Intentional and unintentional drug intoxication or drug overdose are significant causes of human and animal mortality and morbidity worldwide. Existing treatments for drug intoxication include decontamination procedures using, for example, charcoal, ipecac, or other emetics. These decontamination therapy options, though, can be accompanied by undesired side effects that include decreased intestinal motility and airway throughput. Other treatment options include the use of specific antidotes, or devices such as those of hemodialysis or hemofiltration. However, the ability of hemodialysis and hemofiltration to remove a poisoning drug and enhance the outcome for a subject is unclear.
When excess drug is allowed to be metabolized or otherwise secreted from the body without the application of any intervening therapies, a significant risk of organ damage exists. Similarly, if an intervening treatment such as hemofiltration is applied, but that treatment is relatively slow in removing the excess drug, the increased potential for harmful, or even fatal, complications remains.
Hemoperfusion provides one alternative to hemofiltration. In this extracorporeal technique, blood typically travels from a patient to a machine in which the blood perfuses a filter composed of microporous activated carbon. The small molecules to be removed from the blood become trapped in the microporous material, while blood cells continue to flow through the machine relatively undamaged. Challenges exist with this technique, however, in that the activated carbon can produce debris that becomes entrained with the effluent returning to the patient. This debris can produce blockages in the vasculature of the patient. Additionally, the perfusion process can trigger a coagulation response, as a clotting cascade can be activated within the blood of the patient.
It is apparent that there exists then a need in the art for effective and safe treatments that remove excess drug from a subject at a fast rate and/or a high degree of removal. The devices and methods described herein address this need by providing an alternate therapy characterized by potential advantages.
In general, provided herein are methods and devices for the treatment of drug intoxication or drug overdose in a subject suffering from these conditions. A sample obtained from the subject and contaminated with an excess of one or more target drugs is contacted with an adsorption media. The adsorption media comprises structures and materials that are conducive to forming adhering complexes with at least a portion of the target drug present in the sample. The adsorption media can comprise heparin, which is useful both as an anticoagulant compound, increasing the safety of the treatment, and as a source of drug binding sites, increasing the efficacy of the treatment. The sample is subsequently separated from the adsorption media such that the concentration of drug in the now cleansed sample is reduced. This cleansed sample is then returned to the subject by reinfusion.
One provided method comprises contacting a sample from a subject suffering from drug intoxication with an adsorption media to form a cleansed sample. The method further comprises reinfusing the cleansed sample into the subject.
In some embodiments, the adsorption media and the drug form an adhering complex.
In some embodiments, the method further comprises separating the resulting sample from the adhering complex to produce a cleansed sample with a reduced amount of drug.
In some embodiments, the drug is a member selected from the group of analgesics, sedatives, hypnotics, antipsychotics, antidepressants, cardiovascular drugs, antihistamines, topical preparations, cold and cough preparations, stimulants, recreational drugs, street drugs, antibiotics, antimicrobials, hormones, hormone antagonists, anticonvulsants, gastrointestinal preparations, dietary supplements, or herbals.
In some embodiments, the drug is an antibiotic.
In some embodiments, the antibiotic is a member selected from the group consisting of ceftazidime, daptomycin, fosfomycin, linezolid, and vancomycin.
In some embodiments, the antibiotic is vancomycin.
In some embodiments, the drug is carbamazepine.
In some embodiments, the sample is a member selected from the group consisting of whole blood, serum, or plasma.
In some embodiments, the sample is whole blood.
In some embodiments, the adsorption media is a solid substrate having at least one polysaccharide adsorbent.
In some embodiments, the at least one polysaccharide adsorbent is a member selected from the group consisting of heparin, heparan sulfate, hyaluronic acid, sialic acid, carbohydrates with mannose sequences, chitosan, or a combination thereof.
In some embodiments, the at least one polysaccharide adsorbent is heparin.
In some embodiments, the solid substrate comprises a plurality of rigid polymer beads.
In some embodiments, the rigid polymer beads are selected from the group consisting of polyurethane, polymethylmethacrylate, polyethylene or co-polymers of ethylene and other monomers, polyethylene imine, polypropylene, or polyisobutylene.
In some embodiments, the solid substrate comprises one or a plurality of hollow or solid individual fibers.
In some embodiments, the cleansed sample has a drug content that is reduced by about 10% to about 100% from the sample.
In some embodiments, the drug intoxication is the result of a drug overdose.
In some embodiments, the method occurs within a timer period 10 to 24 hours after the drug overdose by a subject, such as a human subject.
Also provided is a device for treating drug intoxication in a subject in need thereof. The device comprises a cartridge having an adsorption media disposed therein, the cartridge have a first endplate and a second endplate. The device further comprises a sample influx port to allow sample to flow into the device. The device further comprises a sample efflux port to allow sample to flow out of the device, wherein the sample flows through the first endplate, through the adsorption media, and out the sample efflux port.
In some embodiments, the adsorption media of the device is a solid substrate having at least one polysaccharide adsorbent on the surface thereof with a binding affinity or binding site for the drug when the sample is in contact with the adsorption media. The drug binds to binding sites on the at least one polysaccharide adsorbent and becomes separated from the sample.
In some embodiments, the at least one polysaccharide adsorbent of the device is a member selected from the group consisting of heparin, heparan sulfate, dextran sulfate, hyaluronic acid, sialic acid, carbohydrates with mannose sequences, chitosan, and a combination thereof.
In some embodiments, the at least one polysaccharide adsorbent of the device is heparin.
In some embodiments, the solid substrate of the device comprises a plurality of rigid polymer beads.
In some embodiments, the rigid polymer beads of the device are selected from the group consisting of polyurethane, polymethylmethacrylate, polyethylene or co-polymers of ethylene and other monomers, polyethylene imine, polypropylene, or polyisobutylene.
In some embodiments, the solid substrate of the device comprises one or a plurality of hollow fibers.
These and other objects, aspects and embodiments will become more apparent when read with the detailed description of the invention together with the accompanying figures.
The present invention relates in part to extracorporeal devices and methods for treating drug intoxication or a drug overdose. The methods include the use of adsorption media to cleanse a sample from a subject that is suffering from drug poisoning. The cleansed sample can then be continuously or intermittently reinfused into the subject.
A technical advantage of the embodiments described herein is that the use of heparin as an adsorption medium increases both the safety and the efficacy of the treatment. The inventors have made the surprising discovery that in addition to binding thrombin and antithrombin III, heparin is capable of interacting with drugs such as antibiotics in a way that allows the heparin to separate drug molecules from a sample withdrawn from an overdosed subject.
As used herein, the following terms have the meanings ascribed to them unless specified otherwise.
The term “extracorporeal therapy” refers to a medical procedure that is conducted outside the body. In some instances, extracorporeal therapies include methods in which a bodily fluid such as blood is taken from the individual and desired products such as, but not limited to, oxygen, blood-anticoagulants, anesthetics, and the like are added to the body fluid before it is returned to the individual. In other instances, an extracorporeal therapy includes removing undesired products such as toxins or poisons from the body or body fluids. A combination of removal and additions to the blood being treated is also possible, e.g., during routine kidney dialysis. These undesired products can be exogenous chemicals or substances naturally occurring within the body.
The term “adsorption media” refers to a material to which a cell, organism, virus, toxin, pathogen, polypeptide, polynucleotide, chemical molecule, small molecule, drug, biological molecule or fragment thereof can adhere to the surface thereof. In certain instances, a pathogen is disclosed in U.S. Pat. No. 9,173,989, incorproated herein by reference).
The term “adhering complex” refers to a complex of at least two molecules wherein the first molecule is attached (e.g., linked, coupled or bound) to the surface of a substrate and the second molecule (e.g., a drug) is attached to the first molecule. The first molecule can be the adsorbent. In certain aspects, the drug attaches to the adsorbent to form an adhering complex.
The term “high surface area” refers to the property of having a large specific surface area to volume ratio.
The term “adsorbent” refers to a solid substrate with a chemical compound, a biological molecule, or a material that is attached (e.g., linked, coupled or bound) thereto. In certain instances, the adsorbent is the solid substrate itself In one embodiment, an adsorbent is a polymer resin with a polysaccharide bound thereto.
The term “rigid polymer bead” refers to a bead, granule, pellet, sphere, particle, microcapsule, sphere, microsphere, nanosphere, microbead, nanobead, microparticle, nanoparticle, and the like that is made from a polymer resin or other biocompatible substrate material.
The term “carbohydrate” refers to a molecule containing carbon, hydrogen and oxygen atoms, and usually with the empirical formula Cx(H2O)y, where x and y are different numbers. Examples of carbohydrates includes monosaccharides, disaccharides, oligosaccharides, and polysaccharides.
The term “polysaccharide” refers to a molecule of monosaccharide units joined together by glycosidic bonds, and having an empirical formula of Cx(H2O)y, where x is between 200 to about 3000.
The term “hydrophilic surface” includes a surface with a water contact angle less than 90° when the surface is flat.
The terms “about” and “approximately equal” are used herein to modify a numerical value and indicate a defined range around that value. If “X” is the value, “about X” or “approximately equal to X” generally indicates a value from 0.90X to 1.10X. Any reference to “about X” indicates at least the values X, 0.90X, 0.91X, 0.92X, 0.93X, 0.94X, 0.95X, 0.96X, 0.97X, 0.98X, 0.99X, 1.01X, 1.02X, 1.03X, 1.04X, 1.05X, 1.06X, 1.07X, 1.08X, 1.09X, and 1.10X. Thus, “about X” is intended to disclose, e.g., “0.98X.” When “about” is applied to the beginning of a numerical range, it applies to both ends of the range. Thus, “from about 6 to 8.5” is equivalent to “from about 6 to about 8.5.” When “about” is applied to the first value of a set of values, it applies to all values in that set. Thus, “about 7, 9, or 11%” is equivalent to “about 7%, about 9%, or about 11%.”
The drug or toxic substance intoxication or overdose can be the result of either intentional or unintentional exposure. The amount of administered drug required to trigger an overdose response can be based on drug-specific parameters, and/or subject-specific parameters, such as body mass, metabolism, and allergic sensitivities. In some cases, an overdose can be the result of administration of a single drug. In other cases, an overdose involves combined drug intoxication or multiple drug intake. The effects of poisoning through drug intoxication can range from minor and easily treatable complications, to more serious effects requiring prolonged hospitalization, and to immediate and life-threating physiological responses such as single or multiorgan failure. For example, the kidneys are particularly sensitive to damage from certain anti-microbial drugs. These include powerful antibiotics currently being used due to the increase in the frequency of drug-resistant bloodstream infections. Symptoms can include, for example, ataxia, ileus, confusion, nystagmus, seizures, dysrhythmias, cerebral edema, anaphylaxis, reduced urine output, and coma. In many cases, the severity of the poisoning effect can be mitigated by rapid, safe and effective elimination of the drug from the subject. The rapidity and degree of elimination can be directly related to the favorability of the treatment outcome.
The subject suffering from drug intoxication can be an animal. In some embodiments, the subject is a mammal. In some embodiments, the subject is a human. The subject can be of any gender or age. In some embodiments, the subject has overdosed with drug immediately prior to the application of the treatment method. In some embodiments, the subject has overdosed about 1 hr, about 2 hr, about 3 hr, about 4 hr, about 5 hr, about 6 hr, about 7 hr, about 8 hr, about 9 hr, about 10 hr, about 11 hr, about 12 hr, about 13 hr, about 14 hr, about 15 hr, about 16 hr, about 17 hr, about 18 hr, about 19 hr, about 20 hr, about 21 hr, about 22 hr, about 23 hr, about 24 hr, about 25 hr, about 30 hr, about 35 hr, about 40 hr, about 45 hr, about 50 hr, about 55 hr, about 60 hr, about 65 hr, about 70 hr, or about 75 hr prior to the application of the treatment method. In some embodiments, the method occurs within 10 hr to 24 hr after the subject has overdosed.
The sample from the subject can be any bodily fluid taken from the subject. In some embodiments, the sample comprises whole blood. In some embodiments, the sample comprises serum. In some embodiments, the sample comprises plasma. In some embodiments, the sample comprises cerebrospinal fluid. The sample can be taken from the subject in the form of a discrete sample to be treated with the method. The sample can be taken from the subject in the form a continuous or semi-continuous stream. The amount of sample that can be used in the claimed methods is not intended to be limited. It can range from less than 1 mL to above 1 L, up to and including the entire blood volume of the subject when the sample comprises blood and when continuous recirculation back to the subject is employed. One or more ‘passes’ through the adsorption bed may be used if needed.
In some embodiments, the sample is taken from the subject at a rate of about 5 mL/min, about 10 mL/min, about 15 mL/min, about 20 mL/min, about 25 mL/min, about 30 mL/min, about 35 mL/min, about 40 mL/min, about 45 mL/min, about 50 mL/min, about 60 mL/min, about 70 mL/min, about 80 mL/min, about 90 mL/min, about 100 mL/min, about 150 mL/min, about 200 mL/min, about 250 mL/min, about 300 mL/min, about 350 mL/min, about 400 mL/min, about 450 mL/min, about 500 mL/min, about 550 mL/min, about 600 mL/min, about 700 mL/min, about 800 mL/min, about 900 mL/min, about 1000 mL/min, or even about 2000 to 6000 mL/min.
The adsorption media for cleansing the sample can be a microporous media such as activated carbon or size exclusion chromatography resin that has been rendered blood compatible. In some embodiments, the preferred adsorption media does not contain activated carbon. The adsorption media can be coated with at least one affinity ligand such as heparin, heparan sulfate, mannose, dextrose, dextran sulfate, other carbohydrates, antibodies, and other adhesins, such as opsonins. By including heparin ligands with other non-heparin affinity ligands, the blood compatibility of the device is improved and the broad spectrum characteristics of adsorption are increased. The adsorption media can be in a vessel such as a column, cartridge, tube, centrifuge tube, bottle, flexible bag, and the like, or any vessel wherein the cleansed sample can be removed without disturbing the drug attached to the media.
Various materials, in shape and composition, can be used as an adsorption media in the methods and devices. All suitable adsorbent substrates provide high surface area while promoting the conveyance of adsorbates to the adsorbent sites that bind them (primarily) by forced convective or diffusion transport. Useful solid substrates for creating the adsorption media include non-porous rigid beads, particles or packing, reticulated foams, a rigid monolithic bed (e.g. formed from sintered beads or particles), a column packed with woven or non-woven fabric, a column packed with a yarn or solid or hollow mesoporous or microporous monofilament fibers, a spiral wound cartridge formed from flat film or dense membrane, or a combination of media such as a mixed bead/fabric cartridge. In some embodiments, the solid substrate is one that is initially mesoporous or microporous, but becomes essentially non-porous when the surface is treated before, during, or after the creation of adsorption sites.
In certain instances, the substrat includes a polymer or rigid polymer bead. The substate can also be metal, ceramic, glass, natural mineral, silica, and the like. The substrate is preferrably a surface treated with a coat comprising a ligand so that it is effectively hidden or overcoated. Typically, the substrate does not leach impurities that cause clinically significant problems if they enter the patient's blood.
The solid substrate of the device can comprise a material having a large surface area. The total surface area of the solid substrate can be in the range of 0.1-10,000 square meters, preferably in the range of 0.5-50 square meters, such as 0.5,1, 1, 2, 2, 5, 10, 25, 40 and 50 square meters and numerical values between these.
In some embodiments, the material of the solid substrate is selected from the group consisting of glass, silica, latex, cellulose, cellulose acetate, chitin, chitosan, cross-linked dextran, cross-linked agarose, cross linked alginate, polyethylene, polypropylene, polystyrene, polycarbonate, polysulfone, polyacrylonitrile, silicone, fluoropolymers (such as polytetrafluoroethylene), polyurethanes, and other synthetic polymers. Other materials commonly used for medical applications may also be employed. In some embodiments, the solid substrate comprises a cross-linked polysaccharide. The solid substrate can comprise a plurality of adsorbent monolayers, filters, membranes, solid fibers, hollow fibers, particles, or beads. Optionally, the solid substrate can be present in other forms or shapes providing a large surface area.
One useful approach is to create a mixed media solid substrate by layering the different media of the solid substrate in a parfait-type arrangement such that the sample contacts the different media in series or parallel flow. Certain mixed media embodiments are disclosed in U.S. Pat. No. 8,758,286, incorporated herein by reference. The mixed media can be antithrombogenic media such as heparin together with a thrombogenic media such as cationic media. For example, chitosan is a highly cationic, positively-charged carbohydrate. Other positively charged molecules, such as polyethylene imine (PEI), or chitosan can be used. These cationic media are thrombogenic.
One arrangement of the different media is to position unblended anti-coagulation media (anti-thrombogenic media such as heparin) at the fluidic entrance and/or the fluidic exit regions of the solid substrate, with an optionally blended region comprising other materials interposed between the entrance and exit regions such as a thrombogenic media (e.g. cationic media). In the case of media in fiber form, a mixed woven, knitted, or nonwoven structure can be prepared by methods well known in the textile industry to form fabric from the mixed fiber. In some embodiments, a yarn is prepared from finer multifilament yarn or monofilament made from two or more fibers with different surface chemistries, wherein one fiber type contains a surface that actively prevents blood clotting on contact. This mixed-fiber yarn can then be used to prepare fabric suitable for a sample (e.g. blood) to contact.
In some embodiments, the adsorption media provides a surface to attach a polysaccharide adsorbent that can bind a drug. In some embodiments, the adsorption media includes a solid substrate with a high surface area having at least one polysaccharide adsorbent on the surface thereof. In some embodiments, the at least one polysaccharide adsorbent is a member selected from the group consisting of heparin, heparan sulfate, hyaluronic acid, sialic acid, carbohydrates with mannose sequences, chitosan, or a combination thereof. In one instance, the adsorbent media is mannose as is disclosed in U.S. patent application Ser. No. 14/973,617, filed Dec. 17, 2015, incorporated herein by reference.
In some embodiments, the adsorption media provides a hydrophilic surface without a polysaccharide adsorbent (“a naked surface”). In some embodiments, the adsorption media includes a solid substrate with a high surface area and a hydrophilic cationic surface. In some embodiments, the adsorption media includes a solid substrate with a high surface area and a hydrophilic neutral surface.
Covalent attachment of a carbohydrate to a solid substrate provides control of parameters such as surface density and orientation of the immobilized molecules as compared to non-covalent attachment. These parameters have been shown to influence the binding of targeted drug molecules to the immobilized carbohydrate molecules. In certain aspects, the surface concentration of the carbohydrate on the solid substrate is in the range of 0.01 to about 1 μg/cm2, such as 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 or 1 μg/cm2.
In fact, end-point attachment is an advantageous due to a lack of steric hindrance when compared to multi-point attachment, whether or not the multi-point attachment is covalent or non-covalent. Multipoint attachment requires the (oligomeric) ligand to be roughly parallel with the substrate surface with certain repeat units blocked and therefore unavailable for binding to adsorbates. End-point attachment of the ligand exposes virtually all the potential binding sites to adsorbate (drugs).
The adsorption media can comprise an anti-coagulation component. In some embodiments, the anti-coagulation component is heparan sulfate. In some embodiments, the anti-coagulation component is heparin. The heparin of the adsorption media is capable of binding antithrombin III (ATIII), and can also be capable of binding with one or more target drugs to be eliminated or reduced from the sample. A mixed adsorption media can be useful when the targeted one or more drugs do not bind to heparin. A mixed adsorption media can also be useful when the antithrombogenic properties of heparin as well as the drug-binding properties of another adsorption media component are both desired.
In another embodiment, the present invention provides a full-length heparin as an adsorbent media (see, U.S. Pat. No. 8,663,148, incorporated herein by reference). In certain instances, the full length heparin has a mean molecular weight in the range of 15-25 kDa such as about 21 kDa. The use of full-length heparin molecules can provide an increase in the binding capacity for heparin binding entities per surface area unit as compared to other heparin surfaces that do not comprise full-length molecules. The heparin is preferably covalently linked to the solid substrate. Covalent coupling of the heparin molecules prevent leaching of heparin into the sample upon contacting with the heparin coated surface. Leaching of heparin has been a problem in prior art techniques employing, for example, electrostatic binding of heparin to surfaces, or the utilization of free heparin.
In a more specific embodiment, the heparin is linked to the solid substrate by covalent end-point attachment. Covalent end-point attachment means that the heparin is covalently attached to the solid substrate via the terminal residue of the heparin molecule.
The adsorption media can be selected to comprise sites with specific binding affinity for a drug target of interest to be eliminated or reduced from the sample. The adsorption media can be selected to comprise sites with promiscuous binding affinity that are capable of binding drugs having diverse structures. In some embodiments, the adsorption media comprises a pluraility of binding site types, each with a different degree of specificity or promiscuity. In some embodiments, the adsorption media comprises a plurality of binding site types, each specific for a different drug target to be eliminated or reduced from the sample. By combining more than one adsorption media, surface chemistry, or binding site, the solid substrate is able to target a broader spectrum of drug targets. In some embodiments, all or the majority of the drug binding sites of the adsorption media are provided by heparin.
The solid substrate can be in the form of a plurality of solid beads or particles. The beads can be made of materials that are sufficiently rigid so as to resist deformation or compaction under the encountered flow rates and pressures. In some embodiments, sufficient substrate rigidity is defined as rigidity producing no significant increase in pressure drop across an adsorption bed during about one hour of flow of water or saline at typical clinical flow rates. For example, a suitable substrate rigidity would produce a less than 10-50% increase in pressure drop relative to the initial pressure drop (e.g., measured within the first minute of flow) when measured at a similar flow rate, e.g., of saline.
The beads or other high-surface-area substrates can be made from a number of different biocompatible materials, such as metals, natural or synthetic polymers or non-polymeric material including glasses, ceramics and metals, that are essentially free of leachable impurities. Some exemplary polymers including polyurethane, polysulfone, polyacrylonitrile, polycarbonate, polymethylmethacrylate, polyethylene or co-polymers of ethylene and other monomers, polyethylene imine, polypropylene, and polyisobutylene. Examples of useful substrates include nonporous Ultra High Molecular Weight Polyethylene (UHMWPE). Other suitable bead materials are polystyrene, high density and low density polyethylene, silica, latex, glass, cellulose, crosslinked agarose, crosslinked dextran, crosslinked alginate, silicone, fluoropolymer, chitin, and chitosan. In certain instances, any non-toxic, non-leaching substrate is suitable.
The size of the solid substrate can be selected according to the volume of the sample to be treated or other parameters. In some embodiments, each bead of the plurality of rigid polymer beads has an average outer diameter of about 1 μm to about 1 mm, e.g., 1 μm, 2 μm, 3 μm, 4 μm, 5 μm, 6 μm, 7 μm, 8 μm, 9 μm, 10 μm, 15 μm, 20 μm, 25 μm, 30 μm, 35 μm, 45 μm, 55 μm, 60 μm, 65 μm, 70 μm, 75 μm, 80 μm, 85 μm, 90 μm, 95 μm, 100 μm, 200 μm, 300 μm, 400 μm, 500 μm, 600 μm, 700 μm, 800 μm, 900 μm, or 1 mm. For example, polyethylene beads from DSM Biomedical (Berkeley, Calif.) having an average diameter of 300 μm are suitable for the methods and devices disclosed herein. In other embodiments, each bead of the plurality of rigid polymer beads has an average diameter of about 10 μm to about 200 μm, e.g., 10 μm, 15 μm, 20 μm, 25 μm, 30 μm, 35 μm, 45 μm, 55 μm, 60 μm, 65 μm, 70 μm, 75 μm, 80 μm, 85 μm, 90 μm, 95 μm, 100 μm, 105 μm, 110 μm, 115 μm, 120 μm, 125 μm, 130 μm, 135 μm, 140 μm, 145 μm, 150 μm, 155 μm, 160 μm, 165 μm, 170 μm, 175 μm, 180 μm, 185 μm, 190 μm 195 μm, 200 μm or more. Generally, a particle size in the range of 20-200 μm such as 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, or 200 μm is useful, but in high flow rate applications larger particles may be required. In certain instances, particles at sizes of 120 μm and below are preferably used with plasma and serum.
Methods for making such beads are known in the art. For instance, suitable polyethylene beads and other polyolefin beads are produced directly during certain synthesis processes. In some instances, the beads are processed to the required size and shape. Other polymers may need to be ground or spray dried and classified, or otherwise processed to create beads of the desired size distribution and shape.
Beads can be sintered into a monolithic porous structure through either chemical or physical means. Polyethylene beads can be sintered by heating the beads above their melting temperature in a cartridge and applying pressure. The resulting interstitial pore size is slightly reduced from the interstitial pore size of a packed bed of non-sintered beads of equal size. This reduction can be determined empirically and used to produce the desired final interstitial pore size.
The solid substrate may comprise one or more hollow or solid fibers. In an embodiment of the inventive device, wherein the solid substrate comprises hollow fibers, the hollow fibers may preferably comprise a material selected from the group consisting of polysulfones, polyfluorocarbons, polyamides, polynitriles, polypropylenes, cross linked alginates, and cellulose. Other materials commonly used in hollow fibers for medical applications may also be employed. The hollow fiber may preferably comprise a polysulfone.
The size and porosity of the solid substrate should be selected for each application or treatment so as to allow a suitable blood flow rate through the device at an acceptable pressure drop over the device. For certain applications requiring a high blood flow rate and a low pressure drop, a larger diameter particle, pore, hollow fiber or other solid substrate is required. In other applications that do not require a high blood flow rate and a low pressure drop, smaller diameter particles, pores, hollow fibers or other solid substrates may be used. In an embodiment of the present invention, wherein the solid substrate is present in the form of hollow fibers, the inner diameter of the fibers may be in the range of 1 μm to 1000 μm, such as 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900 or 1000 μm. Generally, an inner diameter in the range of 20-200 μm is useful, but in certain applications larger or smaller diameter fibers may be employed.
The adsorption media is selected according to the use of the device. For instance, a particular media is used to remove a particular drug of interest. Any drug or poison that binds to the adsorption media can be removed by the device provided herein. The drug can be, for example, an active or inactive ingredient of an analgesic, a sedative, a cosmetics or personal care product, a household cleaning substance, a sedative, a hypnotic, an antipsychotic, an antidepressant, a cardiovascular drug, an antihistamine, a topical preparation, a pesticide, a vitamin, a cold and cough preparation, a stimulant, a street drug, an antibiotic, an antimicrobial, a hormone, a hormone antagonist, an anticonvulsant, a muscle relaxant, a gastrointestinal preparation, a dietary supplement, a diuretic, or an herbal or homeopathic remedy. In some embodiments, the drug is carbamazepine.
In some embodiments, the drug is an antibiotic. The antibiotic can have entered the subject through systemic routes, such as through oral, intravenous, or intramuscular administration. Alternatively, the antibiotic can have entered the subject through topical routes, such as dermal, otic, ophthalmic, or nasal application. Examples of antibiotics include diethylcarbamazine, levamisole, carbamazepine, ceftazidime, daptomycin, fosfomycin, linezolid, vancomycin, amikacin, gentamycin, kanamycin, neomycin, netilmicin, tobramycin, paromycin, streptomycin, spectinomycin, geldanamycin, herbimycin, rifaximin, loracarbef, ertapenem, doripenem, imipenem, cilastatin, meropenem, cefadroxil, cefazolin, cefatolin, cephalexin, cefalcor, cefamandole, cefoxitin, cefprozil, cefuroxime, cefixime, cefdinir, cefditoren, cefoperazone, cefotaxime, cefpodoxime, ceftibuten, ceftizoxime, ceftriaxone, cefepime, ceftaroline fosamil, ceftobiprole, teicoplanin, telavancin, dalbavancin, oritavancin, clindamycin, lincomycin, azithromycin, clarithromycin, dirithromycin, erythromycin, roxithromycin, troleandomycin, telithromycin, spiramycin, aztreonam, furazolidone, nitrofurantoin, posizolid, radezolid, torezolid, amoxicillin, ampicillin, azlocillin, carbenicillim, cloxacillin, dicloxacillin, flucloxacillin, mezlocillin, methicillin, nafcillin, oxacillin, penicillin, piperacillin, temocillin, ticarcillin, bacitracin, colistin, polymyxin, ciproflaxin, enoxacin, gatifloxacin, gemifloxacin, levofloxacin, lomefloxacin, moxifloxacin, nalidixic acid, norfloxacin, ofloxacin, trovafloxacin, grepafloxacin, sparfloxacin, temafloxacin, mafenide, sulfacetamide, sulfadiazine, sulfadimethoxine, sulfamethizole, sulfamethoxazole, sulfasalazine, sulfisoxazole, demeclocycline, doxycycline, minocycline, oxytetracycline, tetracycline, clofazimine, dapsone, capreomycin, cycloserine, ethambutol, ethionamide, isoniazid, pyrazinamide, rifampicin, rifabutin, rifapentine, arsphenamine, chloramphenicol, fusidic acid, metronidazole, mupirocin, platensimycin, quinupristin, dalfopristin, thiamphenicol, tigecycline, tinidazole, and trimethoprim. In some embodiments, the antibiotic is ceftazidime, daptomycin, fosfomycin, linezolid, or vancomycin. In some embodiments, the antibiotic is vancomycin.
The adsorption media and the drug can form an adhering complex, wherein molecules of the drug are attached to molecules of the adsorption media. The attachment can be, for example, physical or chemical. The attachment can be in the form of one or more chemical bonds such as covalent bonds, ionic bonds, metallic bonds, or hydrogen bonds. Without being bound to any particular theory, the inventors believe that the interaction between the adsorption media and antibiotic drugs is ionic in nature. The adhering complex can comprise individual drug molecules that are each attached to a plurality of molecules of the adsorption media. The adhering complex can comprise individual adsorption media molecules that are each attached to a plurality of molecules of the drug. The adhering complex can comprise individual drug molecules that are each attached to one molecule of the adhering complex.
The contacting of the method forms a cleaned sample that is characterized by a reduced concentration of drug relative to that of the sample prior to contacting the adsorption media. In some embodiments, the concentration of drug is reduced by about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 12%, about 14%, about 16%, about 18%, about 20%, about 22%, about 24%, about 26%, about 28%, about 30%, about 32%, about 34%, about 36%, about 38%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%. In some embodiments, the cleansed sample has a drug content that is reduced by about 10% to about 100% from the sample. In certain instances, the sample such as blood flows or passes through the absorbate in an iterative fashion to increase the efficiencies of removal.
The cleansed sample can be formed through a separation of the sample from the adhering complex. As a portion of the drug that was present in the initial sample remains as part of the adhering complex, the resulting separated sample is in a cleansed state with a reduced concentration of drug. The separating can be achieved by, for example, movement of the sample relative to the adhering complex. The movement can be by, for example, diffusion or forced convective flow. In some embodiments, the flow of the sample relative to the adhering complex is driven by a pump, such as a positive displacement pump, an impulse pump, a velocity pump, a gravity pump, or a valveless pump. In some embodiments, the pump is a centrifugal pump. In some embodiments, the flow of the sample relative to the adhering complex is driven by the cardiac activity of the subject.
In therapeutic indications, the cleansed sample is returned by reinfusion into the subject. The cleansed sample can be infused into the subject immediately after it is formed. The cleansed sample can be held for any period of time prior to infusion into the subject. One or more components can be added to the cleansed sample subsequent to its formation and prior to the infusion. In some embodiments, liquid is added to the cleansed sample to adjust its volume subsequent to its formation and prior to the infusion. The infusion can be in the form of a discrete volume of sample cleansed with the method. The infusion can be in the form a continuous or semi-continuous stream. The amount of cleansed sample that can be infused in the claimed methods is not intended to be limited. It can range from less than 1 mL to above 1 L, up to and including the entire blood volume of the patient when the sample comprises blood and when continuous recirculation back to the subject is employed. One or more ‘passes’ through the adsorption bed may be used if needed. In some embodiments, the cleansed sample is infused into the subject at a rate of about 5 mL/min, about 10 mL/min, about 15 mL/min, about 20 mL/min, about 25 mL/min, about 30 mL/min, about 35 mL/min, about 40 mL/min, about 45 mL/min, about 50 mL/min, about 60 mL/min, about 70 mL/min, about 80 mL/min, about 90 mL/min, about 100 mL/min, about 150 mL/min, about 200 mL/min, about 250 mL/min, about 300 mL/min, about 350 mL/min, about 400 mL/min, about 450 mL/min, about 500 mL/min, about 550 mL/min, about 600 mL/min, about 700 mL/min, about 800 mL/min, about 900 mL/min, or about 1000 mL/min.
Other uses for the methods include non-therapeutic indications in diagnostics, blood banking and the treatment/purification of process streams, e.g., in biotechnology manufacturing. Clinical and hospital laboratories can find useful applications of the technology. In fact, a skilled person will appreciate in one aspect, the invention provides a method of first determining in vitro whether a particular drug binds to the column as well as the drug's binding efficiency. Thereafter, the methods herein can be used to treat patients. In this manner, the methods provide identifying drugs and poisons that the methods are useful in removing. A skilled artisan will appreciate that various impurities and poisons can be removed from human, biological, chemical and manufacturing samples using the methods described herein.
Also provided are devices for treating drug intoxication in a subject in need thereof.
The devices are characterized by a cartridge containing the adsorption media, influx and efflux ports to allow the sample to flow into and out of the device, and endplates to prevent substantially all of the adsorption media from exiting the cartridge. One such device is disclosed in U.S. patent application Ser. No. 14/860,589, filed Sep. 21, 2015.
The device can be intracorporeal or extracorporeal. If used extracorporeally, it can comprise a conventional device for extracorporeal treatment of blood and serum from patients. For example, a cartridge or column can then be used in series with conventional extracorporeal circuits such as those of cardiopulmonary bypass, hemodialysis, and oxygenation. The device can also be used as a shunt or alternative to other filters, so that before or after oxygenation the blood flow to the oxygenation mechanism is shunted to the present media for removal of endotoxins. The present media can also be used as the sole element in an extracorporeal blood flow circuit.
In some embodiments, the cartridge has a cylindrical shape. In other embodiments, the cartridge has a contoured shape that facilitates wearing the device on a leg or arm. In yet other aspects, the cartridge has a brick or rectangular block shape which can optimize storage volume.
In some embodiments, and as is shown in
In some embodiments, and as is shown in
In some embodiments, and as is shown in
The devices and methods can utilize a computing apparatus that is programmed or otherwise configured to automate and/or regulate one or more steps of the methods or features of the devices provided herein. Some embodiments provide machine executable code in a non-transitory storage medium that, when executed by a computing apparatus, implements any of the methods or operates any of the devices described herein. In some embodiments, the computing apparatus operates the power source and/or pump control.
The holdup volume of the device can be minimized, and a volume of sterile saline can be included into the integrated device for circuit priming and de-airing. Additional safety features include, but are not limited to, a venous return line bubble trap, pressure sensors, and screen filters. Systemic anticoagulation control can also be added and controlled through Venturi liquid injection.
The following examples are offered to illustrate the embodiments described in detail above, and are not intended to be limiting in any way.
Five different antibiotics were tested individually using miniature 1-mL minicartridges that were filled with heparinized media. The five antibiotics included daptomycin, fosfomycin, linezolid, vancomycin and ceftazidime. Each minicartridge was first primed with 2 mL of saline. For each antibiotic a quantity of blood was spiked to a desired therapeutic concentration of antibiotic and mixed for 5 minutes. To determine the initial ‘pre-filtered’ plasma concentration, a small sample was centrifuged for 10 minutes and tested. Subsequently, 2 mL of blood with the antibiotic was passed through the primed minicartridge over 20 second. The ‘filtered’ blood was then collected. The plasma concentration of each antibiotic was then determined after centrifugation of the blood for 10 minutes.
Example 2 illustrates treating drug intoxication in a subject without hardware or instrumentation.
Arterial to venous flow (with optional vasopressors) using blood pressure difference to generate flow through absorbate. Drug intoxication treatment via a single-needle venous line by using a standard blood bag with adsorbent ‘filter’ inserted into the blood tubing. (Vasopressors may be required with hypotension, although slow flow during collection is compensated by and more rapid reinfusion.)
Once the blood bag fills (≧10 min) it is raised above the patient, flowing back through the standard blood bag with adsorbent ‘filter’ for a second treatment. Since direction of flow does not affect performance, the single unit of blood gets two passes before returning to the patient, affecting a major reduction in the drug or toxin. The process can be repeated several times as needed. Using a low-cost blood bag and needle set eliminates the need for any hardware or instrumentation (an IV pole or even two nails could suffice) and greatly reduces the need for monitoring by healthcare workers.
It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, patent applications, websites, and databases cited herein are hereby incorporated by reference in their entireties for all purposes.
The present application claims priority to U.S. Application No. 62/302,329, filed Mar. 2, 2016, the disclosure of which is hereby incorporated by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
62302329 | Mar 2016 | US |