  • 11711196
  • Patent Number
    11,711,196
  • Date Filed
    Friday, April 8, 2022
    2 years ago
  • Date Issued
    Tuesday, July 25, 2023
    a year ago
Abstract
Provided is a method for transmitting and receiving a signal by a terminal supporting dual-connectivity between evolved universal terrestrial radio access (E-UTRA) and new radio (NR). In the method, when the terminal is configured to aggregate at least two carriers and when the at least two carriers include one of E-UTRA operating bands 1, 3, 19, and 21 and at least one of NR operating bands n78 and n79, an uplink center frequency of a first carrier among the at least two carriers is a first value and a downlink center frequency of the first carrier is a second value, a predetermined maximum sensitivity degradation (MSD) is applied to a reference sensitivity used for reception of the downlink signal.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates to mobile communication


Related Art

With the success of long term evolution (LTE)/LTE-A (LTE-Advanced) for the 4th generation mobile communication, more interest is rising to the next generation, i.e., 5th generation (also known as 5G) mobile communication and extensive research and development are being carried out accordingly


The 5th-generation mobile telecommunications defined by the International Telecommunication Union (ITU) refers to providing a data transfer rate of up to 20 Gbps and a perceptible transfer rate of at least 100 Mbps anywhere. The 5th-generation mobile telecommunications, whose official name is ‘IMT-2020’, is aimed to be commercialized worldwide in 2020.


ITU proposes three usage scenarios, for example, enhanced mobile broadband (eMBB), massive machine type communication (mMTC), and ultra-reliable and low latency communications (URLLC).


First, URLLC relates to a usage scenario which requires high reliability and low latency. For example, services such as autonomous driving, factory automation, augmented reality require high reliability and low latency (e.g., a delay time of 1 ms or less). Currently, latency of 4G (LTE) is statistically 21 to 43 ms (best 10%) and 33 to 75 ms (median). This is not enough to support a service requiring latency of 1 ms or less.


Next, the eMBB usage scenario refers to a usage scenario requiring mobile ultra-wideband. This ultra-wideband high-speed service is unlikely to be accommodated by core networks designed for existing LTE/LTE-A. Thus, in the so-called 5th-generation mobile communication, core networks are urgently required to be re-designed.


Meanwhile, in the 5th generation mobile communication, a scheme (EN-DC) of dually connecting LTE and NR is underway to ensure communication stability. However, in a state in which a downlink carrier using LTE and a downlink carrier using NR are aggregated, transmission of an uplink signal may cause a harmonic component and an intermodulation distortion (IMD) component to impact on a downlink band of a terminal itself.


SUMMARY OF THE INVENTION

In an aspect, provided is a method for transmitting and receiving a signal by a terminal supporting dual-connectivity between evolved universal terrestrial radio access (E-UTRA) and new radio (NR). The method may comprise transmitting, when the terminal is configured to aggregate at least two carriers, an uplink signal using uplink of the at least two carriers; and receiving a downlink signal using downlink of the at least two carriers, wherein when the at least two carriers include one of E-UTRA operating bands 1, 3, 19, and 21 and at least one of NR operating bands n78 and n79, an uplink center frequency of a first carrier among the at least two carriers is a first value and a downlink center frequency of the first carrier is a second value, a predetermined maximum sensitivity degradation (MSD) is applied to a reference sensitivity used for reception of the downlink signal.


When the at least two carriers are the E-UTRA operating band 21 and the NR operating band n79, the first carrier corresponds to the E-UTRA operating band 21, the first value corresponds to 1457.5 MHz, and the second value corresponds to 1505.5 MHz, the MSD value is 18.4 dB.


When the at least two carriers are the E-UTRA operating band 1 and the NR operating bands n78 and n79, the first carrier corresponds to the NR operating band n79, the first value corresponds to 4870 MHz, and the second value corresponds to 4870 MHz, the MSD value is 15.9 dB.


When the at least two carriers are the E-UTRA operating band 1 and the NR operating bands n78 and n79, the first carrier corresponds to the NR operating band n78, the first value corresponds to 3490 MHz, and the second value corresponds to 3490 MHz, the MSD value is 4.6 dB.


When the at least two carriers are the E-UTRA operating band 3 and the NR operating bands n78 and n79, the first carrier corresponds to the NR operating band n79, the first value corresponds to 4910 MHz, and the second value corresponds to 4910 MHz, the MSD value is 16.3 dB.


When the at least two carriers are the E-UTRA operating band 3 and the NR operating bands n78 and n79, the first carrier corresponds to the NR operating band n78, the first value corresponds to 3710 MHz, and the second value corresponds to 3710 MHz, the MSD value is 4.2 dB.


When the at least two carriers are the E-UTRA operating band 19 and the NR operating bands n78 and n79, the first carrier corresponds to the NR operating band n79, the first value corresponds to 4515 MHz, and the second value corresponds to 4515 MHz, the MSD value is 29.3 dB.


When the at least two carriers are the E-UTRA operating band 19 and the NR operating bands n78 and n79, the first carrier corresponds to the NR operating band n78, the first value corresponds to 3715 MHz, and the second value corresponds to 3715 MHz, the MSD value is 28.8 dB.


When the at least two carriers are the E-UTRA operating band 21 and the NR operating bands n78 and n79, the first carrier corresponds to the NR operating band n79, the first value corresponds to 4873 MHz, and the second value corresponds to 4873 MHz, the MSD value is 30.1 dB.


When the at least two carriers are the E-UTRA operating band 19 and the NR operating bands n78 and n79, the first carrier corresponds to the NR operating band n78, the first value corresponds to 3487 MHz, and the second value corresponds to 3487 MHz, the MSD value is 29.8 dB.


In another aspect, provided is also a terminal supporting dual-connectivity between evolved universal terrestrial radio access (E-UTRA) and new radio (NR). The terminal may comprises a transceiver transmitting an uplink signal and receiving a downlink signal; and a processor controlling the transceiver, wherein when the terminal is configured to aggregate at least two carriers, the processor transmits the uplink signal using uplink of the at least two carriers; and receives the downlink signal using downlink of the at least two carriers, and when the at least two carriers include one of E-UTRA operating bands 1, 3, 19, and 21 and at least one of NR operating bands n78 and n79, an uplink center frequency of a first carrier among the at least two carriers is a first value and a downlink center frequency of the first carrier is a second value, a predetermined maximum sensitivity degradation (MSD) is applied to a reference sensitivity used for reception of the downlink signal.


According to a disclosure of the present invention, the above problem of the related art is solved.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a wireless communication system.



FIG. 2 illustrates the architecture of a radio frame according to frequency division duplex (FDD) of 3rd generation partnership project (3GPP) long term evolution (LTE).



FIG. 3 illustrates an example resource grid for one uplink or downlink slot in 3GPP LTE.



FIG. 4 illustrates the architecture of a downlink subframe.



FIG. 5 illustrates the architecture of an uplink subframe in 3GPP LTE.



FIGS. 6A and 6B are conceptual views illustrating intra-band carrier aggregation (CA).



FIGS. 7A and 7B are conceptual views illustrating inter-band carrier aggregation (CA).



FIG. 8 illustrates a situation where a harmonic component and intermodulation distortion (IMD) are introduced into downlink band when uplink signal is transmitted through two uplink carriers.



FIG. 9 shows a scenario in which a 5G NR band and an LTE E-UTRA band of 6 GHz or lower may coexist in a 5G NR non-standalone UE.



FIG. 10 is a block diagram illustrating a wireless communication system in which a disclosure of the present specification is implemented.





DESCRIPTION OF EXEMPLARY EMBODIMENTS

Hereinafter, based on 3rd Generation Partnership Project (3GPP) long term evolution (LTE) or 3GPP LTE-advanced (LTE-A), the present invention will be applied. This is just an example, and the present invention may be applied to various wireless communication systems. Hereinafter, LTE includes LTE and/or LTE-A.


The technical terms used herein are used to merely describe specific embodiments and should not be construed as limiting the present invention. Further, the technical terms used herein should be, unless defined otherwise, interpreted as having meanings generally understood by those skilled in the art but not too broadly or too narrowly. Further, the technical terms used herein, which are determined not to exactly represent the spirit of the invention, should be replaced by or understood by such technical terms as being able to be exactly understood by those skilled in the art. Further, the general terms used herein should be interpreted in the context as defined in the dictionary, but not in an excessively narrowed manner.


The expression of the singular number in the specification includes the meaning of the plural number unless the meaning of the singular number is definitely different from that of the plural number in the context. In the following description, the term ‘include’ or ‘have’ may represent the existence of a feature, a number, a step, an operation, a component, a part or the combination thereof described in the specification, and may not exclude the existence or addition of another feature, another number, another step, another operation, another component, another part or the combination thereof.


The terms ‘first’ and ‘second’ are used for the purpose of explanation about various components, and the components are not limited to the terms ‘first’ and ‘second’. The terms ‘first’ and ‘second’ are only used to distinguish one component from another component. For example, a first component may be named as a second component without deviating from the scope of the present invention.


It will be understood that when an element or layer is referred to as being “connected to” or “coupled to” another element or layer, it may be directly connected or coupled to the other element or layer or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly connected to” or “directly coupled to” another element or layer, there are no intervening elements or layers present.


Hereinafter, exemplary embodiments of the present invention will be described in greater detail with reference to the accompanying drawings. In describing the present invention, for ease of understanding, the same reference numerals are used to denote the same components throughout the drawings, and repetitive description on the same components will be omitted. Detailed description on well-known arts which are determined to make the gist of the invention unclear will be omitted. The accompanying drawings are provided to merely make the spirit of the invention readily understood, but not should be intended to be limiting of the invention. It should be understood that the spirit of the invention may be expanded to its modifications, replacements or equivalents in addition to what is illustrated in the drawings.


As used herein, ‘base station’ generally refers to a fixed station that communicates with a wireless device and may be denoted by other terms such as eNB (evolved-NodeB), BTS (base transceiver system), or access point.


As used herein, user equipment (UE) may be stationary or mobile, and may be denoted by other terms such as device, wireless device, terminal, MS (mobile station), UT (user terminal), SS (subscriber station), MT (mobile terminal) and etc.



FIG. 1 illustrates a wireless communication system.


Referring to FIG. 1, the wireless communication system includes at least one base station (BS) 20. Respective BSs 20 provide a communication service to particular geographical areas 20a, 20b, and 20c (which are generally called cells).


The UE generally belongs to one cell and the cell to which the terminal belong is referred to as a serving cell. A base station that provides the communication service to the serving cell is referred to as a serving BS. Since the wireless communication system is a cellular system, another cell that neighbors to the serving cell is present. Another cell which neighbors to the serving cell is referred to a neighbor cell. A base station that provides the communication service to the neighbor cell is referred to as a neighbor BS. The serving cell and the neighbor cell are relatively decided based on the UE.


Hereinafter, a downlink means communication from the base station 20 to the terminal 10 and an uplink means communication from the terminal 10 to the base station 20. In the downlink, a transmitter may be a part of the base station 20 and a receiver may be a part of the terminal 10. In the uplink, the transmitter may be a part of the terminal 10 and the receiver may be a part of the base station 20.


Hereinafter, the LTE system will be described in detail.



FIG. 2 shows a downlink radio frame structure according to FDD of 3rd generation partnership project (3GPP) long term evolution (LTE).


The radio frame of FIG. 2 may be found in the section 5 of 3GPP TS 36.211 V10.4.0 (2011-12) “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)”.


Referring to FIG. 2, the radio frame consists of 10 subframes. One subframe consists of two slots. Slots included in the radio frame are numbered with slot numbers 0 to 19. A time required to transmit one subframe is defined as a transmission time interval (TTI). The TTI may be a scheduling unit for data transmission. For example, one radio frame may have a length of 10 milliseconds (ms), one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.


The structure of the radio frame is for exemplary purposes only, and thus the number of subframes included in the radio frame or the number of slots included in the subframe may change variously.


Meanwhile, one slot may include a plurality of OFDM symbols. The number of OFDM symbols included in one slot may vary depending on a cyclic prefix (CP).



FIG. 3 illustrates an example resource grid for one uplink or downlink slot in 3GPP LTE.


Referring to FIG. 3, the uplink slot includes a plurality of OFDM (orthogonal frequency division multiplexing) symbols in the time domain and NRB resource blocks (RBs) in the frequency domain. For example, in the LTE system, the number of resource blocks (RBs), i.e., NRB, may be one from 6 to 110.


Resource block (RB) is a resource allocation unit and includes a plurality of sub-carriers in one slot. For example, if one slot includes seven OFDM symbols in the time domain and the resource block includes 12 sub-carriers in the frequency domain, one resource block may include 7×12 resource elements (REs).


Meanwhile, the number of sub-carriers in one OFDM symbol may be one of 128, 256, 512, 1024, 1536, and 2048.


In 3GPP LTE, the resource grid for one uplink slot illustrated in FIG. 4 may also apply to the resource grid for the downlink slot.



FIG. 4 illustrates the architecture of a downlink sub-frame.


In FIG. 4, assuming the normal CP, one slot includes seven OFDM symbols, by way of example.


The DL (downlink) sub-frame is split into a control region and a data region in the time domain. The control region includes up to first three OFDM symbols in the first slot of the sub-frame. However, the number of OFDM symbols included in the control region may be changed. A PDCCH (physical downlink control channel) and other control channels are allocated to the control region, and a PDSCH is allocated to the data region.


The physical channels in 3GPP LTE may be classified into data channels such as PDSCH (physical downlink shared channel) and PUSCH (physical uplink shared channel) and control channels such as PDCCH (physical downlink control channel), PCFICH (physical control format indicator channel), PHICH (physical hybrid-ARQ indicator channel) and PUCCH (physical uplink control channel).


The PCFICH transmitted in the first OFDM symbol of the sub-frame carries CIF (control format indicator) regarding the number (i.e., size of the control region) of OFDM symbols used for transmission of control channels in the sub-frame. The wireless device first receives the CIF on the PCFICH and then monitors the PDCCH.


Unlike the PDCCH, the PCFICH is transmitted through a fixed PCFICH resource in the sub-frame without using blind decoding. The PHICH carries an ACK (positive-acknowledgement)/NACK (negative-acknowledgement) signal for a UL HARQ (hybrid automatic repeat request). The ACK/NACK signal for UL (uplink) data on the PUSCH transmitted by the wireless device is sent on the PHICH.


The PBCH (physical broadcast channel) is transmitted in the first four OFDM symbols in the second slot of the first sub-frame of the radio frame. The PBCH carries system information necessary for the wireless device to communicate with the base station, and the system information transmitted through the PBCH is denoted MIB (master information block). In comparison, system information transmitted on the PDSCH indicated by the PDCCH is denoted SIB (system information block).


The PDCCH may carry activation of VoIP (voice over internet protocol) and a set of transmission power control commands for individual UEs in some UE group, resource allocation of an upper layer control message such as a random access response transmitted on the PDSCH, system information on DL-SCH, paging information on PCH, resource allocation information of UL-SCH (uplink shared channel), and resource allocation and transmission format of DL-SCH (downlink-shared channel). A plurality of PDCCHs may be sent in the control region, and the terminal may monitor the plurality of PDCCHs. The PDCCH is transmitted on one CCE (control channel element) or aggregation of some consecutive CCEs. The CCE is a logical allocation unit used for providing a coding rate per radio channel's state to the PDCCH. The CCE corresponds to a plurality of resource element groups. Depending on the relationship between the number of CCEs and coding rates provided by the CCEs, the format of the PDCCH and the possible number of PDCCHs are determined.


The control information transmitted through the PDCCH is denoted downlink control information (DCI). The DCI may include resource allocation of PDSCH (this is also referred to as DL (downlink) grant), resource allocation of PUSCH (this is also referred to as UL (uplink) grant), a set of transmission power control commands for individual UEs in some UE group, and/or activation of VoIP (Voice over Internet Protocol).


The base station determines a PDCCH format according to the DCI to be sent to the terminal and adds a CRC (cyclic redundancy check) to control information. The CRC is masked with a unique identifier (RNTI; radio network temporary identifier) depending on the owner or purpose of the PDCCH. In case the PDCCH is for a specific terminal, the terminal's unique identifier, such as C-RNTI (cell-RNTI), may be masked to the CRC. Or, if the PDCCH is for a paging message, a paging indicator, for example, P-RNTI (paging-RNTI) may be masked to the CRC. If the PDCCH is for a system information block (SIB), a system information identifier, SI-RNTI (system information-RNTI), may be masked to the CRC. In order to indicate a random access response that is a response to the terminal's transmission of a random access preamble, an RA-RNTI (random access-RNTI) may be masked to the CRC.


In 3GPP LTE, blind decoding is used for detecting a PDCCH. The blind decoding is a scheme of identifying whether a PDCCH is its own control channel by demasking a desired identifier to the CRC (cyclic redundancy check) of a received PDCCH (this is referred to as candidate PDCCH) and checking a CRC error. The base station determines a PDCCH format according to the DCI to be sent to the wireless device, then adds a CRC to the DCI, and masks a unique identifier (this is referred to as RNTI (radio network temporary identifier) to the CRC depending on the owner or purpose of the PDCCH.


The uplink channels include a PUSCH, a PUCCH, an SRS (Sounding Reference Signal), and a PRACH (physical random access channel).



FIG. 5 illustrates the architecture of an uplink sub-frame in 3GPP LTE.


Referring to FIG. 5, the uplink sub-frame may be separated into a control region and a data region in the frequency domain. The control region is assigned a PUCCH (physical uplink control channel) for transmission of uplink control information. The data region is assigned a PUSCH (physical uplink shared channel) for transmission of data (in some cases, control information may also be transmitted).


The PUCCH for one terminal is assigned in resource block (RB) pair in the sub-frame. The resource blocks in the resource block pair take up different sub-carriers in each of the first and second slots. The frequency occupied by the resource blocks in the resource block pair assigned to the PUCCH is varied with respect to a slot boundary. This is referred to as the RB pair assigned to the PUCCH having been frequency-hopped at the slot boundary.


The terminal may obtain a frequency diversity gain by transmitting uplink control information through different sub-carriers over time. m is a location index that indicates a logical frequency domain location of a resource block pair assigned to the PUCCH in the sub-frame.


The uplink control information transmitted on the PUCCH includes an HARQ (hybrid automatic repeat request), an ACK (acknowledgement)/NACK (non-acknowledgement), a CQI (channel quality indicator) indicating a downlink channel state, and an SR (scheduling request) that is an uplink radio resource allocation request.


The PUSCH is mapped with a UL-SCH that is a transport channel. The uplink data transmitted on the PUSCH may be a transport block that is a data block for the UL-SCH transmitted for the TTI. The transport block may be user information. Or, the uplink data may be multiplexed data. The multiplexed data may be data obtained by multiplexing the transport block for the UL-SCH and control information. For example, the control information multiplexed with the data may include a CQI, a PMI (precoding matrix indicator), an HARQ, and an RI (rank indicator). Or, the uplink data may consist only of control information.


Carrier Aggregation: CA

Hereinafter, a carrier aggregation system will be described.


The carrier aggregation (CA) system means aggregating multiple component carriers (CCs). By the carrier aggregation, the existing meaning of the cell is changed.


According to the carrier aggregation, the cell may mean a combination of a downlink component carrier and an uplink component carrier or a single downlink component carrier.


Further, in the carrier aggregation, the cell may be divided into a primary cell, secondary cell, and a serving cell. The primary cell means a cell that operates at a primary frequency and means a cell in which the UE performs an initial connection establishment procedure or a connection reestablishment procedure with the base station or a cell indicated by the primary cell during a handover procedure. The secondary cell means a cell that operates at a secondary frequency and once an RRC connection is established, the secondary cell is configured and is used to provide an additional radio resource.


The carrier aggregation system may be divided into a continuous carrier aggregation system in which aggregated carriers are contiguous and a non-contiguous carrier aggregation system in which the aggregated carriers are separated from each other. Hereinafter, when the contiguous and non-contiguous carrier systems are just called the carrier aggregation system, it should be construed that the carrier aggregation system includes both a case in which the component carriers are contiguous and a case in which the component carriers are non-contiguous. The number of component carriers aggregated between the downlink and the uplink may be differently set. A case in which the number of downlink CCs and the number of uplink CCs are the same as each other is referred to as symmetric aggregation and a case in which the number of downlink CCs and the number of uplink CCs are different from each other is referred to as asymmetric aggregation.


Meanwhile, the carrier aggregation (CA) technologies, as described above, may be generally separated into an inter-band CA technology and an intra-band CA technology. The inter-band CA is a method that aggregates and uses CCs that are present in different bands from each other, and the intra-band CA is a method that aggregates and uses CCs in the same frequency band. Further, CA technologies are more specifically split into intra-band contiguous CA, intra-band non-contiguous CA, and inter-band non-contiguous CA.



FIGS. 6A and 6B are concept views illustrating intra-band carrier aggregation (CA).



FIG. 6A illustrates intra-band contiguous CA, and FIG. 6B illustrates intra-band non-contiguous CA.


LTE-advanced adds various schemes including uplink MIMO and carrier aggregation in order to realize high-speed wireless transmission. The CA that is being discussed in LTE-advanced may be split into the intra-band contiguous CA illustrated in FIG. 6A and the intra-band non-contiguous CA illustrated in FIG. 6B.



FIGS. 7A and 7B are concept views illustrating inter-band carrier aggregation.



FIG. 7A illustrates a combination of a lower band and a higher band for inter-band CA, and FIG. 7B illustrates a combination of similar frequency bands for inter-band CA.


In other words, the inter-band carrier aggregation may be separated into inter-band CA between carriers of a low band and a high band having different RF characteristics of inter-band CA as illustrated in FIG. 7A and inter-band CA of similar frequencies that may use a common RF terminal per component carrier due to similar RF (radio frequency) characteristics as illustrated in FIG. 7B.












TABLE 1





Operating
Uplink (UL) operating band
Downlink (DL) operating band
Duplex


Band
FUL_low-FUL_high
FDL_low-FDL_high
Mode


















1
1920 MHz-1980 MHz
2110 MHz-2170 MHz
FDD


2
1850 MHz-1910 MHz
1930 MHz-1990 MHz
FDD


3
1710 MHz-1785 MHz
1805 MHz-1880 MHz
FDD


4
1710 MHz-1755 MHz
2110 MHz-2155 MHz
FDD


5
824 MHz-849 MHz
869 MHz-894 MHz
FDD


6
830 MHz-840 MHz
875 MHz-885 MHz
FDD


7
2500 MHz-2570 MHz
2620 MHz-2690 MHz
FDD


8
880 MHz-915 MHz
925 MHz-960 MHz
FDD


9
1749.9 MHz-1784.9 MHz
1844.9 MHz-1879.9 MHz
FDD


10
1710 MHz-1770 MHz
2110 MHz-2170 MHz
FDD


11
1427.9 MHz-1447.9 MHz
1475.9 MHz-1495.9 MHz
FDD


12
699 MHz-716 MHz
729 MHz-746 MHz
FDD


13
777 MHz-787 MHz
746 MHz-756 MHz
FDD


14
788 MHz-798 MHz
758 MHz-768 MHz
FDD


15
Reserved
Reserved
FDD


16
Reserved
Reserved
FDD


17
704 MHz-716 MHz
734 MHz-746 MHz
FDD


18
815 MHz-830 MHz
860 MHz-875 MHz
FDD


19
830 MHz-845 MHz
875 MHz-890 MHz
FDD


20
832 MHz-862 MHz
791 MHz-821 MHz
FDD


21
1447.9 MHz-1462.9 MHz
1495.9 MHz-1510.9 MHz
FDD


22
3410 MHz-3490 MHz
3510 MHz-3590 MHz
FDD


23
2000 MHz-2020 MHz
2180 MHz-2200 MHz
FDD


24
1626.5 MHz-1660.5 MHz
1525 MHz-1559 MHz
FDD


25
1850 MHz-1915 MHz
1930 MHz-1995 MHz
FDD


26
814 MHz-849 MHz
859 MHz-894 MHz
FDD


27
807 MHz-824 MHz
852 MHz-869 MHz
FDD


28
703 MHz-748 MHz
758 MHz-803 MHz
FDD


29
N/A N/A
717 MHz-728 MHz
FDD


30
2305 MHz-2315 MHz
2350 MHz-2360 MHz
FDD


31
452.5 MHz-457.5 MHz
462.5 MHz-467.5 MHz
FDD


32
N/A N/A
1452 MHz-1496 MHz
FDD


. . .





33
1900 MHz-1920 MHz
1900 MHz-1920 MHz
TDD


34
2010 MHz-2025 MHz
2010 MHz-2025 MHz
TDD


35
1850 MHz-1910 MHz
1850 MHz-1910 MHz
TDD


36
1930 MHz-1990 MHz
1930 MHz-1990 MHz
TDD


37
1910 MHz-1930 MHz
1910 MHz-1930 MHz
TDD


38
2570 MHz-2620 MHz
2570 MHz-2620 MHz
TDD


39
1880 MHz-1920 MHz
1880 MHz-1920 MHz
TDD


40
2300 MHz-2400 MHz
2300 MHz-2400 MHz
TDD


41
2496 MHz-2690 MHz
2496 MHz-2690 MHz
TDD


42
3400 MHz-3600 MHz
3400 MHz-3600 MHz
TDD


43
3600 MHz-3800 MHz
3600 MHz-3800 MHz
TDD


44
703 MHz-803 MHz
703 MHz-803 MHz
TDD



















TABLE 2





Operating
Uplink (UL) operating band
Downlink (DL) operating band
Duplex


Band
FUL_low-FUL_high
FDL_low-FDL_high
Mode







n1 
1920 MHz-1980 MHz
2110 MHz-2170 MHz
FDD


n2 
1850 MHz-1910 MHz
1930 MHz-1990 MHz
FDD


n3 
1710 MHz-1785 MHz
1805 MHz-1880 MHz
FDD


n5 
824 MHz-849 MHz
869 MHz-894 MHz
FDD


n7 
2500 MHz-2570 MHz
2620 MHz-2690 MHz
FDD


n8 
880 MHz-915 MHz
925 MHz-960 MHz
FDD


n20
832 MHz-862 MHz
791 MHz-821 MHz
FDD


n28
703 MHz-748 MHz
758 MHz-803 MHz
FDD


n38
2570 MHz-2620 MHz
2570 MHz-2620 MHz
TDD


n41
2496 MHz-2690 MHz
2496 MHz-2690 MHz
TDD


n50
1432 MHz-1517 MHz
1432 MHz -1517 MHz 
TDD


n51
1427 MHz-1432 MHz
1427 MHz -1432 MHz 
TDD


n66
1710 MHz-1780 MHz
2110 MHz -2200 MHz 
FDD


n70
1695 MHz-1710 MHz
1995 MHz-2020 MHz
FDD


n71
663 MHz-698 MHz
617 MHz-652 MHz
FDD


n74
1427 MHz-1470 MHz
1475 MHz-1518 MHz
FDD


n75
N/A
1432 MHz-1517 MHz
SDL


n76
N/A
1427 MHz-1432 MHz
SDL


n77
3300 MHz-4200 MHz
3300 MHz-4200 MHz
TDD


n78
3300 MHz-3800 MHz
3300 MHz-3800 MHz
TDD


n79
4400 MHz-5000 MHz
4400 MHz-5000 MHz
TDD


n80
1710 MHz-1785 MHz
N/A
SUL


n81
880 MHz-915 MHz
N/A
SUL


n82
832 MHz-862 MHz
N/A
SUL


n83
703 MHz-748 MHz
N/A
SUL


n84
1920 MHz-1980 MHz
N/A
SUL









When operating bands are fixed as illustrated in Table 1 and Table 2, a frequency allocation organization of each country may assign a specific frequency to a service provider according to a situation of each country.


Meanwhile, in the current 5G NR technology, a scheme (EN-DC) of dually connecting LTE and NR is underway to ensure communication stability. However, in a state in which a downlink carrier using LTE and a downlink carrier using NR are aggregated, transmission of an uplink signal may cause a harmonic component and an intermodulation distortion (IMD) component to impact on a downlink band of the UE itself.


Specifically, the UE must be set to satisfy a reference sensitivity power level (REFSENS), which is minimum average power for each antenna port of the UE. However, in case that the harmonic component and/or the IMD component occurs, the REFSENS for the downlink signal may not be satisfied. That is, the REFSENS must be set such that throughput thereof is at least 95% of maximum throughput of a reference measurement channel, but the occurrence of the harmonic component and/or the IMD component may cause the throughput to fall below 95%.


Thus, it is determined whether the harmonic component and/or the IMD component of the EN-DC terminal (or EN-DC user equipment (UE)) has occurred, and when the harmonic component and the IMD component of the EN-DC terminal has occurred, a maximum sensitivity degradation (MSD) value for a corresponding frequency band may be defined to allow relaxation for the REFSENS in a reception band of the EN-DC terminal based on a transmission signal of the EN-DC terminal. Here, the MSD is maximum allowable degradation of REFSENS, and in a certain frequency band, the REFSENS may be relaxed by the defined amount of MSD.


Accordingly, in the present disclosure, an MSD value for eliminating (or reducing) the harmonic component and IMD is proposed for a terminal set to aggregate two or more downlink carriers and two uplink carriers.


Disclosure of Present Specification

Hereinafter, in case that the UE transmits an uplink signal through two uplink carriers in an aggregation state of a plurality of downlink carriers and two uplink carriers, whether an interference is leaked to a downlink band of the UE is analyzed and a solution thereto is subsequently proposed.



FIG. 8 illustrates a situation where an uplink signal transmitted through an uplink band flows into an uplink band of the UE.


Referring to FIG. 8, in a state in which three downlink bands are set by carrier aggregation and two uplink bands are set, when the UE transmits an uplink signal through two uplink bands, the harmonic component and the IMD component may be introduced into a downlink band of the UE. In this situation, an MSD value capable of correcting the REFSENS is proposed to prevent reception sensitivity of a downlink signal from deteriorating due to the harmonic component and/or the IMD component. In addition, although the UE appropriately solves the problem, a degradation of a reception sensitivity level in the downlink band of the UE may not be completely prevented due to cross isolation and coupling loss due to the PCB, a scheme of alleviating the requirements that an existing UE must meet.


I. First Disclosure


FIG. 9 shows a scenario in which a 5G NR band and an LTE E-UTRA band of 6 GHz or lower may coexist in a 5G NR non-standalone UE.


Referring to FIG. 9, a shared antenna RF architecture in which the NR NSA UE supports dual connection between an NR band of 6 GHz or lower and an LTE E-UTRA band may be considered. Table 3 shows E-UTRA bands which may be aggregated with NR bands in the NR NSA UE.











TABLE 3









LTE band























1
2
3
5
7
8
19
20
21
25
26
28
39
41
66




























NR Freq.
3.3-4.2
GHz
Y

Y
Y
Y
Y
Y
Y
Y

Y
Y
Y
Y



Range
4.4-4.99
GHz
Y

Y
Y

Y
Y

Y

Y
Y
Y
Y



24.25-29.5
GHz
Y

Y
Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y



31.8-33.4
GHz


Y

Y


Y



Y



37-40
GHZ














Y
























Band 7


Y


Y

Y










Band 28


Y

Y


Y



Band 41
Y
Y
Y
Y





Y
Y


Y










Referring to FIG. 9 and Table 3, LTE E-UTRA operating bands 1 and 41 may be aggregated with an NR operating band n77 (3.3 GHz-4.2 GHz).


As illustrated in FIG. 9, a scenario in which LTE E-UTRA operating bands 1 and 41 coexist with an NR operating band n77 may include a case 1) where an LTE frequency band and an NR frequency band are single-connected (single connectivity), a case 2) where the LTE frequency band and the NR frequency band are dual-connected (dual connectivity), and a case 3) where the LTE frequency band and the NR frequency band are dual-connected in the same frequency band


1) Case where LTE frequency band and NR frequency band are single-connected


When LTE and NR are single-connected, LTE may operate as a primary cell. Here, as illustrated in FIG. 9, the LTE operating frequency band B1 may transmit a signal and an Rx of the LTE operating frequency band B1 operates as frequency division duplex (FDD), and thus, signal transmission and reception may be simultaneously performed. NR operates as a secondary cell, and in the NR operating frequency band n77, a signal may be received simultaneously with transmission and reception in the LTE operating frequency band B1.


2) Case where LTE frequency band and the NR frequency band are dual-connected (EN-DC)


When the LTE frequency band and the NR frequency band are dual-connected, impact on a reception band of the UE may be different depending on whether the LTE frequency band operates as FDD or time division duplexing (TDD).


For example, when the LTE operating frequency band B1 and the NR operating frequency band n77 are dual-connected, data reception may be performed only in the LTE operating frequency band B1. Since the NR operating frequency band n77 operates as TDD, no signal reception occurs. Therefore, in this case, the harmonic/IMD impact may be analyzed only for a reception band of the LTE operating frequency band B1 in which signal reception may occur.


Meanwhile, unlike the case of FIG. 9, when the LTE operating frequency band B1 and the NR operating frequency band n7 are dual-connected, since both the LTE operating frequency band B1 and the NR operating frequency band n7 operate as FDD, harmonic/IMD impact must be analyzed in both the LTE operating frequency band B1 and the NR operating frequency band n7.


Also, when the LTE operating frequency band B41 and the NR operating frequency band n77 are dual-connected, both the LTE operating frequency band B41 and the NR operating frequency band n77 operate as TDD, and thus, signals are not simultaneously transmitted and received at the same ban so there is no need to analyze the harmonic/IMD impact. However, when both bands operate asynchronously, self-interference may need to be analyzed.


3) Case where LTE frequency band and NR frequency band are dual-connected at the same frequency band


For example, the LTE operating frequency band B41 and the NR operating frequency band n41 may be dual-connected or the LTE operating frequency band B71 and the NR operating frequency band n71 may be dual-connected. In this case, MPR/A-MPR must be analyzed according to RF architecture.


As illustrated in FIG. 9, when the LTE operating frequency band B41 and the NR operating frequency band n41 are dual-connected, the frequency bands B41 and n41 operate as TDD, and thus, the harmonic/IMD problem for the reception band of the UE does not arise.


However, if the LTE operating frequency band B71 and the NR operating frequency band n71 are dual-connected, since the frequency bands B71 and n71 operate as FDD, intra-band contiguous CA occurs in the band, and thus, the harmonic/IMD problem of the reception band of the UE regarding the frequency bands B71 and n71 must be analyzed.


Also, Table 4 shows the harmonic and IMD problem when the NR NSA terminal supports single/dual-connection between the NR operating band n77 and the LTE E-UTRA operating bands, and Table 5 shows the harmonic and IMD problem when the NR NSA terminal supports single/dual-connection between the NR operating band n79 and the LTE E-UTRA operating bands. Referring to Table 4 and Table 5, it can be seen that the harmonic problem is a major factor in the reduction of sensitivity. In addition, in the case of dual connectivity (DC), the reception frequency band of the UE may be impacted by the IMD. Therefore, a maximum sensitivity degradation (MSD) must be considered not only for the harmonic problem but also for the IMD problem, and a scheme of guaranteeing a zero MSD in the existing E-UTRA band by optimizing resource block (RB) assignment in the NR band or by controlling the RB size or position by gNB scheduling must be considered.











TABLE 4








NR band (MHz)



E-UTRA band
3300-4200












E-UTRA
UL range
Harmonic
Harmonic



band
(MHz)
order
range (MHz)
Harmonic/IMD problem





B1
1920-1980
2x
3840-3960
1) Harmonics into NR






2) 2nd, 4th & 5th IMD into B1






3) 4th & 5th IMD into NR


B3
1710-1785
2x
3420-3570
1) Harmonics into NR






2) 2nd, 4th & 5th IMD into B3






3) 4th & 5th IMD into NR


B5
824-849
4x
3296-3396
1) Harmonics into NR




5x
4120-4245
2) 4th &5th IMD into B5






3) 2nd & 5th IMD into NR


B7
2500-2570

N/A
1) No harmonics






2) 4th IMD into B7






3) 3rd & 4th IMD into NR


B8
880-915
4x
3520-3660
1) Harmonics into NR






2) 4th IMD into B8






3) 2nd & 5th IMD into NR


B19
830-845
4x
3320-3380
1) Harmonics into NR




5x
4150-4225
2) B19 custom character   4th&5th IMD






3) NR custom character   2nd & 5th IMD


B20
832-862
4x
3328-3448
1) Harmonics into NR




5x
4160-4310
2) 4th & 5th IMD into B19






3) 2nd & 5th IMD into NR


B21
1447.9-1462.9

N/A
1) No harmonics






2) No impact of IMD on B21






3) 4th & 5th IMD into NR


B25
1850-1915
2x
3700-3830
1) Harmonics into NR






2) 2nd, 4th & 5th IMD into B25






3) 4th & 5th IMD into NR


B26
814-849
4x
3256-3396
1) Harmonics into NR




5x
4070-4245
2) 4th&5th IMD into B26






3) 2nd & 5th IMD into NR


B28
703-748
5x
3515-3740
1) Harmonics into NR






2) 5th IMD into B28






3) 2nd IMD into NR


B38
2570-2620

N/A
1) No harmonics






2) 4th IMD into B7






3) 3rd & 4th IMD into NR






TDD-TDD sync. → No impact


B39
1880-1920
2x
3760-3840
1) Harmonics into NR






2) 2nd, 4th & 5th IMD into B39






3) 4th & 5th IMD into NR






TDD-TDD sync. → No impact


B41
2496-2690

N/A
1) No harmonics






2) 4th IMD into B41






3) 3rd & 4th IMD into NR






TDD-TDD sync. → No impact


B42
3400-3600

N/A
1) No harmonics






2) 3rd, 5th IMD into B42






3) 3rd, 5th IMD into NR






TDD-TDD sync. → No impact


















TABLE 5








NR band (MHz)



E-UTRA band
4400-5000












E-UTRA
UL range
harmonic
harmonic



band
(MHz)
order
range (MHz)
harmonic/IMD problem





B1
1920-1980

N/A
1) No harmonics into NR






2) No impact on B1






3) Impact of 4th IMD on NR


B3
1710-1785

N/A
1) No harmonics into NR






2) 5th IMD into B3






3) 5th IMD into NR


B8
880-915
5x
4400-4575
1) Harmonic into NR






2) 5th IMD into B8






3) No harmonics into NR


B19
830-845
6x
4980-5070
1) Harmonics into NR






2) No IMD problem at B19






3) No IMD problem at NR


B21
1447.9-1462.9

N/A
1) No harmonics






2) 3rd IMD into B21






3) 5th IMD into NR


B26
814-849
6x
4884-5094
1) Harmonic into NR






2) No IMD problem at B26






3) No IMD problem at NR


B28
703-748
6x
4218-4488
1) Harmonics into NR




7x
4921-5236
2) No IMD problem at B28






3) No IMD problem at NR


B39
1880-1920

N/A
1) No harmonics into NR






2) No IMD problem at B39






3) 4th IMD into NR → TDD-






TDD sync. → No impact


B41
2496-2690
2x
4992-5380
1) Harmonic into NR






2) 2nd, 4th & 5th






IMD into B41






3) 4th & 5th






IMD into NR






TDD-TDD sync. → No impact


B42
3400-3600

N/A
1) No harmonics into NR






2) No IMD problem at B42






3) No IMD problem NR









According to Tables 4 and 5, it can be seen that the harmonic/IMD problem does not occur when considering the synchronized TDD-TDD network between the existing TDD LTE band and NR band.


Thus, the following phenomenon may be discovered on the basis of Table 4 and Table 5.

    • Observation 1: In a TDD-TDD synchronization network, the harmonic/IMD problems does not occur
    • Observation 2: In an FDD-TDD NSA terminal, the harmonic problem may have a fatal impact on NR reception frequency of the terminal.


The harmonic problem may impact on the NR band regarding FDD-TDD DC NSA terminals. Thus, a harmonic trap filter must be considered for a specific NSA terminal. The harmonic trap filter may significantly reduce an interference level regarding the NR band. Also, an MSD level regarding the NR band of the NSA terminal may be defined regardless of harmonic order.


A third point is the IMD problem regarding a NSA DC terminal. This may be divided into two problems.


A first problem is that the IMD may impact on a reception LTE (E-UTRA) band of the terminal.

    • Observation 3: Regarding the FDD-TDD NSA terminal, the IMD may impact on an LTE reception frequency of the terminal


Since mobility control of the NSA terminal is based on LTE connection, desensitization of the LTE band must be prevented through dual-transmission that guarantees an MSD level of 0 dB in the existing LTE band. Thus, additional maximum power reduction (A-MPR) requirements in the NR band must be defined to protect the existing LTE band or allow resource block (RB) shift or a limited RB size in the NR band.


Also, the second problem may impact on a reception NR band of the terminal.

    • Observation 4: In the FDD-TDD NSA terminal, the IMD may fall on the NR reception frequency of the terminal.


Here, if a required MSD level is not higher than a specific level, the MSD level for the NR band may be defined. Then, dual-connectivity (DC) for a combination of LTE band and NR band may be allowed. However, if the required MSD level is higher than the specific level, the NSA DC of the combination of the LTE band and the NR band may not be allowed


In an LTE dual-uplink carrier aggregation (CA) band combination, an average MSD level regarding an IMD4 (4th IMD) generated from 11 sample band combinations of the Table 7.3.1A-0f of TS 36.101 in which MSD levels according to dual-uplink CA band combinations is 7.56 dB. Also, an average MSD level regarding IMD5 (5th IMD) is 4.68. dB. However, a statistical MSD level regarding IMD3 (3rd IMD) is 13.73 dB.

    • Observation 5: In the dual uplink LTE CA, an MSD level according to IMD4 and IMD5 may be approximately 10 dB or less.


Based on the MSD results of the 2DL/2UL CA band combination of TS 36.101, a reference MSD level may be determined as 10 dB. This may mean that if the MSD level is greater than 10 dB, NSA DC in the combination of the candidate LTE band and the NR band is not allowed. If not, an NSA DC operation in the combination of the LTE band and the NR NSA band is allowed and an MSD level may be defined as a REFSENS exceptional condition.


According to the above observations, in the present disclosure, a 5G NSA terminal of 6 GHz or lower is proposed as follows.

    • Proposal 1: For the harmonic problem, a harmonic trap filter may be considered to reduce an interference signal level and the MSD level may be defined.
    • Proposal 2: When the IMD falls on the existing LTE band, a 0 dB MSD must be guaranteed using the A-MPR scheme or next generation NodeB (gNB) scheduling in the NR band.
    • Proposal 3: When the IMD falls on the NR band, an MSD level may be defined as exceptional requirements for reference sensitivity (REFSENS).
    • Proposal 4: Based on observation 4 and observation 5 above, the MSD level may be determined to be 10 dB as a reference point regarding whether NSA dual-connection operation is allowed.


II. Second Disclosure

To support dual-connection between the NR band and the LTE E-UTRA band, it is necessary to evaluate a coexistence analysis for an NSA operation within some NR deployment scenarios. Thus, in the second disclosure, an MSD value for supporting a DC operation although self-interference impacts on a reception frequency band of the terminal is proposed.


Regarding NR, a shared antenna RF architecture for NSA terminals of 6 GHz or lower may be considered as an LTE system. Thus, a shared antenna RF architecture for a general NSA DC terminal may be considered to derive the MSD level. However, some DC band combinations for the NR DC terminal must consider a separate RF architecture which means that operating frequency ranges between the NR band and the LTE band overlap like DC_42A-n77A, DC_42A-n78A, and DC_41_n41A.


1. Harmonic Problem in NR Band

Based on a coexistence analysis result for the NSA DC terminal, the MSD level for the following five cases may be determined. When the MSD level is analyzed, a harmonic trap filter may be used.

    • 2nd harmonic: DC_1A-n77A
    • 4th harmonic: DC_5A-n78A, DC_8A-n78A, DC_20A-n78A
    • 5th harmonic: DC_5A-n77A, DC_8A-n79A, DC_19A-n77A, DC_20A-n77A
    • 6th harmonic: DC_19A-n79A, DC_28A-n79A
    • 7th harmonic: DC_28A-n79A


MSD Level Regarding 2nd Harmonic

Table 6 below shows RF component isolation parameters of the DC_1A-n77A terminal for deriving the MSD level at 6 GHz or lower.












TABLE 6









Option1: W/HTF
Option2: W/O HTF












Primary
Diversity
Primary
Diversity

















H2

H2

H2

H2


Parameter
Value
level
Value
level
Value
level
Value
level


















B1 Tx in PA output
28

28

28

28



B1 PA H2
35
−7
35
−7
35
−7
35
−7


attenuation


B1 duplexer H2
30
−37
30
−37
30
−37
30
−37


attenuation


Harmonic filter
25
−62
25
−62
0
−37
0
−37


Mid switch H2
−65
−60.2
−65
−60.2
−65
−37
−65
−37


Diplexer attenuation
25
−85.2
25
−85.2
25
−62
25
−62


Antenna isolation
0
−85.2
10
−95.2
0
−62
10
−72


HB switch
0.7
−85.9
0.7
−95.9
0.7
−62.7
0.7
−72.7


attenuation


HB switch H2
−130
−85.9
−110
−95.8
−130
−62.7
−110
−72.7


n77 Rx filter atten.
1.5
−87.4
1.5
−97.3
1.5
−64.2
1.5
−74.2


n77 Rx filter H2
−110
−87.4
−110
−97.0
−110
−64.2
−110
−74.2


B1 PA to NR B77
60
−67.0
60
−67.0
60
−67.0
60
−67.0


LNA isolation


Composite

−67.0

−67.0

−62.4

−66.2









The major factor for determining the MSD level for the second harmonic is an isolation level from the LTE band B1 power amplifier (PA) to the NR band n77 low-noise amplifier (LNA). It may be limited to 3.3 GHz to 4.2 GHz by the B1 PA attenuation level.


According to Table 6, the MSD level for DC_1A-n77A may be expressed as illustrated in Table 7 below.











TABLE 7








W/HTF
W/O HTF














H2 level
MSD
H2 level
MSD



Thermal
(dBm)
(dB)
(dBm)
(dB)















Main Path
−101
−67.0
34.8
−62.4
39.4


Diversity Path
−101
−67.0
34.8
−66.2
35.5


After MRC


31.8

34.0









MSD Level for 4th Harmonic

Table 8 shows RF component isolation parameters of the DC_5A-n78A terminal for deriving the MSD level at 6 GHz or lower.












TABLE 8









Option1: W/HTF
Option2: W/O HTF












Primary
Diversity
Primary
Diversity

















H4

H4

H4

H4


Parameter
Value
level
Value
level
Value
level
Value
level


















B5 Tx in PA output
28

28

28

28



B5 PA H4
48
−20
48
−20
48
−20
48
−20


attenuation


B5 duplexer H4
30
−50
30
−50
30
−50
30
−50


attenuation


Harmonic filter
25
−75
25
−75
0
−50
0
−50


Low switch H4
−65
−64.6
−65
−64.6
−65
−49.9
−65
−49.9


Diplexer attenuation
27
−91.6
27
−91.6
27
−76.9
27
−76.9


Antenna isolation
0
−91.6
10
−101.6
0
−76.9
10
−86.9


HB switch
0.7
−92.3
0.7
−102.3
0.7
−77.6
0.7
−87.6


attenuation


HB switch H4
−130
−92.3
−110
−101.6
−130
−77.6
−110
−87.5


n78 Rx filter atten.
1.5
−93.8
1.5
−103.1
1.5
−79.1
1.5
−89.0


n78 Rx filter H4
−110
−93.7
−110
−102.3
−110
−79.1
−110
−89.0


B5 PA to NR B78
60
−80.0
60
−80.0
60
−80.0
60
−80.0


LNA isolation


Composite

−79.8

−80.0

−76.5

−79.5









According to Table 8, the MSD level for DC_5A-n78A may be expressed as illustrated in Table 9 below.











TABLE 9








W/HTF
W/O HTF














H4 level
MSD
H4 level
MSD



Thermal
(dBm)
(dB)
(dBm)
(dB)















Main Path
−101
−79.8
22.0
−76.5
25.3


Diversity Path
−101
−80.0
21.8
−79.4
22.3


After MRC


18.9

20.6









MSD Level for 5th Harmonic

Table 10 shows RF component isolation parameters for the DC_19A-n77A terminal to derive the MSD level at 6 GHz or lower.












TABLE 10









Option1: W/HTF
Option2: W/O HTF












Primary
Diversity
Primary
Diversity

















H5

H5

H5

H5


Parameter
Value
level
Value
level
Value
level
Value
level


















B19 Tx in PA output
28

28

28

28



B19 PA H5
53
−25
53
−25
53
−25
53
−25


attenuation


B19 duplexer H5
30
−55
30
−55
30
−55
30
−55


attenuation


Harmonic filter
25
−80
25
−80
0
−55
0
−55


Low switch H5
−65
−64.9
−65
−64.9
−65
−54.6
−65
−54.6


Diplexer attenuation
27
−91.9
27
−91.9
27
−81.6
27
−81.6


Antenna isolation
0
−91.9
10
−101.9
0
−81.6
10
−91.6


HB switch
0.7
−92.6
0.7
−102.6
0.7
−82.3
0.7
−92.3


attenuation


HB switch H5
−130
−92.6
−110
−101.8
−130
−82.3
−110
−92.2


n77 Rx filter atten.
1.5
−94.1
1.5
−103.3
1.5
−83.8
1.5
−93.7


n77 Rx filter H5
−110
−94.0
−110
−102.5
−110
−83.8
−110
−93.6


B19 PA to NR B77
60
−85.0
60
−85.0
60
−85.0
60
−85.0


LNA isolation


Composite

−84.5

−84.9

−81.3

−84.4









According to Table 10, the MSD level for DC_19A-n77A may be expressed as in Table 11 below.











TABLE 11








W/HTF
W/O HTF














H5 level
MSD
H5 level
MSD



Thermal
(dBm)
(dB )
(dBm)
(dB)















Main Path
−101
−84.5
17.4
−81.3
20.5


Diversity Path
−101
−84.9
16.9
−84.4
17.4


After MRC


14.1

15.7









MSD Level for 6th Harmonic

Table 12 shows RF component isolation parameters of the DC_19A-n79A terminal to derive the MSD level at 6 GHz or lower.












TABLE 12









Option1: W/HTF
Option2: W/O HTF












Primary
Diversity
Primary
Diversity

















H6

H6

H6

H6


Parameter
Value
level
Value
level
Value
level
Value
level


















B19 Tx in PA output
28

28

28

28



B19 PA H6
60
−32
60
−32
60
−32
60
−32


attenuation


B19 duplexer H6
30
−62
30
−62
30
−62
30
−62


attenuation


Harmonic filter
25
−87
25
−87
0
−62
0
−62


Low switch H6
−70
−69.9
−70
−69.9
−70
−61.4
−70
−61.4


Diplexer attenuation
27
−96.9
27
−96.9
27
−88.4
27
−88.4


Antenna isolation
0
−96.9
10
−106.9
0
−88.4
10
−98.4


HB switch
0.7
−97.6
0.7
−107.6
0.7
−89.1
0.7
−99.1


attenuation


HB switch H6
−130
−97.6
−110
−105.6
−130
−89.1
−110
−98.7


n79 Rx filter atten.
1.5
−99.1
1.5
−107.1
1.5
−90.6
1.5
100.2


n79 Rx filter H6
−110
−98.8
−110
−105.3
−110
−90.5
−110
−99.8


B19 PA to NR B79
60
−92.0
60
−92.0
60
−92.0
60
−92.0


LNA isolation


Composite

−91.2

−91.8

−88.2

−91.3









According to Table 12, the MSD level for DC_19A-n79A may be expressed as illustrated in Table 13 below.











TABLE 13








W/HTF
W/O HTF














H6 level
MSD
H6 level
MSD



Thermal
(dBm)
(dB)
(dBm)
(dB)















Main Path
−101
−91.2
11.0
−88.2
13.8


Diversity Path
−101
−91.8
10.4
−91.3
10.8


After MRC


7.7

9.1









MSD Level for 7th Harmonic

Table 14 shows RF component isolation parameters of the DC_28A-n79A terminal to derive the MSD level at 6 GHz or lower.












TABLE 14









Option1: W/HTF
Option2: W/O HTF












Primary
Diversity
Primary
Diversity

















H7

H7

H7

H7


Parameter
Value
level
Value
level
Value
level
Value
level


















B28 Tx in PA output
28

28

28

28



B28 PA H7
70
−42
70
−42
70
−42
70
−42


attenuation


B28 duplexer H7
30
−72
30
−72
30
−72
30
−72


attenuation


Harmonic filter
25
−97
25
−97
0
−72
0
−72


Low switch H7
−80
−79.9
−80
−79.9
−80
−71.4
−80
−71.4


Diplexer attenuation
27
−106.9
27
−106.9
27
−98.4
27
−98.4


Antenna isolation
0
−106.9
10
−116.9
0
−98.4
10
−108.4


HB switch
0.7
−107.6
0.7
−117.6
0.7
−99.1
0.7
−109.1


attenuation


HB switch H7
−130
−107.6
−110
−109.3
−130
−99.1
−110
−106.5


n79 Rx filter atten.
1.5
−109.1
1.5
−110.8
1.5
−100.6
1.5
−108.0


n79 Rx filter H7
−110
−106.5
−110
−107.4
−110
−100.1
−110
−105.9


B28 PA to NR B79
60
−102.0
60
−102.0
60
−102.0
60
−102.0


LNA isolation


Composite

−100.7

−100.9

−97.9

−100.5









According to Table 14, the MSD level for DC_28A-n79A may be expressed as illustrated in Table 15 below.











TABLE 15








W/HTF
W/O HTF














H6 level
MSD
H6 level
MSD



Thermal
(dBm)
(dB)
(dBm)
(dB)















Main Path
−101
−100.7
3.6
−97.9
5.4


Diversity Path
−101
−100.9
3.5
−100.5
3.7


After MRC


0.53

1.5









Based on the above-described harmony analysis results, the present disclosure proposes as follows.

    • Proposal 1: For the harmonic problem, an MSD level must be defined for the NR band of the maximum of sixth harmonic to support the NSA DC operation. The 7th harmonic does not seriously impact on NR sensitivity.


2. IMD Problem for LTE Band and NR Refarming Band

The NR refarming band refers to a reused band, which means a frequency band used for LTE communication and also used for NR communication among frequency bands. For example, referring to Table 1 and Table 2 described above, the NR operating band n1 to the NR operating band n41 may be refarming bands which are also included in the LTE operating band.


Based on the coexistence analysis results for the NSA DC terminal, the MSD levels for the following four cases may be determined. When the MSD level is analyzed, a harmonic trap filter may be used.

    • 2nd IMD: DC_1A-n77A, DC_3A-n77A, DC_3A-n78A
    • 3rd IMD: DC_21A-n79A
    • 4th IMD: DC_1A-n77A, DC_1A-n78A, DC_3A-n77A, DC_3A-n78A, DC_7A-n77A, DC_8A-n77A, DC_19A-n77A, DC_20A-n77A, DC_26A-n77A, DC_3A-n7A
    • 5th IMD: DC_3A-n79A, DC_8A-n79A, DC_19A-n77A, DC_2A-n66A


Table 16 shows UE RF front-end component parameters for deriving an MSD level at 6 GHz or lower.











TABLE 16








UE ref. Architecture




Cas-caded Diplexer Architecture




DC_1A-n77A, DC_3A-n77A,




DC_3A-n78A, DC_21A-n79A















IP2
IP3
IP4
IP5



Component
(dBm)
(dBm)
(dBm)
(dBm)
















Ant. Switch
112
68
55
55



Diplexer
115
87
55
55



Duplexer
100
75
55
53



PA Forward
28.0
32
30
28



PA Reversed
40
30.5
30
30



LNA
10
0
0
−10









Table 17 shows isolation levels according to RF components.











TABLE 17






Value



Isolation Parameter
(dB)
Comment

















Antenna to Antenna
10
Main antenna to diversity antenna


PA (out) to PA (in)
60
PCB isolation (PA forward mixing)


Diplexer
25
High/low band isolation


PA (out) to PA (out)
60
L-H/H-L cross-band


PA (out) to PA (out)
50
H-H cross-band


LNA (in) to PA (out)
60
L-H/H-L cross-band


LNA (in) to PA (out)
50
H-H cross-band


Duplexer
50
Tx band rejection at Rx band









Here, the isolation level indicates how much strength of a signal is reduced at the corresponding frequency when the signal passes through an element or an antenna. For example, referring to Table 17, when the signal is transmitted from an antenna to an antenna, strength thereof may be reduced by 10 dB and when the signal is received at that frequency, strength thereof may be reduced by 50 dB.


Based on Table 16 and Table 17, the present disclosure proposes MSD levels as illustrated in Table 18 to Table 21.


Table 18 shows the MSD levels proposed for the second IMD.


















TABLE 18








UL
UL

DL
DL




DC
UL

Fc
BW
UL
Fc
BW
CF
MSD


bands
DC
IMD
(MHz)
(MHz)
RB #
(MHz)
(MHz)
(dB)
(dB)

























DC_1A-
1
IMD2
|fB77 − fB1|
1930
5
25
2120
5
2.2
31.1


n77A
n77


4050
10
52
4050
10

N/A


DC_3A-
3
IMD2
|fB77 − fB3|
1730
5
25
1825
5
2.5
31.3


n77A
n77


3555
10
52
3555
10

N/A


DC_3A-
3
IMD2
|fB78 − fB3|
1730
5
25
1825
5
2.5
31.3


n78A
n78


3555
10
52
3555
10

N/A









Table 19 shows a proposed MSD level for a third IMD.


















TABLE 19








UL
UL

DL
DL




DC
UL

Fc
BW
UL
Fc
BW
CF
MSD


bands
DC
IMD
(MHz)
(MHz)
RB #
(MHz)
(MHz)
(dB)
(dB)

























DC_21A-
21
IMD3
|fB79 − 2*fB21|
1457.5
5
25
1505.5
5
1.8
18.4


n79A
n79


4420.5
40
216
4420.5
40

N/A









Table 20 shows a proposed MSD level for a fourth IMD.


















TABLE 20








UL
UL

DL
DL




DC
UL

Fc
BW
UL
Fc
BW
CF
MSD


bands
DC
IMD
(MHz)
(MHz)
RB #
(MHz)
(MHz)
(dB)
(dB)

























DC_1A-
1
IMD4
|fB77 − 3*fB1|
1930
5
25
2120
5
1.5
8.3


n77A
n77


3670
10
52
3670
10

N/A


DC_1A-
1
IMD4
|fB78 − 3*fB1|
1930
5
25
2120
5
1.5
8.3


n78A
n78


3670
10
52
3670
10

N/A


DC_3A-
3
IMD4
|fB77 − 3*fB3|
1770
5
25
1865
5
1.5
8.5


n77A
n77


3445
10
52
3445
10

N/A


DC_3A-
3
IMD4
|fB78 − 3*fB3|
1770
5
25
1865
5
1.5
8.5


n78A
n78


3445
10
52
3445
10

N/A


DC_7A-
7
IMD4
|2*fB77 − 2*fB7| 
2560
10
50
2680
10
1.6
9.3


n77A
n77


3900
10
52
3900
10

N/A


DC_8A-
8
IMD4
|fB77 − 3*fB3|
910
5
25
955
5
1.3
8.4


n77A
n77


3685
10
52
3685
10

N/A


DC_19A-
19 
IMD4

|fB77 − 3*fB19|

840
5
25
885
5
1.7
8.7


n77A
n77


3405
10
52
3405
10

N/A


DC_20A-
20 
IMD4

|fB77 − 3*fB19|

857
5
25
816
5
1.7
9.0


n77A
n77


3387
10
52
3387
10

N/A


DC_26A-
26 
IMD4

|fB77 − 3*fB26|

819
5
25
864
5
1.7
9.0


n77A
n77


3321
10
52
3321
10

N/A


DC_3A-
3
IMD4

|fB7 − 3*fB3|

1740
5
25
1835
5
1.5
N/A


n7A
n7 


2550
10
52
2670
10

7.5









Table 21 shows a proposed MSD level for a fifth IMD.


















TABLE 21








UL
UL

DL
DL




DC
UL

Fc
BW
UL
Fc
BW
CF
MSD


bands
DC
IMD
(MHz)
(MHz)
RB #
(MHz)
(MHz)
(dB)
(dB)

























DC_3A-
3
IMD5
|fB79 − 4*fB3|
1712.5
5
25
1807.5
5
0.5
0.0


n79A
n79


4995
10
52
4995
10

N/A


DC_8A-
8
IMD5
|fB79 − 4*fB8|
900
5
25
945
5
1.0
2.7


n79A
n79


4545
10
52
4545
10

N/A


DC_19A-
19 
IMD5

|fB77 − 4*fB19|

832.5
5
25
877.5
5
0.5
0.0


n77A
n77


4195
10
52
4195
10

N/A


DC_2A-
2
IMD5
|2*fB66 − 3*fB2| 
1860
5
25
1940
5
0.8
N/A


n66A
n66


1725.5
5
52
2130
5

2.0









Based on the MSD levels for the IMDs, the present disclosure proposes as follows.

    • Proposal 2: For the IMD problem, an MSD level must be defined for the NR band of a maximum of the fifth order IMD to support NSA DC operation. In addition, corresponding test setup and MSD level may be considered to designate the NSA terminal DC sensitivity level.


III. Third Disclosure

In the third disclosure, self-interference that occurs when a 5G NR terminal performing a DC operation (EN-DC) of the LTE band and the NR band transmits a dual-uplink signal is analyzed and a relaxed standard for sensitivity is proposed.


Table 22 shows self-interference that may occur in the LTE-NR DC combination of 3DL/2UL.














TABLE 22









Interference







due to small


Downlink
Uplink


frequency


band setup
DC setup
harmonic
IMD
isolation
MSD







B1 +
DC_1A_n3A
2nd
2nd & 4th
Yes
Harmonic problems will


n3 +

harmonic
IMDs

be covered in DC_n3A-


n78

from n3
into n78

n78A.




into n78


2nd &4th IMDs problems







will be FFS.







Small freq. gap was







covered in Table 7.3.1A-







0bA in TS36.101



DC_1A_n78A

2nd

2nd IMD problems will





IMD into

be FFS.





n3


B1 +
DC_1A_n78A

3rd

3rd IMD problem will be


n78 +


IMD into

FFS. If consider


n79


n79

synchronous TDD







operation btw n78 and n79,







MSD study is not







necessary.



DC_1A_n79A

5th

5th IMD problem will be





IMDs into

FFS. If consider





n78

synchronous TDD







operation btw n78 and n79,







MSD study is not







necessary.


B1 +
DC_1A_n77A
7th & 8th


No harmonics problems


n77 +

Harmonics from


by 7th & 8th order between


n257

n77 into n257


FR1 and FR2



DC_1A_n257A
2nd


Harmonic problem




harmonic from


already discussed and will




B1 into n77


be solved in DC_1A_n77A


B1 +
DC_1A_n78A
7th& 8th


No harmonics problems


n78 +

Harmonics from


by 7th & 8th order between


n257

n78 into n257


FR1 and FR2



DC_1A_n257A
2nd


Harmonic problem




harmonic from


already discussed and will




B1 into n78


be solved in DC_1 A_n78A


B1 +
DC_1A_n79A
6th


Harmonic problem will be


n79 +

Harmonics from


solved in DC_n79A-n257A


n257

n79 into n257


(6th order)



DC_1A_n257A



No issues


B3 +
DC_3A_n1A
2nd
2nd & 4th
Yes
Harmonic problems will


n1 +

harmonic from
IMDs into

be covered in


n78

3 into n78
n78

DC_3A_n78A.







2nd &4th IMDs problems







same as DC_1A_n3A-







n78A.







Small freq. gap was







covered in Table 7.3.1A-







0bA in TS36.101



DC_3A_n78A

5th

5th IMD problems will be





IMD into

FFS.





n1


B3 +
DC_3A_n77A

3rd & 4th

RAN4 agreed the


n77 +


IMDs into

synchronous TDD


n79


n79

operation btw n77 and n79,







So MSD study are not







necessary.



DC_3A_n79A
2nd
5th

Harmonic problem will be




harmonic from
IMD into

solved in DC_3A_n77A




B3 into B77
B77

RAN4 agreed the







synchronous TDD







operation btw n77 and n79,







So MSD study is not







necessary.


B3 +
DC_3A_n78A

3rd

3rd IMD problem will be


n78 +


IMD into

FFS. If consider


n79


n79

synchronous TDD







operation btw n78 and n79,







MSD study is not







necessary.



DC_3A_n79A
2nd
5th

Harmonic problem will be




harmonic from
IMD into

solved in DC_3A_n78A




B3 into B78
B78

5th IMD problem will be







FFS. If consider







synchronous TDD







operation btw n78 and n79,







MSD study is not







necessary.


B3 +
DC_3A_n77A
7th & 8th


No harmonics problems


n77 +

harmonics from


by 7th & 8th order between


n257

n77 into n257


FR1 and FR2



DC_3A_n257A
2nd


Harmonic problem will be




harmonic from


solved in DC_3A_n77A




B3 into B77


B3 +
DC_3A_n78A
7th & 8th


No harmonics problems


n78 +

harmonics from


by 7th & 8th order between


n257

n78 into n257


FR1 and FR2



DC_3A_n257A
2nd


Harmonic problem will be




harmonic from


solved in DC_3A_n78A




B3 into n78


B3 +
DC_3A_n79A
6th


Harmonic problem will be


n79 +

harmonic from


solved in DC_n79A-n257A


n257

n79 into n257


(6th order)



DC_3A_n257A



No issues


B5 +
DC_5A_n78A
7th & 8th


No harmonics problems


n78 +

harmonics from


by 7th & 8th order between


n257

n78 into n257


FR1 and FR2



DC_5A_n257A
4th harmonic from


Harmonic problem will be




B5 into n78


solved in DC_5A_n78A


B7 +
DC_7A_n78A
7th & 8th


No harmonics problems


n78 +

harmonics from


by 7th & 8th order between


n257

n78 into n257


FR1 and FR2



DC_7A_n 257A



No issues


B7 +
DC_7A_n1A



No issues


n1 +
DC_7A_n3A



No issues


n3


B7 +
DC_7A_n1A

4th & 5th

4th & 5th IMDs problem will


n1 +


IMDs into

be FFS.


n78


n78



DC_7A_n78A

4th

4th IMD problem will be





IMD into

FFS.





n1


B7 +
DC_7A_n3A
2nd
3rd

Harmonic problem will be


n3 +

harmonic from
IMD into

solved in DC_n3A-n78A


n78

n3 into n78
n78

3rd IMD problem will be







FFS.



DC_7A_n78A

3rd & 4th

3rd & 4th IMDs problem will be





IMDs into

FFS.





n3


B19 +
DC_19A_n77A
6th
2nd, 3rd,

Harmonic problem will


n77 +

harmonic from
4th & 5th

be solved in DC_19A_n79A


n79

B19 into n79
IMDs into

RAN4 agreed the





n79

synchronous TDD







operation btw n77 and n79,







So MSD study is not







necessary.



DC_19A_n79A
4th & 5th
2nd&3rd

Harmonic problem will be




harmonics from
IMDs into

solved in DC_19A_n77A




B19 into n77
n77

RAN4 agreed the







synchronous TDD







operation btw n77 and n79,







So MSD study is not







necessary.


B19 +
DC_19A_n78A
6th
2nd, 3rd,

Harmonic problem will be


n78 +

harmonic from
4th & 5th

solved in DC_19A_n79A


n79

B19 into n79
IMDs into

These IMDs problem are





n79

FFS. If consider







synchronous TDD







operation btw n78 and n79,







MSD study is not







necessary.



DC_19A_n79A
4th
2nd&3rd

Harmonic problem will be




harmonic from
IMDs into

solved in DC_19A_n78A




B19 into n78
n78

These IMDs problem are







FFS. If consider







synchronous TDD







operation btw n78 and n79,







MSD study is not







necessary.


B19 +
DC_19A_n77A
7th & 8th


No harmonics problems


n77 +

harmonics from


by 7th & 8th order between


n257

n77 into n257


FR1 and FR2



DC_19A_n257A
4th & 5th


Harmonic problem will be




harmonics from


solved in DC_19A_n77A




B19 into n77


B19 +
DC_19A_n78A
7th & 8th


No harmonics problems


n78 +

harmonics from


by 7th & 8th order between


n257

n78 into n257


FR1 and FR2



DC_19A_n257A
4th


Harmonic problem will be




harmonic from


solved in DC_19A_n78A




B19 into n78


B19 +
DC_19A_n79A
6th


Harmonic problem will be


n79 +

harmonic from


solved in DC_n79A-n257A


n257

n79 into n257


(6th order)



DC_19A_n257A
6th


Harmonic problem will be




harmonic from


solved in DC_19A_n79A




B19 into n79


B20 +
DC_20A_n1A



No issues


n1 +
DC_20A_n3A



No issues


n3


B20 +
DC_20A_n1A
4th
3rd

Harmonic problem will be


n1 +

harmonic from
IMD into

solved in DC_20A_n78A


n78

B20 into n78
n78

3rd IMD issue will be FFS



DC_20A_n78A

3rd

3rd IMD issue will be FFS





IMD into





n1


B20 +
DC_20A_n3A
2nd
3rd & 5th

3rd & 5th IMDs problem will


n3 +

harmonic from n3
IMDs into

be FFS.


n78

into n78
n78




4th




harmonic from




B20 into n78



DC_20A_n78A

3rd

3rd IMD problem will be





IMD into

FFS





n3


B21 +
DC_21A_n77A

2nd & 4th

RAN4 agreed the


n77 +


IMDs into

synchronous TDD


n79


n79

operation btw n77 and n79,







So MSD study is not







necessary.



DC_21A_n79A

2nd

RAN4 agreed the





IMD into

synchronous TDD





n77

operation btw n77 and n79,







So MSD study is not







necessary.


B21 +
DC_21A_n78A

2nd & 4th

These IMD problem are


n78 +


IMDs into

FFS. If consider


n79


n79

synchronous TDD







operation btw n78 and n79,







MSD study is not







necessary.



DC_21A_n79A

2nd

The IMD problem are





IMD into

FFS. If consider





n78

synchronous TDD







operation btw n78 and n79,







MSD study is not







necessary.


B21 +
DC_21A_n77A
7th & 8th


No harmonics problems


n77 +

harmonics from


by 7th & 8th order between


n257

n77 into n257


FR1 and FR2



DC_21A_n257A



No issues


B21 +
DC_21A_n78A
7th & 8th


No harmonics problems


n78 +

harmonics from


by 7th & 8th order between


n257

n78 into n257


FR1 and FR2



DC_21A_n257A



No issues


B21 +
DC_21A_n79A



Harmonic problem will be


n79 +




solved in DC_n79A-n257A


n257




(6th order)



DC_21A_n257



No issues









Table 23 shows self-interference that may occur in the LTE-NR DC combination of 4DL/2UL.














TABLE 23









Interference







due to small


downlink band
uplink DC


frequency


setup
setup
harmonic
IMD
isolation
MSD







B1 + B7 +
DC_1A_n3A
2nd
2nd & 4th
Yes
Harmonic problems will be


n3 + n78

harmonic
IMDs

covered in DC_n3A-n78A.




from n3
into n78

2nd &4th IMDs problems will be




into n78


covered in DC_1A_n3A-n78A.







Small freq. gap was covered in







Table 7.3.1A-0bA in TS36.101



DC_1A_n78A

2nd IMD

These IMD problems will be





into n3

covered in DC_1A-n3A-n78A and





4th IMD

DC_1A-7A_n78A.





into B7



DC_7A_n3A
2nd
3rd IMD

Harmonic problem will be




harmonic
into n78

solved in DC_n3A-n78A




from n3


3rd IMD problem will be




into n78


covered in DC_7A_n3A-n78A.



DC_7A_n78A

3rd & 4th

These IMDs problem will be





IMDs

covered in DC_7A_n1A-n78A and





into n3

DC_7A_n3A-n78A.





4th IMD





into n1


B1 + B20 +
DC_1A_n3A
2nd
2nd & 4th
Yes
Harmonic problems will be


n3 + n78

harmonic
IMDs

covered in DC_n3A-n78A.




from n3
into n78

2nd &4th IMDs problems will be




into n78


covered in DC_1A_n3A-n78A.







Small freq. gap was covered in







Table 7.3.1A-0bA in TS36.101



DC_1A_n78A

2nd IMD

These IMD problems will be





into n3

covered in DC_1A_n3A-n78A and





5th IMD

DC_1A-20A _n78A





into B20



DC_20A_n3A
2nd
3rd & 5th

These harmonic problems will be




harmonic
IMDs

covered in DC_n3A-n78A and




from n3
into n78

DC_20A_n78A.




into n78


These IMD problems will be




4th


covered in DC_20A_n3A-78A.




harmonic




from B20




into n78



DC_20A_n78A

3rd IMD

These IMD problems will be





into n3

covered in DC_20A_n1A-n78A and





3rd IMD

DC_20A_n3A-n78A.





into n1


B3 + B7 +
DC_3A_n1A
2nd
2nd & 4th
Yes
Harmonic problems will be


n1 + n78

harmonic
IMDs

covered in DC_3A_n78A.




from 3
into n78

These IMD problems will be




into n78


covered in DC_3A_n1A-n78A.







Small freq. gap was covered in







Table 7.3.1A-0bA in TS36.101



DC_3A_n78A

5th IMD

5th IMD problems will be





into n1

covered in DC_3A_n1A-n78A.



DC_7A_n1A

4th & 5th

4th & 5th IMDs problem will be





IMDs

covered in DC_7A_n1A-n78A.





into n78



DC_7A_n78A

3rd &

These IMDs problem will be





4th IMDs

covered in DC_7A_n1A-n78A and





into B3

DC_3A-7A-n78A.





4th IMD





into n1


B3 + B20 +
DC_3A_n1A
2nd
2nd & 4th
Yes
Harmonic problems will be


n1 + n78

harmonic
IMDs

covered in DC_3A_n78A.




from 3
into n78

These IMD problems will be




into n78


covered in DC_3A_n1A-n78A.







Small freq. gap was covered in







Table 7.3.1A-0bA in TS36.101



DC_3A_n78A

5th IMD

5th IMD problems will be





into n1

covered in DC_3A_n1A-n78A.



DC_20A_n1A
4th
3rd IMD

Harmonic problem will be




harmonic
into n78

solved in DC_20A_n78A




from B20


3rd IMD issue will be




into n78


covered in DC_20A_n1A-n78A



DC_20A_n78A

3rd IMD

These IMD problems will be





into B3

covered in DC_20A_n1A-78A and





3rd IMD

DC_3A-20A_n78A.





into n1


B7 + B20 +
DC_7A_n1A

5th IMD

The IMD issue should be


n1 + n3


into B20

covered in 3DL DC_7A-20A_n1A







in TR37.863-02-01



DC_7A_n3A

2nd IMD

The IMD issue should be





into B20

covered in 3DL DC_7A-20A_n3A







w/2UL_DC_7A-n3A in







TR37.863-02-01



DC_20A_n1A



No issue



DC_20A_n3A

2nd & 3rd

The IMD issue should be





IMDs

covered in 3DL DC_7A-20A_n3A





into B7

w/2UL_DC_20A-n3A in







TR37.863-02-01


B7 + B20 +
DC_7A_n1A

5th IMD

The IMD issue should be


n1 + n78


into B20

covered in 3DL DC_7A-20A_n1A





4th & 5th

in TR37.863-02-01





IMDs

4th & 5th IMDs problem will be





into n78

covered in DC_7A_n1A-n78A.



DC_7A_n78A

4th IMD

These IMD problems will be





into n1

covered in DC_7A_n1A-n78A and





2nd & 5th

DC_7A-20A_n78A.





IMD





into B20



DC_20A_n1A
4th
3rd IMD

Harmonic problem will be




harmonic
into n78

solved in DC_20A_n78A




from B20


3rd IMD issue will be




into n78


covered in DC_20A_n1A-n78A



DC_20A_n78A

3rd IMD

These IMDs issue will be





into n1

covered in DC_20A_n1A-n78A and





2nd IMD

DC_7A-20A_n78A





into B7


B7 + B20 +
DC_7A_n3A
2nd
2nd IMD

Harmonic problem will be


n3 + n78

harmonic
into B20

solved in DC_n3A-n78A




from n3
3rd IMD

These IMDs issue will be




into n78
into n78

covered in DC_7A-20A_n3A and







DC_7A_n3A-n78A



DC_7A_n78A

3rd & 4th

These IMD problems will be





IMDs

covered in DC_7A_n3A-n78A and





into n3

DC_7A-20A_n78A.





2nd & 5th





IMD





into B20



DC_20A_n3A
2nd
2nd & 3rd

Harmonic problem will be




harmonic
IMDs

solved in DC_n3A-n78A and




from n3
into B7

DC_20A-n78A.




into n78
3rd & 5th

The IMD issue should be




4th
IMDs

covered in DC_7A-20A-n3A and




harmonic
into n78

DC_20A_n3A-n78A




from B20




into n78



DC_20A_n78A

3rd IMD

These IMD problems will be





into n3

covered in DC_20A_n3A-n78A and





2nd IMD

DC_7A-20A_n78A.





into B7









Table 24 shows self-interference that may occur in the LTE-NR DC combination of 5DL/2UL.














TABLE 24









Interference







due to small


Downlink band
Uplink DC


frequency


setup
setup
harmonic
IMD
isolation
MSD







B1 + B7 +
DC_1A_n3A
2nd
2nd & 4th
Yes
Harmonic problems will be


B20 + n3 +

harmonic
IMDs

covered in DC_n3A-n78A.


n78

from n3
into n78

2nd &4th IMDs problems will be




into n78


covered in DC_1A_n3A-n78A.







Small freq. gap was covered in







Table 7.3.1A-0bA in TS36.101



DC_1A_n78A

2nd IMD

These IMD problems will be





into n3

covered in DC_1A_n3A-n78A,





5th IMD

DC_1A-20A_n78A and





into B20

DC_1A-7A_n78A.





4th IMD





into B7



DC_7A_n3A
2nd
2nd IMD

Harmonic problem will be




harmonic
into B20

solved in DC_n3A-n78A




from n3
3rd IMD

These IMDs issue will be




into n78
into n78

covered in DC_7A-20A_n3A and







DC_7A_n3A-n78A



DC_7A_n78A

4th IMD

These IMD problems will be





into B1

covered in DC_1A-7A_n78A,





3rd & 4th

DC_7A_n3A-n78A and





IMDs

DC_7A-20A_n78A.





into n3





2nd & 5th





IMD





into B20



DC_20A_n3A
2nd
2nd & 3rd

Harmonic problems will be




harmonic
IMDs

solved in CA_n3A-n78A




from n3
into B7

The 2nd & 3rd IMDs issue




into n78
3rd & 5th

should be covered in





IMDs

3DL DC_7A-20A_n3A





into n78

w/2UL_DC_20A-n3A







in TR37.863-02-01.







The 3rd&5th IMDs issue







should be covered in







3DL DC_20A_n3A-n78A







w/2UL_DC_20A-n3A.



DC_20A_n78A

3rd IMD

These IMD problems will be





into B1

covered in DC_1A-20A_n78A,





3rd IMD

DC_20A_n3A-n78A and





into n3

DC_7A-20A_n78A.





2nd IMD





into B7


B3 + B7 +
DC_3A_n1A
2nd
2nd & 4th
Yes
Harmonic problems will be


B20 + n1 +

harmonic
IMDs

covered in DC_3A_n78A.


n78

from B3
into n78

These IMD problems will be




into n78


covered in DC_3A_n1A-n78A.







Small freq. gap was covered in







Table 7.3.1A-0bA in TS36.101



DC_3A_n78A

5th IMD

5th IMD problems will be





into n1

covered in DC_3A_n1A-n78A.



DC_7A_n1A

5th IMD

The IMD issue should be





into B20

covered in 3DL DC_7A-20A_n1A





4th & 5th

in TR37.863-02-01





IMDs

4th & 5th IMDs problem will be





into n78

covered in DC_7A_n1A-n78A.



DC_7A_n78A

4th IMD

These IMD problems will be





into n1

covered in DC_7A_n1A_n78A,





3rd & 4th

DC_3A-7A-n78A and





IMDs

DC_7A-20A_n78A.





into B3





2nd & 5th





IMD





into B20



DC_20A_n1A
4th
3rd IMD

Harmonic problem will be




harmonic
into n78

solved in DC_20A_n78A




from B20


3rd IMD issue will be




into n78


covered in DC_20A_n1A-n78A



DC_20A_n78A

3rd IMD

These IMD problems will be





into n1

covered in DC_20A_n1A_n78A,





3rd IMD

DC_3A-20A_n78A and





into B3

DC_7A-20A_n78A.





2nd IMD





into B7









On the basis of the assumptions according to Table 22 to Table 24, Table 25 proposes MST test setup based on self-interference. Since the MSD levels are measurement results, they may have an error of ±1 dB.


















TABLE 25








UL
UL

DL
DL




DC
UL

Fc
BW
UL
Fc
BW
CF
MSD


bands
DC
IMD
(MHz)
(MHz)
RB #
(MHz)
(MHz)
(dB)
(dB)

























DC_1A_n3A-
1
IMD2
|fB1 + fn3|
1950
5
25
2140
5
2.1
N/A


n78A
n3 


1750
5
25
1845
5



n78


3700
10
52
3700
10

28.4



1
IMD4
|3*fn3 − fB1| 
1950
5
25
2140
5
1.2
N/A



n3 


1770
5
25
1865
5



n78


3360
10
52
3360
10

11.2



1
IMD2
|fn78 − fB1|
1950
5
25
2140
5
1.9
N/A



n78


3780
10
52
3780
10



n3 


1735
5
25
1830
5

27.9


DC_1A_n78A-
1
IMD3
|2*fn78 − fB1| 
1950
5
25
2140
5
1.6
N/A


n79A
n78


3410
10
52
3410
10



n79


4870
40
216
4870
40

15.9



1
IMD5
|2*fn79 − 3*fB1|
1950
5
25
2140
5
0.4
N/A



n79


4670
40
216
4670
40



n78


3490
10
52
3490
10

 4.6


DC_3A_n1A-
n1
IMD2
 |fn1 + fB3|
1950
5
25
2140
5
2.1
N/A


n78A
3


1750
5
25
1845
5



n78


3700
10
52
3700
10

28.4



n1 
IMD4
|3*fB3 − fn1|
1950
5
25
2140
5
1.2
N/A



3


1770
5
25
1865
5



n78


3360
10
52
3360
10

11.2



3
IMD5
|2*fn78 − 3*fB3|
1770
5
25
1865
5
0.3
N/A



n78


3720
10
52
3720
10



n1 


1940
5
25
2130
5

3.5


DC_3A_n78A-
3
IMD3
|2*fn78 − fB3| 
1770
5
25
1865
5
1.7
N/A


n79A
n78


3340
10
52
3340
10



n79


4910
40
216
4910
40

16.3



3
IMD5
|2*fn79 − 3*fB3|
1770
5
25
1865
5
0.5
N/A



n79


4510
40
216
4510
40



n78


3710
10
52
3710
10

 4.2


DC_7A_n1A-
n1 
IMD4
|fB7 − 3*fn1|
1970
5
25
2160
5
1.2
N/A


n78A
7


2520
5
25
2640
5



n78


3390
10
52
3390
10

10.1



n1 
IMD5

|3*fB7 − 2*fn1|

1970
5
25
2160
5
0.3
N/A



7


2520
5
25
2640
5



n78


3620
10
52
3620
10

 3.8



7
IMD4
|2*fn78 − 2*fB7|
2530
5
25
2650
5
0.9
N/A



n78


3610
10
52
3610
10



n1 


1970
5
25
2160
5

 9.0


DC_7A_n3A-
7
IMD3
|2*fB7 − fn3|
2560
5
25
2680
5
1.5
N/A


n78A
n3 


1730
5
25
1825
5



n78


3390
10
52
3390
10

16.1



7
IMD3
|2*fB7 − fn78| 
2565
5
25
2685
5
1.4
N/A



n78


3310
10
52
3310
10



n3 


1725
5
25
1820
5

15.6



7
IMD4
|2*fn78 − 2*fB7|
2565
5
25
2685
5
0.8
N/A



n78


3480
10
52
3480
10



n3 


1735
5
25
1830
5

 9.2


DC_19A_n78A-
19 
IMD2
 |fn78 + fB19|
835
5
25
880
5
2.4
N/A


n79A
n78


3680
10
52
3680
10



n79


4515
40
216
4515
40

29.3



19 
IMD3
  |fn78 + 2*fB19|
835
5
25
880
5
2.0
N/A



n78


3310
10
52
3310
10



n79


4980
40
216
4980
40

16.8



19 
IMD4

|2*fn78 − 2*fB19|

835
5
25
880
5
1.3
N/A



n78


3310
10
52
3310
10



n79


4950
40
216
4950
40

11.5



19 
IMD5

|2*fn78 − 3*fB19|

835
5
25
880
5
0.7
N/A



n78


3680
10
52
3680
10



n79


4855
40
216
4855
40

 5.2



19 
IMD2

|fn79 − fB19|

835
5
25
880
5
2.2
N/A



n79


4550
40
216
4550
40



n78


3715
10
52
3715
10

28.8



19 
IMD3
|fn79 − 2*fB19|
835
5
25
880
5
1.6
N/A



n79


4980
40
216
4980
40



n78


3310
10
52
3310
10

16.3


DC_20A_n1A-
20 
IMD3
  |fn1 + 2*fB20|
845
5
25
804
5
1.5
N/A


n78A
n1 


1940
5
25
2130
5



n78


3630
10
52
3630
10

16.0



20 
IMD3
|fn78 − 2*fB20|
835
5
25
794
5
1.3
N/A



n78


3790
10
52
3790
10



n1 


1930
5
25
2120
5

15.3


DC_20A_n3A-
20 
IMD3
|2*fB20 + fn3| 
845
5
25
804
5
1.5
N/A


n78A
n3 


1730
5
25
1825
5



n78


3420
10
52
3420
10

16.1



20 
IMD5
|2*fB20 − 3*fn3| 
845
5
25
804
5
0.4
N/A



n3 


1730
5
25
1825
5



n78


3500
10
52
3500
10

 4.5



20 
IMD3

|2*fB20 − 2*fn78|

845
5
25
804
5
1.3
N/A



n78


3550
10
52
3550
10



n3 


1765
5
25
1860
5

15.7


DC_21A_n78A-
21 
IMD2
 |fn78 + fB21|
1453
5
25
1501
5
2.6
N/A


n79A
n78


3420
10
52
3420
10



n79


4873
40
216
4873
40

30.1



21 
IMD4

|2*fn78 − 2*fB21|

1453
5
25
1501
5
1.0
N/A



n78


3780
10
52
3780
10



n79


4654
40
21
4654
40

11.3



21 
IMD2

|fn79 − fB21|

1453
5
25
1501
5
2.5
N/A



n79


4940
40
216
4940
40



n78


3487
10
52
3487
10

29.8









Here, the DC harmonic problem is also present between 6 GHz or lower and mmWave as shown in Table 26 below.











TABLE 26







LTE band
NR band (MHz)












NR
UL

26500-29500



band
range
Harm.
Harmonic range


(FR1)
(MHz)
Order
(MHz)
harmonic/IMD





n79
4400-5000
6x
26400-30000
1) Harmonic into NR






(worst case)






2) No IMD into n79






3) No IMD into n257









According to Table 26, since 6th harmonic falls on the reception band of n257, the worst case in the harmonic problem according to the DC band combination is DC_n79A-n257A. Thus, in the third disclosure, sixth harmonic in the DC_n79A-n257A combination is examined. Hereinafter, impact of the harmonic which may fall from mmWave to NR band is examined.


Analysis of Harmonic in NR (n257)

Currently, an LTE (4G) modem and a 5G (NR) modem may be separately developed and fused as telephony elements. In addition, the antenna may be used separately in the LTE band and the mmWave NR band. Based on the RF architecture, the MSD level in the n257 by the sixth harmonic may be derived.


Table 27 shows RF component isolation parameters of the DC_n79A-n257A terminal to derive the MSD level in mmWave.












TABLE 27









Option 1: W/O HTF




Primary











Parameter
Value
H6 level















n79 Tx in PA output
28




n79 PA H6 attenuation
65
−37



n79 duplexer H6 attenuation
30
−67



Harmonic filter
0
−67



HB switch H6
−100
−67



Diplexer attenuation
25
−92.0



Antenna isolation
10
−102.0



mmW switch attenuation
0.7
−102.7



mmW switch H6
−110
−102.0



n257 Rx filter atten.
1.5
−103.5



n257 Rx filter H6
−110
−102.6



n79 PA to n257 LNA isolation
60
−97.0



Composite

−95.9










Table 28 shows an MSD level for the DC_n79A-n257A derived from Table 27. More precisely, it represents an MSD level for NR band n257 having a channel bandwidth (CBW) of 50 MHz.











TABLE 28









W/O HTF












H6 level




Thermal
(dBm)
Estimated Sensitivity (dB)














Main Path
−94.8
−95.9
−92.3


Current sensitivity


[−92.1~−85.7]


level at n257


dBm/50 MHz









Based on the MSD in Table 28, the MSD is proposed as follows.

    • Proposal 1: MSD based on sixth harmonic in DC_n79A-n257A may be 0 dB


Other MSD Analysis

Table 29 shows terminal RF front-end component parameters for deriving MSD levels at 6 GHz or lower.











TABLE 29









Triplexer-diplexer



Architecture w/separate ant.



DC_1A-42A_n79A, DC_3A-42A_n79A,



DC_19A-42A_n79A











UE ref. Architecture
IP2
IP3
IP4
IP5


Component
(dBm)
(dBm)
(dBm)
(dBm)














Ant. Switch
112
68
55
55


Triplexer
115
82
55
55


Quadplexer
110
72
55
52


Diplexer
115
87
55
55


Duplexer
100
75
55
53


PA Forward
28.0
32
30
28


PA Reversed
40
30.5
30
30


LNA
10
0
0
−10









Table 30 shows isolation levels according to RF components.











TABLE 30






Value



Isolation Parameter
(dB)
Comment







Antenna to Antenna
10
Main antenna to diversity antenna


PA (out) to PA (in)
60
PCB isolation (PA forward mixing)


Triplexer
20
High/low band isolation


Quadplexer
20
L-L or H-M band isolation


Diplexer
25
High/low band isolation


PA (out) to PA (out)
60
L-H/H-L cross-band


PA (out) to PA (out)
50
H-H cross-band


LNA (in) to PA (out)
60
L-H/H-L cross-band


LNA (in) to PA (out)
50
H-H cross-band


Duplexer
50
Tx band rejection at Rx band









Based on Table 29 and Table 30, the MSD levels are proposed as illustrated in Table 31. Since the MSD levels correspond to measurement results, they may have an error of about ±1 dB.










TABLE 31







E − 2*UTRA Band/Channel bandwidth/NRB/Duplex mode











EUTRA/NR DC

UL/DL

















DL
UL
EUTRA/
UL Fc
BW
UL
DL Fc
MSD
Duplex
Source


Configuration
Configuration
NR band
(MHz)
(MHz )
CLRB
(MHz)
(dB)
mode
of IMD



















DC_1A-
DC_42A_n79A
1
1975
5
25
2165
16.2
FDD
IMD3


42A_n79A

42 
3402.5
5
25
3402.5
N/A
TDD
N/A




n79
4640
40
216
4640
N/A

N/A



DC_1A_n79A
1
1977.5
5
25
2167.5
N/A
FDD
N/A




42 
3490
5
25
3490
 4.5
TDD
IMD5




n79
4420
40
216
4420
N/A

N/A


DC_3A-
DC_42A_n79A
3
1760
5
25
1855
17.1
FDD
IMD3


42A_n79A

42 
3402.5
5
25
3402.5
N/A
TDD
N/A




n79
4950
40
216
4950
N/A

N/A



DC_3A_n79A
3
1780
5
25
1875
N/A
FDD
N/A




42 
3500
5
25
3500
 3.9
TDD
IMD5




n79
4420
40
216
4420
N/A

N/A


DC_19A-
DC_42A_n79A
19
842.5
5
25
887.5
20.6
FDD
IMD2


42A_n79A

42
3517.5
5
25
3517.5
N/A
TDD
N/A




n79
4420
40
216
4420
N/A

N/A









Also, the MSD due to the occurrence of the IMD needs to specify a sensitivity level (desense level) for the DC band combination (LTE (3DL/1UL)+NR (1DL/1UL)) having the IMD problem. Table 32 below shows the IMD problem for LTE (3DL/1UL)+NR (1DL/1UL) DC band combinations.














TABLE 32









Interference







due to






small


Downlink
Uplink DC


frequency


band setup
setup
Harmonic
IMD
isolation
MSD







B1 + B18 +
DC_1A-

5th IMD into

5th IMD will be


B28 + n77
n77A

B18

discussed later





5th IMD into





B28



DC_18A-

3rd IMD into B1

3rd & 5th IMD will be



n77A

5th IMD into

discussed later





B28



DC_28A-

3rd IMD into B1

3rd & 5th IMD will



n77A

5th IMD into

be discussed later





B18


B1 + B18 +
DC_1A-

5th IMD into

5th IMD will be


B28 + n78
n78A

B18

discussed later





5th IMD into





B28



DC_18A-

3rd IMD into B1

3rd IMD will be



n78A



discussed later



DC_28A-

3rd IMD into B1

3rd & 5th IMD will be



n78A

5th IMD into

discussed later





B18









Based on Table 32, test setup and MSD levels are proposed as illustrated in Table 33. Since the MSD levels correspond to measurement results, they may have an error of about ±1 dB.


















TABLE 33








UL
UL

DL
DL




DC
UL

Fc
BW
UL
Fc
BW
CF
MSD


bands
DC
IMD
(MHz)
(MHz)
RB #
(MHz)
(MHz)
(dB)
(dB)

























DC_1A-18A-
 1
IMD5
|2*fB77 − 3*fB1|
1960
5
25
2150
5
0.7
N/A


28A_n77A
n77


3330
10
52
3330
10



28


725
5
25
780
5

4.3



18
IMD3
|2*fB18 − fB77|
825
5
25
870
5
1.8
N/A



n77


3770
10
52
3770
10



 1


1930
5
25
2120
5

16.4 



18
IMD5
|4*fB18 − fB77|
820
5
25
865
5
0.7
N/A



n77


4058
10
52
4058
10



28


723
5
25
778
5

4.4



28
IMD3
|2*fB28 − fB77|
740
5
25
795
5
1.5
N/A



n77


3630
10
52
3630
10



 1


1960
5
25
2150
5

15.8 



28
IMD5
|4*fB28 − fB77|
723
5
25
778
5
0.5
N/A



n77


3757
10
52
3757
10



18


820
5
25
865
5

3.9


DC_1A-18A-
 1
IMD5
  |3*fB1 − 2*fn78|
1970
5
25
2160
5
0.6
N/A


28A_n78A
n78


3352
10
52
3352
10



28


739
5
25
794
5

4.2



18
IMD3
|2*fB18 − fB78|
819
5
25
864
5
1.8
N/A



n78


3758
10
52
3758
10



 1


1930
5
25
2120
5

16.4 



28
IMD3
|2*fB28 − fB78|
740
5
25
795
5
1.5
N/A



n78


3630
10
52
3630
10



 1


1960
5
25
2150
5

15.7 



28
IMD5
|4*fB28 − fn78|
723
5
25
778
5
0.5
N/A



n78


3756
10
52
3756
10



18


819
5
25
864
5

3.8









The test setup and MSD levels are defined in the MSD requirements of TR 37.863-02-01 and TS 38.101-3.


The above description can be realized by hardware.



FIG. 10 is a block diagram illustrating a wireless communication system in which a disclosure of the present specification is implemented.


The base station 200 includes a processor 210, a memory 220, and a radio frequency (RF) unit 230. The memory 220 is connected with the processor 210 to store various pieces of information for driving the processor 210. The RF unit 230 is connected with the processor 210 to transmit and/or receive a radio signal. The processor 210 implements a function, a process, and/or a method which are proposed. In the aforementioned embodiment, the operation of the base station may be implemented by the processor 210.


UE 100 includes a processor 110, a memory 120, and an RF unit 130. The memory 120 is connected with the processor 110 to store various pieces of information for driving the processor 110. The RF unit 130 is connected with the processor 110 to transmit and/or receive the radio signal. The processor 110 implements a function, a process, and/or a method which are proposed.


The processor may include an application-specific integrated circuit (ASIC), another chip set, a logic circuit and/or a data processing apparatus. The memory may include a read-only memory (ROM), a random access memory (RAM), a flash memory, a memory card, a storage medium, and/or other storage device. The RF unit may include a baseband circuit for processing the radio signal. When the embodiment is implemented by software, the aforementioned technique may be implemented by a module (a process, a function, and the like) that performs the aforementioned function. The module may be stored in the memory and executed by the processor. The memory may be positioned inside or outside the processor and connected with the processor by various well-known means.


In the aforementioned exemplary system, methods have been described based on flowcharts as a series of steps or blocks, but the methods are not limited to the order of the steps of the present invention and any step may occur in a step or an order different from or simultaneously as the aforementioned step or order. Further, it can be appreciated by those skilled in the art that steps shown in the flowcharts are not exclusive and other steps may be included or one or more steps do not influence the scope of the present invention and may be deleted.

Claims
  • 1. A device configured to operate in a wireless system, the device comprising: a transceiver configured with an Evolved Universal Terrestrial Radio Access (E-UTRA)-New Radio (NR) Dual Connectivity (EN-DC),wherein the EN-DC is configured to use two bands,a processor operably connectable to the transceiver,wherein the processer is configured to:control the transceiver to receive a downlink signal,control the transceiver to transmit an uplink signal via the two bands,wherein a value of Maximum Sensitivity Degradation (MSD) is applied to a reference sensitivity for receiving the downlink signal,wherein the value of the MSD is pre-configured for a combination of bands 21 and n79,wherein the value of the MSD is 18.4 dB for band 21 based on the combination of bands 21 and n79.
  • 2. The device of claim 1, wherein for the combination of bands 21 and n79, the band 21 is used for the E-UTRA and the band n79 is used for the NR.
  • 3. A device configured to operate in a wireless system, the device comprising: a transceiver configured with an Evolved Universal Terrestrial Radio Access (E-UTRA)-New Radio (NR) Dual Connectivity (EN-DC),wherein the EN-DC is configured to use three bands,a processor operably connectable to the transceiver,wherein the processer is configured to:control the transceiver to receive a downlink signal,control the transceiver to transmit an uplink signal via at least two bands among the three bands,wherein a value of Maximum Sensitivity Degradation (MSD) is applied to a reference sensitivity for receiving the downlink signal,wherein the value of the MSD is pre-configured for a first combination of bands 1, n78 and n79, a second combination of band 3, n78 and n79, a third combination of bands 19, n78 and n79, a fourth combination of bands 21, n78 and n79.
  • 4. The device of claim 3, wherein the value of the MSD is 18.4 dB for band n79 based on the first combination of bands 1, n78 and n79,wherein the value of the MSD is 4.6 dB for band n78 based on the first combination of bands 1, n78 and n79.
  • 5. The device of claim 3, wherein the value of the MSD is 16.3 dB for band n79 based on the second combination of bands 3, n78 and n79,wherein the value of the MSD is 4.2 dB for band n78 based on the second combination of bands 3, n78 and n79.
  • 6. The device of claim 3, wherein the value of the MSD is 29.3 dB for band n79 based on the third combination of bands 19, n78 and n79,wherein the value of the MSD is 28.8 dB for band n78 based on the third combination of bands 19, n78 and n79.
  • 7. The device of claim 3, wherein the value of the MSD is 30.1 dB for band n79 based on the fourth combination of bands 21, n78 and n79,wherein the value of the MSD is 29.8 dB for band n78 based on the fourth combination of bands 21, n78 and n79.
  • 8. The device of claim 3, wherein for the first combination of bands 1, n78 and n79, the band 1 is used for the E-UTRA and the bands n78 and n79 are used for the NR,wherein for the second combination of bands 3, n78 and n79, the band 3 is used for the E-UTRA and the bands n78 and n79 are used for the NR,wherein for the third combination of bands 19, n78 and n79, the band 19 is used for the E-UTRA and the bands n78 and n79 are used for the NR,wherein for the fourth combination of bands 21, n78 and n79, the band 21 is used for the E-UTRA and the bands n78 and n79 are used for the NR.
  • 9. A method performed by a device configured with an Evolved Universal Terrestrial Radio Access (E-UTRA)-New Radio (NR) Dual Connectivity (EN-DC) in a wireless system, the method comprising: receiving a downlink signal; andtransmitting an uplink signal via two bands which the EN-DC is configured to use,wherein a value of Maximum Sensitivity Degradation (MSD) is applied to a reference sensitivity for receiving the downlink signal,wherein the value of the MSD is pre-configured for a combination of bands 21 and n79,wherein the value of the MSD is 18.4 dB for band 21 based on the combination of bands 21 and n79.
  • 10. The method of claim 9, wherein for the combination of bands 21 and n79, the band 21 is used for the E-UTRA and the band n79 is used for the NR.
Priority Claims (1)
Number Date Country Kind
10-2018-0054665 May 2018 KR national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 16/320,181, filed on Jan. 24, 2019, which is a National Stage filing under 35 U.S.C. 371 of International Application No. PCT/KR2018/010063, filed on Aug. 30, 2018, which claims the benefit of U.S. Provisional Applications No. 62/557,014 filed on Sep. 11, 2017, No. 62/566,345 filed on Sep. 30, 2017, No. 62/630,267 filed on Feb. 14, 2018, and Korean Patent Application No. 10-2018-0054665 filed on May 14, 2018, the contents of which are all hereby incorporated by reference herein in their entirety.

US Referenced Citations (6)
Number Name Date Kind
20150092634 Yin et al. Apr 2015 A1
20160157293 Pazhyannur et al. Jun 2016 A1
20160198452 Takahashi Jul 2016 A1
20180220295 Takahashi Aug 2018 A1
20180376383 Belghoul Dec 2018 A1
20200119889 Jiang et al. Apr 2020 A1
Foreign Referenced Citations (5)
Number Date Country
101047432 Oct 2007 CN
105518998 Apr 2016 CN
3512285 Jul 2019 EP
2010258831 Nov 2010 JP
WO2019216577 Nov 2019 WO
Non-Patent Literature Citations (13)
Entry
China Telecom, “TP for TR 37.863-01-01: co-existence studies and MDS for DC_3A-n78A_BCS0,” R4-1708980, 3GPP TSG-RAN WG4 Meeting #84, Berlin, Germany, Aug. 21-25, 2017, 7 pages.
China Telecom, “TP for TR 37.863-01-01: co-existence studies and MSD for DC_1A-n78A_BCS0,” R4-1708983, 3GPP TSG-RAN WG4 Meeting #84, Berlin, Germany, Aug. 21-25, 2017, 7 pages.
CN Office Action in Chinese Appln. No. 201880016517.6, dated Mar. 23, 2021, 12 pages (with English translation).
Extended European Search Report in European Application No. 18826907.0, dated Dec. 18, 2019, 9 pages.
Japanese Office Action in Japanese Application No. 2019-509463, dated Jun. 9, 2020, 5 pages (with English translation).
LG Electronics, KDDI, “MSD analysis results for LTE(3DL/1 UL) + NR(1DL/1UL) DC UE,” R4-1801598, 3GPP TSG RAN WG4 #86 Meeting, Athens, Greece, dated Feb. 26-Mar. 2, 2018, 8 pages.
Nokia, Nokia Shanghai Bell, “Single Tx UE in LTE-NR UL Dual Connectivity,” RP-171878, 3GPP TSG RAN Meeting #77, Sapporo, Japan, Sep. 11-14, 2017, 5 pages.
NTT Docomo, Inc., “TP for TR 37.863-01-01 DC_19A-n78A,” R4-1708977, 3GPP TSG-RAN Working Group 4 (Radio) meeting #84, Berlin, Germany, Aug. 21-25, 2017, 6 pages.
NTT Docomo, Inc., “TP for TR 37.863-01-01: 2DL/2UL DC_3A-n79A_BCS0,” R4-1708895, 3GPP TSG-RAN Working Group 4 (Radio) meeting #84, Berlin, Germany, Aug. 21-25, 2017, 6 pages.
NTT Docomo, Inc., “MSD for combinations including 3.5 GHz, 4.5 GHz and 28 GHz,” R4-1707511, 3GPP TSG-RAN WG4 Meeting #84, Berlin, Germany, dated Aug. 21-25, 2017, 5 pages.
NTT Docomo, Inc., “TP for TR 37.863-01-01: 2DL/2UL DC_19A-n79A_BCS0,” R4-1707556, 3GPP TSG-RAN Working Group 4 (Radio) meeting #84 Berlin, Germany, dated Aug. 21-25, 2017, 4 pages.
NTT Docomo, Inc., “UE RF requirements for 3.3-3.8 GHz and 3.3-4.2 GHz,” R4-1707507, 3GPP TSG-RAN WG4 Meeting #84, Berlin, Germany, dated Aug. 21-25, 2017, 6 pages.
Yuehua, “Research and Design of Wideband RF Front-End of TD-LTE Base Station Receiver,” A Master Dissertation Submitted to University of Electronic Science and Technology of China, 2015, 100 pages (with English translation).
Related Publications (1)
Number Date Country
20220231821 A1 Jul 2022 US
Provisional Applications (3)
Number Date Country
62630267 Feb 2018 US
62566345 Sep 2017 US
62557014 Sep 2017 US
Continuations (1)
Number Date Country
Parent 16320181 US
Child 17716390 US