This application claims the benefit under 35 U.S.C. §119(a) of an application filed in the Korean Industrial Property Office on Mar. 6, 2006 and assigned Serial No. 2006-20985, the contents of which are hereby incorporated by reference.
1. Field of the Invention
The present invention relates generally to a method for signal transmission in a communication system, and more particularly to a method for transmitting/receiving a DownLink (DL) signal in a communication system.
2. Description of the Related Art
Usually, in a communication system having a cellular structure (cellular communication system), Inter-Cell Interference (ICI) occurs due to limited resources including frequency resources, code resources, and time slot resources being divided and used by a plurality of cells of the cellular communication system. The occurrence of ICI due to the use of divided frequency resources by multiple cells may degrade the performance of the cellular communication system. However, in order to increase the entire system capacity, the frequency resources may be re-used. The ratio of reuse of the frequency resources will be called a “frequency reuse factor,” which is defined by the number of cells that do not use the same frequency resource.
Referring to
Because the cells and sectors use the same FA F1 as described above, the channel state at the cell boundary area is degraded. For example, a Carrier to Interference and Noise Ratio (CINR) is reduced to a very small value. As a result, there is a high probability that a reception error may occur even when a signal is transmitted by applying the most robust Modulation and Coding Scheme (MCS) level supportable in a corresponding cell.
Referring to
The preamble field 210 carries a preamble signal, which is used for identification of a base station and acquisition of synchronization between a transmitter such as a Base Station (BS), and a receiver such as a Mobile Station (MS). The FCH field 220 carries an FCH, which contains information about the length of the MAP field 230 and a modulation scheme applied to the MAP field 230. The FCH field 220 has a fixed size, for example, a size of 24 bits, and a fixed MCS level set in advance, for example, a Quadrature Phase Shift Keying (QPSK) 1/16 level is applied to the FCH field 220.
The MAP field 230 carries a MAP message, which contains location information about the DL burst fields and UpLink (UL) burst fields (not shown), modulation scheme information, and allocation information of the DL burst fields and the UL burst fields, that is, information about whether the DL burst fields and the UL burst fields have been exclusively allocated to a specific MS or commonly allocated to unspecified multiple MSs. The DL burst fields may be either exclusively allocated to a specific MS or commonly allocated to unspecified multiple MSs.
However, the MAP message transmitted through the MAP field 230 is indispensable information for communication between the BS and the MS. Therefore, the BS applies the most robust MCS level supportable by the BS, for example, the QPSK 1/12 level, to the MAP message. By doing so, all MSs within the BS can receive the MAP message without an error.
Meanwhile, MCS levels corresponding to the channel states of the MSs targeted by the DL burst fields are applied to the signals transmitted by the DL burst fields. That is, the BS determines MCS levels of the DL burst fields based on the channel states, that is, Channel Quality Information (CQI), fed back by the MSs targeted by the DL burst fields.
Further, when using a frequency reuse factor of 1 as described above with reference to
Therefore, the above-mentioned communication system uses a separate interference cancellation scheme, such as a Successive Interference Cancellation (SIC) scheme, in order to cancel the ICI. However, while conventional interference cancellation schemes can improve a reception capability of an MS in a cell boundary area, they also increase the complexity of the MS having a limited processing capacity. Therefore, there exists a need for a scheme for improving the reception capability while preventing the increase in the complexity of the MS.
Accordingly, the present invention has been made to solve the above-mentioned problems occurring in the prior art, and the present invention provides a method for transmitting/receiving a DL signal in a communication system.
The present invention provides a method for transmitting/receiving a DL signal for improving a reception capability of an MS in a communication system.
The present invention also provides a method for transmitting/receiving a DL signal for reducing complexity of an MS in a communication system.
The present invention further provides a method for transmitting/receiving a DL signal by determining whether to use an interference cancellation scheme in accordance with a channel state in a communication system.
In accordance with an aspect of the present invention, there is provided a method for transmitting a downlink signal by a BS in a communication system, the method including generating a plurality of downlink signals to which different MCS levels are applied, and first transmitting a downlink signal having a first MCS level applied thereto, and then transmitting the downlink signals in a sequence in which a downlink signal having an MCS level showing a smallest difference between its MCS level and the first MCS level is transmitted prior to remaining downlink signals.
In accordance with an aspect of the present invention, there is provided a method for receiving a downlink signal by an MS in a communication system, the method including receiving a downlink frame signal including a plurality of downlink signals to which different MCS levels are applied, detecting a channel state from the downlink frame signal, and detecting the downlink signals from the downlink frame signal by determining whether to use an interference cancellation scheme in accordance with the channel state.
In accordance with an aspect of the present invention, there is provided a method for transmitting a downlink signal by a BS in a communication system, the method including generating a preamble signal, generating downlink bursts by scheduling data to be transmitted in a corresponding downlink frame interval, allocating the downlink bursts to a downlink frame in accordance with MCS levels to be applied to the downlink bursts, generating a MAP message in accordance with the allocated downlink bursts, generating a frame control header in accordance with the MAP message, and generating a downlink frame signal including the preamble signal, the frame control header, the MAP message, and the downlink bursts, and then transmitting the downlink frame signal.
In accordance with an aspect of the present invention, there is provided a method for receiving a downlink signal by an MS in a communication system, the method including receiving a downlink frame signal including a preamble signal, a frame control header, a MAP message, and a plurality of downlink bursts, detecting a channel state from the preamble signal, and detecting the frame control header and the MAP message by determining whether to use an interference cancellation scheme in accordance with the channel state.
The above and other aspects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In the following description, a detailed description of known functions and configurations incorporated herein will be omitted for the sake of clarity and conciseness.
As discussed above, in order to increase the efficiency of the interference cancellation scheme, it is important to exactly detect the interference signal from the incoming signal.
However, the detection capability of the interference signal is largely influenced by the MCS level of a desired signal and the interference signal. Hereinafter, for convenience of description, the desired signal is referred to as an “original signal.” Thus, a CINR of an interference signal is always the same as or lower than a CINR of the original signal, the detection capability of the interference signal is degraded when the MCS level applied to the interference signal exceeds the MCS level applied to the original signal. In contrast, when the MCS level applied to the interference signal does not exceed the MCS level applied to the original signal, the detection capability of the interference signal is improved. The degradation of the detection capability of the interference signal causes degradation of the capability of the interference cancellation scheme. Therefore, as used herein, the degradation of the detection capability of the interference signal is called degradation of the capability of the interference cancellation scheme.
In
Referring to
In contrast, bursts to which high MCS levels are applied in the DL frame of BS #2 use the same frequency region as bursts to which low MCS levels are applied in the DL frame of BS #1, thereby generating regions as shaded in
In
The signal (i.e., MAP message) transmitted through the MAP field 430 is indispensable information for communication between BS #1 and MSs to which BS #1 provides a service, and the MAP message transmitted through the MAP field 480 is indispensable information for communication between BS #2 and MSs to which BS #2 provides a service. Therefore, BS #1 applies the most robust MCS level (e.g. QPSK 1/12 level) from among MCS levels supportable by BS #1 to the MAP message transmitted through the MAP field 430, and BS #2 also applies the most robust MCS level (e.g. QPSK 1/12 level) from among MCS levels supportable by BS #2 to the MAP message transmitted through the MAP field 480. However, the MAP fields as shown in
When the MAP fields have different locations and sizes as described above, specifically, when the MAP field 430 of BS #1 has a size and a location different from those of the MAP field 480 of BS #2, if the DL bursts are allocated to the DL frame according to a sequence in which a DL burst having the highest MCS level based on the frequency domain is allocated prior to the other DL bursts, high MCS levels are applied to DL burst #1440-1 and DL burst #2440-2 of BS #1, so that an interference cancellation scheme capability degradation area is generated in the MAP field 480 of BS #2. As a result, the interference cancellation scheme capability degradation area generated in the MAP field 480 of BS #2 increases the probability of occurrence of the service shadow area.
In
The signal (i.e., MAP message) transmitted through the MAP field 530 is indispensable information for communication between BS #1 and MSs to which BS #1 provides a service, and the MAP message transmitted through the MAP field 580 is indispensable information for communication between BS #2 and MSs to which BS #2 provides a service. Therefore, BS #1 applies the most robust MCS level (e.g. QPSK 1/12 level) from among MCS levels supportable by BS #1 to the MAP message transmitted through the MAP field 530, and BS #2 also applies the most robust MCS level (e.g. QPSK 1/12 level) from among MCS levels supportable by BS #2 to the MAP message transmitted through the MAP field 580. However, the MAP fields as shown in
When the MAP fields have different locations and sizes as described above, specifically, when the MAP field 530 of BS #1 has a size and a location different from those of the MAP field 580 of BS #2, if the DL bursts are allocated to the DL frame according to a sequence in which a DL burst having the highest MCS level based on the time domain is allocated prior to the other DL bursts, MCS levels, which are still high but lower than those when the DL bursts are allocated to the DL frame according to a sequence in which a DL burst having the highest MCS level based on the frequency domain is allocated prior to the other DL bursts as described above with reference to
In
The signal (i.e., MAP message) transmitted through the MAP field 630 is indispensable information for communication between BS #1 and MSs to which BS #1 provides a service, and the MAP message transmitted through the MAP field 680 is indispensable information for communication between BS #2 and MSs to which BS #2 provides a service. Therefore, BS #1 applies the most robust MCS level (e.g. QPSK 1/12 level) from among MCS levels supportable by BS #1 to the MAP message transmitted through the MAP field 630, and BS #2 also applies the most robust MCS level (e.g. QPSK 1/12 level) from among MCS levels supportable by BS #2 to the MAP message transmitted through the MAP field 680. However, the MAP fields as shown in
When the MAP fields have different locations and sizes as described above, specifically, when the MAP field 630 of BS #1 has a size and a location different from those of the MAP field 680 of BS #2, if the DL bursts are allocated to the DL frame according to a sequence in which a DL burst having the lowest MCS level based on the time domain is allocated prior to the other DL bursts, high MCS levels are applied to DL burst #3640-3 and DL burst #6640-6 of BS #1, so that an interference cancellation scheme capability degradation area is generated in the MAP field 680 of BS #2. As a result, the interference cancellation scheme capability degradation area generated in the MAP field 680 of BS #2 increases the probability of occurrence of the service shadow area.
From the above description with reference to FIGS. 3 to 6, it is noted that the interference cancellation scheme capability is degraded when an MCS level exceeding the MCS level applied to the original signal is applied to the interference signal. Therefore, it is possible to improve the capability of detecting an interference signal, by setting an MCS level applied to the interference signal to be lower than the MCS level applied to the original signal. Therefore, the present invention transmits a DL signal while setting an MCS level applied to the interference signal to be lower than the MCS level applied to the original signal, which will be described hereinafter with reference to
The signals transmitted by a preamble field 710, an FCH field 720, a MAP field 730 and DL burst fields 740-1 to 740-8 have the same characteristics as those described above with reference to
In the example of a DL frame structure as illustrated in
Referring to
In step 815, the BS generates DL bursts in accordance with a result of the scheduling. In step 817, the BS allocates the generated DL bursts to the DL frame based on the frequency domain in accordance with applied MCS levels. In step 819, the BS generates a MAP message in accordance with the allocated DL bursts. In step 821, the BS generates an FCH in accordance with the MAP message.
In step 823, the BS generates a DL frame including the generated preamble signal, FCH, MAP messages and DL bursts in accordance with the DL burst frame structure of the communication system. In step 825, the BS transmits the generated DL frame signal to MSs.
Referring to
When the measured CINR does not exceed the threshold CINR, the MS proceeds to step 917, in which the MS detects the FCH and MAP messages by using an interference cancellation scheme, such as an SIC scheme, and then proceeds to step 921. In contrast, when the measured CINR exceeds the threshold CINR, the MS proceeds to step 919, in which the MS detects the FCH and MAP messages without using an interference cancellation scheme, and then proceeds to step 921. In step 921, when there is a DL burst allocated to the MS itself in accordance with the detected MAP message, the MS detects the DL burst and then ends the process.
In the DL frame structure shown in
According to the present invention as described above, a BS of a communication system transmits/receives a DL signal in consideration of ICI, thereby preventing degradation of the reception capability of the MS. Further, according to the present invention, an MS of a communication system can process a received DL signal by determining whether to use an interference cancellation scheme in accordance with its own channel state, thereby minimizing increase in the complexity and improving the reception capability.
While the invention has been shown and described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
20985/2006 | Mar 2006 | KR | national |