This disclosure relates to the processing of metallic articles.
Powder processing techniques for producing metallic articles are intended to produce fully solid articles but may instead result in a small amount of porosity. For instance, a process known as electron beam melting (“EBM”) progressively consolidates layers of a metallic powder. The layers are melted together utilizing a computer controlled electron beam to build-up the part according to a computer aided design model. Although the bulk core of the part is solid and substantially pore-free, incomplete melting and consolidation of the powder at the surfaces of the part may result in surface porosity. Typically, a machining step follows the EBM process to remove the surface porosity.
The various features and advantages of the disclosed examples will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.
The method 20 generally includes an infiltration step 22 and a solidification step 24. In the infiltration step 22, a liquid metallic alloy is infiltrated into the surface porosity of a work piece or article. The liquid metallic alloy is then isothermally solidified in the solidification step 24 to thereby fill the surface porosity of the work piece or article. The method 20 will be further described with reference to
As shown, the article 30 includes a body 32 that is generally formed from a first metallic alloy. The first metallic alloy may be a titanium-aluminum alloy (e.g., gamma titanium aluminide), nickel-based superalloy, or other type of alloy that is suitable for the intended end use of the article 30.
The body 32 of the article 30 includes a surface porosity 34, which may be the result of the manufacturing process that is used to form the body 32. In an embodiment, the surface porosity 34 is a result of an EBM process. In such a process, successive layers of a metallic powder having the composition of the alloy of the body 32 are spread and selectively consolidated using an electron beam. The electron beam consolidates portions of the metal powder according to a computer aided design model, for example. It is to be understood that the disclosed EBM process is not limited to any particular type and may be applied to variations of the EBM process or even other processes that result in surface porosity.
As shown in
Alternatively, the body 32 is wrapped or at least partially wrapped in a solid foil having the desired composition. The body 32 and foil are then heated at a temperature that is above the melting temperature of the metal alloy of the foil to melt the alloy and infiltrate the liquid into the surface porosity 34.
In another alternative, a metallic powder having the desired composition is mixed with a carrier, such as a binder, and applied onto the surface of the body 32. The powder is then melted to infiltrate the liquid into the surface porosity 34.
In embodiments, the composition of the metallic alloy is selected to reduce the temperature that is needed to melt the metallic alloy and thereby reduce any effects of heat on the body 32. For instance, the metallic alloy may be of a eutectic composition. In one example, the metallic alloy is a eutectic composition of silver-aluminum and includes approximately 28 wt. % of aluminum with a balance of silver.
Referring to
The diffusion of the constituent element 40 from the liquid metallic alloy 36 causes the composition of the liquid metallic alloy 36 to change and isothermally solidify to form solidified metallic alloy 36′, which fills the pores of the surface porosity 34. That is, as the constituent element 40 diffuses into the body 32, the composition of the remaining alloy 42 moves away from the eutectic composition to a composition that has a higher melting point. In some examples, a substantial amount of the constituent element 40 of the metallic alloy diffuses into the body 32 of the article 30 such that only the other constituent 42 or constituents of the metallic alloy remain within the surface porosity 34 of the body 32.
In embodiments, if the body 32 is made of a titanium-aluminum alloy, such as gamma titanium aluminide, the metallic alloy is a silver-aluminum alloy. The element silver is readily soluble within gamma titanium aluminide and thereby diffuses from the area of the surface porosity 34 into the bulk of the body 32. The remaining aluminum within the surface porosity 34 alloys with the titanium and solidifies to fill in the surface porosity 34. Thus, the surface region that was previously porous is now solid and rich in aluminum.
The filling of the surface porosity 34 also eliminates the need for machining the article 30 after the forming process that resulted in the surface porosity 34. Moreover, depending upon the alloy of the body 32 and the metallic alloy selected to fill the surface porosity 34, the constituent element 40 that diffuses into the body 32 may also have an influence on the properties of the body 32. For instance, in the case of a body 32 made of titanium aluminide, the silver that diffuses from the liquid metallic alloy into the bulk of the body 32 leaves the surface region rich in aluminum. The aluminum then oxidizes to alpha alumina that acts as a passive layer to protect the article 30 from oxidation. Alpha alumina is preferred because it is highly stable and desirable for passivating the article 30 with regard to oxidation. Similar effects are expected for a body 32 that is made of a superalloy, such as a nickel-based, cobalt-based, cobalt-chromium based or iron-based superalloy, and a liquid metallic alloy of nickel-boron, wherein the boron would diffuse into the body 32. In such examples, boron is the eutectic-former. The superalloys may additionally have use in areas such as medical technology, such as for implants, to alloy custom fabrication for each patient.
Although a combination of features is shown in the illustrated examples, not all of them need to be combined to realize the benefits of various embodiments of this disclosure. In other words, a system designed according to an embodiment of this disclosure will not necessarily include all of the features shown in any one of the Figures or all of the portions schematically shown in the Figures. Moreover, selected features of one example embodiment may be combined with selected features of other example embodiments.
The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this disclosure. The scope of legal protection given to this disclosure can only be determined by studying the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4554218 | Gardner et al. | Nov 1985 | A |
4708847 | Donomoto et al. | Nov 1987 | A |
4769071 | Klar et al. | Sep 1988 | A |
5745834 | Bampton | Apr 1998 | A |
6238614 | Yang et al. | May 2001 | B1 |
6451385 | Hilden et al. | Sep 2002 | B1 |
6814926 | Geving et al. | Nov 2004 | B2 |
7060222 | Sachs et al. | Jun 2006 | B2 |
7722806 | Weinstein | May 2010 | B1 |
20040009086 | Sachs | Jan 2004 | A1 |
20040211538 | Lorenz et al. | Oct 2004 | A1 |
20050112015 | Bampton | May 2005 | A1 |
20050161189 | Sercombe | Jul 2005 | A1 |
20060147332 | Jones et al. | Jul 2006 | A1 |
20070141375 | Budinger et al. | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
0502426 | Sep 1992 | EP |
0836904 | Apr 1998 | EP |
2275437 | Aug 1994 | GB |
Entry |
---|
European Search Report dated May 12, 2012. |
Number | Date | Country | |
---|---|---|---|
20120202087 A1 | Aug 2012 | US |