The present invention relates to a second use of a compound, in particular to a method for treating a cancer with a dihydropyridine calcium antagonist.
Liver cancer is one of the most common cancers of the gastrointestinal tract in the world. However, since the hepatic nerves are mostly distributed on the liver surface, no symptoms are exhibited in the early stage of liver cancer, and there are no obvious symptoms even when the liver cancer metastasizes. Therefore, the liver cancer is mostly diagnosed at the end stage. Currently, Sorafenib is often clinically used as a targeting therapeutic drug, which is an oral multi-kinase inhibitor and results in apoptosis mainly by inhibiting angiogenesis and Raf kinase/MAPK pathway. However, recent studies have pointed out that the therapeutic effect of administering Sorafenib to patients with advanced liver cancers is not good, and drug resistance may be developed.
Amlodipine is a dihydropyridine calcium antagonist useful in the treatment of high blood pressure or the prevention of angina. Further, the main mechanism of action of Amlodipine is to block calcium ions from entering the heart and vascular smooth muscle cells, to achieve the purpose of lowering blood pressure by reducing the vasoconstriction, and indirectly relaxing and dilating the blood vessels to allow more blood to flow in the blood vessels.
The present invention mainly aims at providing a second use of a compound, in particular to a method for treating a cancer with a dihydropyridine calcium antagonist. Numerous dihydropyridine calcium antagonists are currently used in clinical practice, including, but not limited to, Nifedipine, sustained-release Nifedipine, Felodipine, Lacidipine, Amlodipine, and Cilnidipine.
For example, Amlodipine has a chemical formula below:
Therefore, in order to achieve the above object, an embodiment of the present invention discloses a method for treating a cancer with a dihydropyridine calcium antagonist, comprising administering an effective amount of a dihydropyridine calcium antagonist to a cancer patient, where the dihydropyridine calcium antagonist is used at a dosage of 100 mg/90 day or more.
By administering an effective amount of a dihydropyridine calcium antagonist to a cancer patient, the cancer metastasis can be effectively inhibited and the cancer cell proliferation can be reduced to achieve the effect of improving the survival rate of the cancer patient.
In one embodiment of the present invention, the dihydropyridine calcium antagonist is Amlodipine, which is administered at a dosage of at least 100 mg/90 days or 120 mg/30 days. For example, if a dose of 5 mg/day is employed in clinic, the administration of Amlodipine is continued for at least 20 days; or on average, at least 1 mg of Amlodipine needs to be administered per day.
Preferably, the cancer is gastric cancer, liver cancer, lung cancer, breast cancer, colorectal cancer, pancreatic cancer, bladder cancer, or cervical cancer.
In another embodiment of the present invention, the cancer patient suffers from advanced cancer and the dihydropyridine calcium antagonist is administered to the cancer patient to inhibit the cancer metastasis, where the advanced cancer includes cancers of stages III and IV.
The present invention will be further described below by way of examples in connection with the drawings.
In this example, statistical analysis was performed on the statistics of the effects of Amlodipine in the treatment of cancers, using data from the National Health Insurance Research Database (NHIRD) covering detailed healthcare data for the population in Taiwan. Then, the diagnostic data at the time of admission in the database and the database of patients with registered major injuries were used, and statistical analysis was performed using data from patients with gastric cancer. The results are as shown in Table 1 below, in which 24/30 represents treatment with Amlodipine for at least 24 days within 30 days after cancer diagnosis, 48/60 represents treatment with Amlodipine for at least 48 days within 60 days after cancer diagnosis, and 72/90 represents treatment with Amlodipine for at least 72 days within 90 days after cancer diagnosis.
It can be seen from Table 1 that administration of Amlodipine to cancer patients can effectively reduce the mortality of cancer patients, and, in particular, it can be known from Table 1 that the longer the duration of the administration time is, the lower the mortality rate is.
The dose of Amlodipine used in Example 1 was at least 120 mg/30 days. Therefore, in order to obtain the minimum effective dose, the survival rate of patients treated with Amlodipine for days in 90 days after cancer diagnosis was further statistically analyzed. The results are shown in Table 2 below.
The survival rate was analyzed for each cancer. The results are shown in
The results of this example show that administration of Amlodipine does increase the survival rate of cancer patients compared with cancer patients receiving no treatment with Amlodipine, and can effectively reduce the mortality of cancer patients as shown by the long-term follow-up results (3 years). In addition, from the results of this example, it can be seen that the use of 100 mg of Amlodipine in 90 days can achieve the effect of increasing the survival rate of cancer patients.
Two liver cancer cell lines HepG2 and Hep3B were cultured. The medium used for the culture of the cells was DMEM medium containing 10% fetal bovine serum, 10,000 U/ml penicillin and 10,000 μg/ml streptomycin. The culture occurred in an environment at 37° C. with 5% CO2, and the medium was changed every 2-3 days during the culture.
After the cells were cultured to about 70% confluence, they were treated with various concentrations of Amlodipine: 0, 1.5625, 3.125, 6.25, 12.5, 25, and 50 μM for various times: 48, and 72 hrs. After the experiment, the viability of each liver cancer cell line was observed and the cell viability and cell cycle were analyzed.
The HepG2 and Hep3B cells treated with various concentrations of Amlodipine for 72 hrs were added to WST-1 reagent. After 330 minutes of reaction, the absorbance at a wavelength of 420-480 nm was measured. The results are shown in
The HepG2 and Hep3B cells treated with various concentrations of Amlodipine for 48 hrs were scraped off with 0.05% Trypsin-EDTA, and then added to 2 mg/ml PI solution. The cell viability was analyzed by flow cytometry. The results are shown in
The results from
The cell cycle of each liver cancer cell line treated under different conditions was analyzed by flow cytometry. The results are shown in
Referring to
Still further, each liver cancer cell line was treated with Amlodipine at a concentration of 12.5 μM for 0, 12, 24, 36 and 48 hrs, and the cell cycle was analyzed by flow cytometry. The results are shown in
The expression of apoptosis-related genes in each liver cancer cell line treated with various concentrations of Amlodipine for 24 hours were detected by Western blotting. The results are shown in
From the results shown in
The HepG2 and Hep3B cells were separately cultured in an insert of the Transwell plate, then added with 10 μM Amlodipine and cultured for 48 or 72 hrs. The insert was placed in a serum-free DMEM medium containing 8 mM Calcien AM. Fluorescent staining was carried out in a culture environment at 37° C. After about 45-60 min, the cells were scraped off with 0.05% Trypsin-EDTA, and the fluorescence intensity at a wavelength of 490 to 520 nm was measured. The results are shown in
From the results of this example, the status of cancer cell metastasis gets known. In other words, the fluorescence intensity from the liver cancer cells treated with Amlodipine is lower than that from the liver cancer cells not treated with Amlodipine, thus indicating that Amlodipine can improve the status of cancer metastasis.
The HepG2 and Hep3B cells were separately cultured in the insert of the Transwell plate, then added with 10 μM Amlodipine and cultured for 48 or 72 hrs. The cells on the inner surface of the insert were taken out, and the insert was placed in methanol and stained with a crystal violet solution. The results photographed under a microscope are shown in
It can be seen from the above embodiments and examples that the dihydropyridine calcium antagonist disclosed in the present invention has the effect of inhibiting the division and promoting the apoptosis of cancer cells, that is, the dihydropyridine calcium antagonist disclosed in the present invention is useful in a pharmaceutical composition for treating cancers. Furthermore, as the dose of the dihydropyridine calcium antagonist administered is increased or as the duration of administration is increased, the effect of inhibiting the growth of cancer cells is better.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2016/102550 | 10/19/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/072135 | 4/26/2018 | WO | A |
Number | Date | Country |
---|---|---|
101569624 | Nov 2009 | CN |
201615191 | May 2016 | TW |
Entry |
---|
Machine Translation of CN101569624. |
Number | Date | Country | |
---|---|---|---|
20190240207 A1 | Aug 2019 | US |