The present invention relates to a method for treating a body conduit/lumen, such as a blood vessel, in an animal such as a human. In embodiments, the treatment is directed to a conduit that has an undesired reduced diameter (e.g., an area of stenosis in a blood vessel). Examples of conduits that may be treated by the method of the present invention include, for example, blood vessels that have an undesired reduced diameter, such as may result from an obstruction within the blood vessel and/or a spasm of the blood vessel such as may occur in connection with myocardial infarction, but are not limited to such conduits.
The treatment of body lumens that have an undesired reduced diameter is often difficult because of an inability to determine the natural diameter of the lumen. For example, the healthy and normal diameter of a blood vessel may be unknown when the blood vessel has an undesired reduced diameter. For example, in a patient suffering from an acute myocardial infarction, the proper selection of a stent for treatment of the blood vessel is difficult because the diameter of the blood vessel has suddenly changed. Various factors can cause such changes, such as contractile spasms of the blood vessel and/or the presence of blood clots (thrombi).
Treating bodily conduits that have an undesired reduced diameter by means of a radially expandable tubular implant with a cutout or meshed structure, currently called a “stent,” is known. This device may be introduced in an unexpanded/contracted state into the conduit to be treated and delivered to the area of the conduit that has an undesired reduced diameter. The device is then radially expanded, particularly by means of an inflatable balloon, or, when it has a self-expandable structure, the stent may be released from a sheath that contains the stent in its contracted state.
As discussed above, various stents are available to treat such conditions, including balloon-expandable stents and self-expanding stents. When using stents, those of ordinary skill in the art sometimes select an expanded stent size of 100-120% of the presumed normal size of the lumen. That is, the stent is allowed to expand within the target location to a size that is the same size as the presumed normal size of the target location, up to a size that is 20% larger than the presumed normal size of the target location. This can ensure that the stent is not under-sized, and thus that the stent is firmly anchored in place. With self-expanding stents in particular, it further ensures that there is continuous radial force anchoring the stent in place.
When balloon-expandable stents are selected in place of self-expanding stents, great care (and thus extra time in a situation such as a myocardial infarction where time is of the essence in treatment) must be taken in selecting an appropriately sized stent to avoid any danger that the stent may be under-sized when fully expanded. However, issues may remain due to the possibility of the lumen size continuing to change over time, and over-sizing of balloon-expanded stents might cause damage such as rupture of a lumen wall. In addition, with any stent that remains in the lumen, the stent itself may cause problems over time, such as causing thrombosis formation within a blood vessel. This is even more relevant with drug eluting stents, e.g., stents that elute anti-restenotic drugs, since the polymer coating on these stents may be responsible for late stent thrombosis when the stent is not well apposed to the vessel wall. Such issues could be addressed by bioresorbable stents.
There remains a demand for methods for effectively treating bodily conduits, for example, bodily conduits that have an undesired reduced diameter.
In embodiments of the present invention, a target diameter of a target location of a bodily lumen to be treated is determined, and a self-expanding stent in a contracted configuration is delivered to the target location. The self-expanding stent is selected such that the self-expanding stent, in a fully expanded configuration, has a diameter that is more than 50% larger than the target diameter (e.g., the stent is selected to have an expanded diameter of more than 150% of the target diameter of the bodily lumen), for example, more than 55% larger, more than 60% larger, e.g., 60-100% or 60-150% larger than the target diameter. The stent may be allowed to initially self-expand to an expanded lumen diameter after any contractile spasms and/or blood clots are remedied in the lumen. In addition, the stent may thereafter continue to self-expand over time such that the stent slowly migrates inside and beyond the wall of the lumen where it avoids the risk of thrombosis formation.
Advantages of embodiments include that stent selection may be much easier and quicker because variations of the degree of over-sizing of the stent do not require detailed consideration, and selection of the target diameter need not be precise or determined in a time-consuming manner, as long as the minimum amount of over-sizing is present. Thus a “one-size-fits-all” approach may be used, based, e.g., on readily observable patient morphology (e.g., gender, age, weight and the like). Alternatively, more tailored approaches such as sizing based on upstream lumen diameter with angiographic images and/or parallel branch diameter are also available for situations where time permits determination of an upstream or parallel branch diameter.
Advantages of embodiments include that the lumen is expanded to its natural diameter or a slightly larger diameter. In embodiments, a short-term benefit may include the stent self-expanding to a vessel diameter while or after contractile spasms and/or blood clots or the like are remedied in the lumen. The stent may thereafter continue to slowly expand over time such that the stent slowly migrates inside, through and then outside of the lumen. In embodiments, the stent may continue to provide structural support to the lumen from the outside of the lumen even after such migration thanks to positive remodelling of the vessel. Also, after the stent migrates outside the lumen, it becomes less likely to itself become a source of problems in the lumen, such as a source of thrombus formation. Thus the need for anti-thrombotic medication, for example in the form of prolonged anti-platelet therapy, may be reduced or avoided in embodiments. The stent may be, but in embodiments need not be, bioresorbable or drug-eluting. It may be, or may not be, used in connection with angioplasty.
Methods according to the invention may be utilized for treating various bodily conduits/lumens, including bifurcations, such as vascular bifurcations.
An example of a self-expanding stent that may be utilized in embodiments is described in prior pending U.S. patent application Ser. No. 11/884,114, the entire disclosure of which is hereby incorporated by reference in its entirety, and the following discussion and drawings, but the invention is not limited to such disclosure. That disclosure focuses on embodiments that permit opening of a side wall of the stent to one or more side branches of the lumen. While that disclosure focuses to some extent on Y-shaped bifurcations in which the present invention is useful, embodiments of the present invention, as discussed above, may be used in various bodily conduits/lumens. For example, embodiments of the present invention may be used in un-branched lumens, or in lumens with one or more side branches. For acute treatments or the like, the branches may be ignored, the diameters of the branches may be underestimated, and/or the branches may be considered insignificant during initial stent placement. Accordingly, in embodiments, access to the side branch(es) may be provided during the stent placement procedure, or optionally stenting thereof may be provided in subsequent treatments that are one to twenty-four hours, one to seven days, one to four weeks, one to twelve months, or even one or more years later.
The wire 7 is formed of a material such that the stent 1 may pass from a radially contracted state to a radially expanded state, by deformation of the bends 7b that define the different segments 7a. The radially contracted state allows engagement of the stent 1 in a sheath that is used to deliver the stent 1 to the area of a bodily conduit that has an undesired reduced diameter, and the radially expanded state allows the stent 1 to give the bodily conduit the diameter that the conduit must have (i.e., the natural diameter). The stent 1 is self-expandable, that is, the stent 1 expands from its radially contracted state to its radially expanded state when it is released by said routing sheath. The sheath may be retracted to allow the stent to self-expand. The wire 7 may, for example, be formed of a shape-memory metal such as the nickel-titanium alloy known under the name “nitinol.” The wire 7 also may be formed of other materials, including, for example, various other metals (as used herein, “metals” includes elemental metals and metal-containing alloys).
In embodiments, treatment may be directed to un-branched conduits, or directed to conduits with one or more branches. In embodiments, which may include acute treatments or the like, the branches may be ignored during initial stent placement, and side access may be provided in subsequent treatments that are one to twenty-four hours, one to seven days, one to four weeks, one to twelve months or even years later, or access to the side branch(es) and optional stenting thereof may be provided during the stent placement procedure.
The self-expanding stent 1 is delivered in a contracted configuration to the target location. In a fully self-expanded configuration, the stent 1 has a diameter that is more than 50% larger than the target diameter(s) over an entire length of the stent 1. The stent 1 may be configured to exert a substantially constant radially outward force against the bodily conduit over substantially a full range of expansion of the stent 1. The target diameter may be substantially constant along the length of the target location, or may change over the length of the target location. Thus, for example in an un-branched target location, the target diameter may be relatively uniform. As another example, in a branched target location, the target diameter may change substantially at the area of branching. The fully-expanded diameter of the stent in either instance may be uniform or change over the length of the stent.
The step of determining the target diameter may be based on various factors and considerations. For example, the target diameter may be based on readily observable patient morphology (e.g., sex, age, weight and the like). In such a determination, the target diameter may have a very imprecise correlation to the natural diameter of the target location in the body conduit. The target diameter may also or alternatively, for example, be based on a feature with a more precise correlation to the natural diameter of the target location, such as a diameter of the body conduit at a location upstream of the target location, and/or on a diameter of a parallel branch(es) that is included in a branching system with the body lumen, such as a coronary tree.
In embodiments, the stent 1, in a fully self-expanded configuration, has a diameter that is more than 50% larger than the target diameter, for example, 51-150% larger than the target diameter over an entire length of the self-expanding stent 1. For example, the stent 1 in a fully expanded configuration has a diameter that is more than 55%, 60%, 65%, 70%, 75%, 80%, 100%, 110%, 120%, 130%, 140% or 150% of the target diameter over an entire length of the self-expanding stent.
The body conduit to be treated may be a blood vessel. In embodiments, the target location may be a site of an undesired reduced diameter of the flow passage through the blood vessel, such as a site of a contractile spasm of the blood vessel, a site of a thrombus located in the blood vessel, and/or a site of trauma to the blood vessel.
In embodiments, an obstruction of the body conduit at the target location, such as a thrombus, or atheroma plaques 101, as depicted in
In embodiments, the treatment of the obstruction may include mechanical treatment. For example, the treatment of the obstruction may include deoccluding the obstruction with a percutaneous de-occluding tool, debulking the obstruction with a de-bulking tool, and/or performing balloon angioplasty, at the site of the obstruction.
In addition, the obstruction may be treated prior to the delivery of the stent 1 by aspiration of a thrombus, or by laser treatment of the obstruction.
As discussed above, in embodiments, treatment may be directed to un-branched conduits, or to conduits with one or more side branches. Various self-expanding stents may be utilized in embodiments of the present invention. For example, the following description focuses on embodiments that permit opening of a side wall of the stent to one or more side branches of the lumen.
In embodiments, the stent 1 may include breakable bridges 6 that connect the adjacent bends 7b of two consecutive circular portions 5. In the embodiment depicted in
The rounded portion 6b of each bridge 6 of the stent depicted in
As depicted in
With further reference to
The elongated body 10 presents an axial conduit extending between the balloons 11, that allows the catheter 2 to slide along an axial guiding wire 13.
The two balloons 11 are connected to a source of inflation fluid (not shown). In the deflated state, the balloons 11 are maintained by the sheath 12 in a radial contraction position, represented as solid lines in
In practice, in the treatment of a bifurcation 100 that has atheroma plaques 101 along the inner walls of the conduits of the bifurcation, a guiding wire 20 is first introduced percutaneously through the main conduit 102 and the secondary conduit 103 to be treated (see
A catheter 21 is then advanced over the wire 20 into the main conduit 102 and then into the secondary conduit 103. The catheter 21 contains the stent 1 that is maintained in a state of radial contraction such as by an exterior sliding sheath 22. When the distal extremity of the catheter 21 is inside the secondary conduit 103, the sheath 22 may be slid in such a way so as to release the stent 1, which is deployed in the secondary conduit 103 then in the main conduit 102, as depicted in
Either during the deployment procedure or later as discussed above, the guiding wire 13 is advanced into the main conduit 102 and through an opening in the wall of stent 1, and in the other secondary conduit 104 of the bifurcation 100, as depicted in
The balloons 11 are then inflated and exert a force on the two circular portions 5 between which they are engaged, such that the two portions 5 separate from each other. The inflation of the balloons causes the rupture of the reduced areas 6c of the bridges 6 situated between the two circular portions 5, with the optional exception of one or more bridges 6 situated diametrically opposed to a bridge at the area of which the balloons 11 crossed stent 1 (see
The balloons 11 are then deflated, and then the catheter 2 and the guiding wire 13, are withdrawn from the patient's vasculature (see
Each bridge 6 may comprise one or more areas 6c that may be of reduced resistance, for example, in the form of one or more thinnings of the section of the bridge, cuts, circular perforations provided in the bridge (
Each bridge 6 may also or alternatively, for example, comprise one or more areas 6c in a material different from the material constituting the rest of the bridge, optionally suitable for being broken under the separation action exerted by the balloon 11 (
As appearing from the aforesaid, embodiments of the invention provide devices and methods for allowing the treatment of bodily conduits, including bodily conduits at a bifurcation, that have the decided advantage of being able to be positioned according to an operation that is shorter and less delicate to carry out than a device and methods known in the art.
It goes without saying that the invention is not limited to the embodiments described above by way of example but that it extends to all embodiments of the invention. For example, portions 5 of stent 1 may have a meshed structure; means provided to ensure engagement of a balloon through a selected area 8 may comprise marking means for each area 8, for example in the form of radio-opaque markers; the balloon 11 may be formed from two balloons as described previously or from a single balloon; separation means could be one or more balloons, including cryotherapy balloons, a small expansion tool, like small forceps or pliers, at the distal end of a catheter and actuated from the proximal end with wires extending in the lumen of the said catheter, or other separation means; the stent can be a drug eluting stent.
While the above disclosure focuses to some extent on Y-shaped bifurcations in which the present invention is useful, embodiments of the present invention may also be used in un-branched lumens, or lumens with one or more side branches. For example,
This nonprovisional application claims the benefit of U.S. Provisional Application No. 61/086,048, filed Aug. 4, 2008.
Number | Name | Date | Kind |
---|---|---|---|
4665906 | Jervis | May 1987 | A |
4795458 | Regan | Jan 1989 | A |
4820298 | Leveen et al. | Apr 1989 | A |
5061275 | Wallsten et al. | Oct 1991 | A |
5067957 | Jervis | Nov 1991 | A |
5514154 | Lau et al. | May 1996 | A |
5540713 | Schnepp-Pesch et al. | Jul 1996 | A |
5545210 | Hess et al. | Aug 1996 | A |
5562641 | Flomenblit et al. | Oct 1996 | A |
5591226 | Trerotola et al. | Jan 1997 | A |
5597378 | Jervis | Jan 1997 | A |
5749825 | Fischell et al. | May 1998 | A |
5766237 | Cragg | Jun 1998 | A |
5769817 | Burgmeier | Jun 1998 | A |
5827321 | Roubin et al. | Oct 1998 | A |
5876434 | Flomenblit et al. | Mar 1999 | A |
5888201 | Stinson et al. | Mar 1999 | A |
5891108 | Leone et al. | Apr 1999 | A |
5911754 | Kanesaka et al. | Jun 1999 | A |
5928217 | Mikus et al. | Jul 1999 | A |
5964770 | Flomenblit et al. | Oct 1999 | A |
6017362 | Lau | Jan 2000 | A |
6066167 | Lau et al. | May 2000 | A |
6068655 | Seguin et al. | May 2000 | A |
6077298 | Tu et al. | Jun 2000 | A |
6093203 | Uflacker | Jul 2000 | A |
6129755 | Mathis et al. | Oct 2000 | A |
6139536 | Mikus et al. | Oct 2000 | A |
6187034 | Frantzen | Feb 2001 | B1 |
6258117 | Camrud et al. | Jul 2001 | B1 |
6306141 | Jervis | Oct 2001 | B1 |
6312455 | Duerig et al. | Nov 2001 | B2 |
6342067 | Mathis et al. | Jan 2002 | B1 |
6348065 | Brown et al. | Feb 2002 | B1 |
6379369 | Abrams et al. | Apr 2002 | B1 |
6409754 | Smith et al. | Jun 2002 | B1 |
6416544 | Sugita et al. | Jul 2002 | B2 |
6464720 | Boatman et al. | Oct 2002 | B2 |
6478816 | Kveen et al. | Nov 2002 | B1 |
6485510 | Camrud et al. | Nov 2002 | B1 |
6485511 | Lau et al. | Nov 2002 | B2 |
6533807 | Wolinsky et al. | Mar 2003 | B2 |
6540849 | DiCarlo et al. | Apr 2003 | B2 |
6562067 | Mathis | May 2003 | B2 |
6568432 | Matsutani et al. | May 2003 | B2 |
6572646 | Boylan et al. | Jun 2003 | B1 |
6596022 | Lau et al. | Jul 2003 | B2 |
6602272 | Boylan et al. | Aug 2003 | B2 |
6602281 | Klein | Aug 2003 | B1 |
6602282 | Yan | Aug 2003 | B1 |
6626937 | Cox | Sep 2003 | B1 |
6652579 | Cox et al. | Nov 2003 | B1 |
6666882 | Bose et al. | Dec 2003 | B1 |
6666883 | Seguin et al. | Dec 2003 | B1 |
6679910 | Granada | Jan 2004 | B1 |
6699280 | Camrud et al. | Mar 2004 | B2 |
6706061 | Fischell et al. | Mar 2004 | B1 |
6881223 | Penn et al. | Apr 2005 | B2 |
6887264 | Penn et al. | May 2005 | B2 |
6908479 | Lau et al. | Jun 2005 | B2 |
6916336 | Patel et al. | Jul 2005 | B2 |
6929659 | Pinchuk | Aug 2005 | B2 |
6949120 | Kveen et al. | Sep 2005 | B2 |
7029492 | Mitsudou et al. | Apr 2006 | B1 |
7128758 | Cox | Oct 2006 | B2 |
20010037146 | Lau et al. | Nov 2001 | A1 |
20010037147 | Lau et al. | Nov 2001 | A1 |
20010041930 | Globerman et al. | Nov 2001 | A1 |
20010044648 | Wolinsky et al. | Nov 2001 | A1 |
20010056298 | Brown et al. | Dec 2001 | A1 |
20020107560 | Richter | Aug 2002 | A1 |
20020188243 | Brisken et al. | Dec 2002 | A1 |
20030050688 | Fischell et al. | Mar 2003 | A1 |
20030078649 | Camrud et al. | Apr 2003 | A1 |
20030083731 | Kramer et al. | May 2003 | A1 |
20030114912 | Sequin et al. | Jun 2003 | A1 |
20030125791 | Sequin et al. | Jul 2003 | A1 |
20030139796 | Sequin et al. | Jul 2003 | A1 |
20030139803 | Sequin et al. | Jul 2003 | A1 |
20030187497 | Boylan et al. | Oct 2003 | A1 |
20030216804 | DeBeer et al. | Nov 2003 | A1 |
20040002753 | Burgermeister et al. | Jan 2004 | A1 |
20040006381 | Sequin et al. | Jan 2004 | A1 |
20040059410 | Cox | Mar 2004 | A1 |
20040073284 | Bates et al. | Apr 2004 | A1 |
20040093077 | White et al. | May 2004 | A1 |
20040098080 | Lau et al. | May 2004 | A1 |
20040098091 | Erbel et al. | May 2004 | A1 |
20040167616 | Camrud et al. | Aug 2004 | A1 |
20040176837 | Atladottir et al. | Sep 2004 | A1 |
20040243133 | Materna | Dec 2004 | A1 |
20040249446 | Patel et al. | Dec 2004 | A1 |
20050002981 | Lahtinen et al. | Jan 2005 | A1 |
20050015136 | Ikeuchi et al. | Jan 2005 | A1 |
20050033399 | Richter | Feb 2005 | A1 |
20050038500 | Boylan et al. | Feb 2005 | A1 |
20050075716 | Yan | Apr 2005 | A1 |
20050096726 | Sequin et al. | May 2005 | A1 |
20050125052 | Iwata et al. | Jun 2005 | A1 |
20050159808 | Johnson et al. | Jul 2005 | A1 |
20050182479 | Bonsignore et al. | Aug 2005 | A1 |
20050192663 | Lau et al. | Sep 2005 | A1 |
20050222671 | Schaeffer et al. | Oct 2005 | A1 |
20060004437 | Jayaraman | Jan 2006 | A1 |
20060015171 | Armstrong | Jan 2006 | A1 |
20060015172 | Boyle et al. | Jan 2006 | A1 |
20060015173 | Clifford et al. | Jan 2006 | A1 |
20060030931 | Shanley | Feb 2006 | A1 |
20060036315 | Yadin et al. | Feb 2006 | A1 |
20060060266 | Bales et al. | Mar 2006 | A1 |
20060064154 | Bales et al. | Mar 2006 | A1 |
20060064155 | Bales et al. | Mar 2006 | A1 |
20060069424 | Acosta et al. | Mar 2006 | A1 |
20060074480 | Bales et al. | Apr 2006 | A1 |
20060085057 | George et al. | Apr 2006 | A1 |
20060095123 | Flanagan | May 2006 | A1 |
20060111771 | Ton et al. | May 2006 | A1 |
20060122964 | Stinson et al. | Jun 2006 | A1 |
20060129222 | Stinson | Jun 2006 | A1 |
20060136037 | DeBeer et al. | Jun 2006 | A1 |
20060184231 | Rucker | Aug 2006 | A1 |
20060259123 | Dorn | Nov 2006 | A1 |
20070168019 | Amplatz et al. | Jul 2007 | A1 |
20070173927 | Shin et al. | Jul 2007 | A1 |
20080109029 | Gurm | May 2008 | A1 |
20080154356 | Obermiller et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
200151922 | Aug 2001 | AU |
2 281 775 | Jun 2000 | CA |
1 034 751 | Sep 2000 | EP |
1 290 987 | Mar 2003 | EP |
1 512 381 | Mar 2005 | EP |
1 523 959 | Apr 2005 | EP |
1 563 806 | Aug 2005 | EP |
2 378 137 | Feb 2003 | GB |
WO 0174273 | Oct 2001 | WO |
WO 0176508 | Oct 2001 | WO |
WO 0215823 | Feb 2002 | WO |
WO 03047651 | Jun 2003 | WO |
WO 2004017865 | Mar 2004 | WO |
WO 2004096092 | Nov 2004 | WO |
WO 2004110313 | Dec 2004 | WO |
WO 2005094728 | Oct 2005 | WO |
WO 2006087621 | Aug 2006 | WO |
Entry |
---|
Furui, Shigeru M.D., et al., “Hepatic Inferior Vena Cava Obstruction: Treatment for Two Types with Gianturco Expandable Metallic Stents”, Interventional Radiology, 1990, 176:665-670. |
Van Der Giessen, Willem J., et al., “Mechanical Features and In Vivo Imaging of a Polymer Stent”, International Journal of Cardiac Imaging, 1993, 9: 219-226. |
Number | Date | Country | |
---|---|---|---|
20100030324 A1 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
61086048 | Aug 2008 | US |