Method for treating intraocular hypertension

Information

  • Patent Grant
  • 4847269
  • Patent Number
    4,847,269
  • Date Filed
    Friday, August 22, 1986
    38 years ago
  • Date Issued
    Tuesday, July 11, 1989
    35 years ago
Abstract
Intraocular hypertensive diseases such as glaucoma are treated with compounds represented by formula I ##STR1## or a pharmaceutically acceptable acid addition salt thereof, whereinR.sub.1 is alkyl of two to four carbon atoms; andR.sub.2 is alkyl of three or four carbon atoms; orR.sub.1 and R.sub.2 taken together with N form ##STR2## wherein n is 0, 1, or 2 and R.sub.5 and R.sub.6 are each independently lower alkyl or hydro;R.sub.3 is hydro or hydroxy;R.sub.4 is hydro, lower alkyl, amino, or lower alkylamino.
Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a method for treating intraocular hypertensive diseases such as glaucoma by direct administration of dialkyl or cycloalkyl aminoethylaniline derivatives or pharmaceutically acceptable acid addition salts of the invention. The invention also relates to a pharmaceutically acceptable composition containing an effective amount of at least one of the compounds in combination with a suitable excipient, the composition being useful for the treatment of intraocular hypertensive diseases such as glaucoma in mammals. The invention also relates to the use of a compound of the invention to prepare a pharmaceutical composition useful for the treatment of intraocular hypertensive diseases such as glaucoma in mammals.
2. Related Disclosures
Certain alkyl and dialkyl aminoethylanilines are known. See, for example, U.S. Pat. Nos. 4,287,211, 4,404,222, 3,803,230, and 3,689,524 and German Pat. No. 2,612,354. A novel use for a class of dialkyl- and cycloalkyl-aminoethylaniline derivatives has now been discovered.
SUMMARY OF THE INVENTION
The first aspect of this invention is the method of treatment of intraocular hypertensive diseases such as glaucoma with a compound selected from the group of compounds represented by formula I ##STR3## or a pharmaceutically acceptable acid addition salt thereof, wherein
R.sub.1 is alkyl of two to four carbon atoms; and
R.sub.2 is alkyl of three or four carbon atoms; or
R.sub.1 and R.sub.2 taken together form ##STR4## wherein n is 0, 1, or 2 and R.sub.5 and R.sub.6 are each independently lower alkyl or hydro;
R.sub.3 is hydro or hydroxy; and
R.sub.4 is hydro, lower alkyl, amino, or lower alklamino.
Another aspect of the invention is a composition useful in the treatment of intraocular hypertensive diseases such as glaucoma in mammals which composition comprises an effective amount of at least one compound chosen from those represented by formula I above or a pharmaceutically acceptable acid addition salt thereof and a pharmaceutically suitable excipient.
Another aspect of the invention is the use of a compound of the invention in a pharmaceutical composition suitable for the treatment of an intraocular hypertensive disease.
DETAILED DESCRIPTION AND PREFERRED EMBODIMENTS
The broadest aspect of the present invention is the method of treating an intraocular hypertensive disease comprising directly administering to a mammal in need thereof a compound selected from the group of compounds represented by the formula ##STR5## or a pharmaceutically acceptable acid addition salt thereof, wherein
R.sub.1 is alkyl of two to four carbon atoms; and
R.sub.2 is alkyl of three or four carbon atoms; or
R.sub.1 and R.sub.2 taken together with N form ##STR6## wherein n is 0, 1, or 2 and R.sub.5 and R.sub.6 are each independently lower alkyl or hydro;
R.sub.3 is hydro or hydroxy; and
R.sub.4 is hydro, lower alkyl, amino, or lower alkylamino.
One preferred subgenus of compounds of formula I is that wherein R.sub.3 is hydro, particularly where R.sub.4 is amino. A preferred compound is that wherein R.sub.1 and R.sub.2 are each n-propyl.
Another preferred subgenus of compounds of formula I is that wherein R.sub.1 and R.sub.2 taken together with N form ##STR7## where n is 1 and R.sub.5 and R.sub.6 are methyl. A particularly preferred compound is that wherein R.sub.3 is hydro and R.sub.4 is amino.
Another aspect of the invention is the use of a compound of formula I in a pharmaceutical composition useful for the treatment of intraocular hypertensive diseases such as glaucoma in mammals.
As used in the specification and the appended claims, unless specified to the contrary, the following terms have the meaning indicated:
The term "lower alkyl" refers to a straight or branched chain monovalent substituent consisting solely of carbon and hydro, containing no unsaturation and having from one to four carbon atoms. Examples of lower alkyl groups are methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl and t-butyl.
The term "pharmaceutically acceptable acid addition salts" refers to salts of the subject compounds which possess the desired pharmacological activity and which are neither biologically nor otherwise undesirable. These salts are formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid or phosphoric acid; or organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid and the like.
The term "opthamologically acceptable" means suitable for use in the eye. I.e., an opthamologically acceptable carrier does not cause irritation when administered directly to the eye.
The term "direct administration" means administration directly to the eye of the subject, and excludes general systemic administration. Direct administration includes, without limitation, topical application of aqueous solutions and ointments, administration of controlled release devices, and subconjunctival injection.
The term "treatment" as used herein covers any treatment of an intraocular hypertensive disease in a mammal, particularly a human, and includes:
(i) preventing the disease from occurring in a subject which may be predisposed to the disease but has not yet been diagnosed as having it;
(ii) inhibiting the disease, i.e., arresting its development; or
(iii) relieving the disease, i.e., causing regression of the disease.
Certain compounds of formula I wherein R.sub.1 and R.sub.2 together with N form ##STR8## where R.sub.5 and R.sub.6 are not identical may have geometric (cis and trans) isomers. The wavy lines are used to indicate that either the cis isomer, trans isomer, or a mixture may be used. The isomers may be separated by various methods, for example selective crystallization and column chromatography. Alternatively, the free base (e.g., 3,5-dimethylpiperidine) may be resolved before it is incorporated into the compound of the invention. (The invention includes all geometric isomers of any asymmetric compound of formula I, as well as mixtures thereof.)
ADMINISTRATION AND FORMULATION
Ophthalmic preparations are sterile products for either topical application to the eyes or instillation into the space (cul-de-sac) between the eyeball and the eyelids. Presently available ophthalmic preparations include solutions, suspensions, ointments, and controlled release preparations. Presently available treatments of eye diseases include topically applied opthalmic drops, solutions, suspensions or ointment or their subconjunctival injection.
The composition of this invention comprises a compound of formula I (as defined herein) or a salt thereof in admixture with an ophthalmologically acceptable excipient.
An excipient is ophthalmologically acceptable if it is non-irritating to the eye and non-toxic at effective levels.
The ophthalmic composition may be aqueous or non-aqueous, and it may be in the form of a solution, suspension, gel, ointment, slow release polymer, or other. The amount of active ingredient will vary with the particular formulation and disease state but generally will be between 0.001-10% wt/vol of active ingredient per individual application dose, preferably between 0.005-7% wt/vol.
Pharmaceutical ophthalmic compositions are typically provided as sterilized aqueous solutions (i.e. eyedrops) containing 0.001% to 10% wt/vol.; most preferably 0.005% to 1% of the active ingredient, along with a suitable buffer, stabilizer, and preservative. The total concentration of solutes should be such that, if possible, the resulting solution is isotonic with the lacrimal fluid (though this is not absolutely necessary) and has an equivalent pH (in the range of pH 6-8). Typical preservatives/sterilants are phenylmercuric acetate, thimerosal, chlorobutanol, and benzalkonium chloride. Typical buffer systems and salts are based on, for example, citrate, borate or phosphate; suitable stabilizers include glycerin and polysorbate 80. The aqueous solutions are formulated simply by dissolving the components in a suitable quantity of water, adjusting the pH to about 6.8-8.0, making a final volume adjustment with additional water, and sterilizing the preparation using methods known to those skilled in the art.
The dosage level of the resulting composition will, of course, depend on the concentration of the drops, the condition of the subject and the individual magnitude of responses to treatment. However, typical dosage ranges might be about 2-10 drops of 0.1% solution of active ingredient once to three times per day.
Most ophthalmic solutions and suspensions contain an aqueous rather than an oily vehicle. Ophthalmic ointments usually contain a white petrolatum-mineral oil base, often including anhydrous lanolin, while some have a polyethylene-gelled mineral oil base.
Solutions are the most commonly used type of preparation for the local medication of eyes. They are easily instilled and rarely cause adverse reactions. The vehicle should not interfere with vision and should not interfere with regeneration of the corneal epithelium.
Suspensions have the advantage of more extended action and the disadvantage that it is difficult to avoid the presence of a few particles which are large enough to cause irritation.
Eye ointments are sterile preparations for application to the conjunctival sac or lid margin. They have advantages of more prolonged contact and effect, minimal irritation on initial installation, slower movement into lacrimal ducts, greater storage stability, and less likelihood of contamination problems. Their disadvantages are that they produce a film over the eye thereby blurring vision, and may interfere with the firm attachment of new corneal epithelial cells to their normal base. Ointments affect the outside and edges of the eyelids, the conjunctiva, the cornea, and the iris, depending on their ability to penetrate the outer covering of the eyeball.
Ophthalmic ointments comprising active ingredients can be used on the outside and edges of the eyelids, the conjunctiva, and the cornea. Most ophthalmic ointments are prepared with a base of white or yellow petrolatum and mineral oil, often with added anhydrous lanolin. Whichever base is selected, it must be nonirritating to the eye, permit diffusion of the drug throughout the secretions bathing the eye, and retain the activity of the medicament for a reasonable period of time under proper storage conditions.
Compounds of this invention may also be administered by other nonsystemic modes. Ophthalmic packs may be used to give prolonged contact of the solution with the eye. For example, a cotton pledget saturated with an ophthalmologically suitable solution of a compound of this invention may be inserted into the superior or inferior fornix. Medicated controlled-release ophthalmic disks may produce effects both more intense and prolonged than solutions. See, e.g., U.S. Pat. No. 4,190,642, incorporated herein by reference, which discloses a controlled-release device for administering compounds to the eye, which may be useful in the practice of this invention.
The compounds of the invention may also be administered by the way of iontophoresis. This procedure keeps the solution in contact with the cornea in an eyecup bearing an electrode. Diffusion of the drug is effected by difference of electrical potential. Remington's Pharmaceutical Sciences, 15th Ed., 1489-1504, (1975).
PREPARATION OF THE INVENTION
Compounds of formula I are prepared by the reaction sequence shown below. ##STR9## wherein R.sub.1, R.sub.2, R.sub.3, and R.sub.4 are as defined above in the broadest aspect of the invention, Ts is tosyl (p-toluenesulfonyl), A is benzyloxy (BzO) or hydro, BzCl is benzyl chloride, and R is lower alkyl.
When compounds in which R.sub.3 is hydro are desired, steps (1) and (7) are not necessary and are omitted; in such cases step (6a, b, c, or d) is the final step.
For compounds in which R.sub.3 is hydroxy, 4-hydroxy-3-nitrophenylacetic acid (II), available, e.g., from Aldrich Chemical Co., is first converted to the methyl ester, then reacted with an equimolar amount of benzyl chloride, also available, e.g., from Aldrich Chemical Co., using the Williamson Ether Synthesis to yield a hydroxy-protected methyl 4-benzyloxy-3-nitrophenylacetate (III, A=BzO). The reaction is usually performed using potassium carbonate in refluxing acetonitrile or ethanol. (Step 1).
The protected nitrophenylacetic acid ester (III, A=BzO) is then reduced, using borane-methyl sulfide in a tetrahydrofuran (THF) solution at room temperature. After acidification with HCl in methanol, the solution is evaporated, and the product 4-benzyloxy-3-nitrophenylethanol (IV, A=BzO) extracted from aqueous sodium carbonate with diethyl ether (Et.sub.2 O). Similarly, compounds in which A=H may be prepared by the same method, substituting 3-nitrophenylacetic acid (III, A=H) for methyl 4-benzyloxy-3-nitrophenylacetate. 3-Nitrophenylacetic acid is available commecially from e.g. Aldrich Chemical Co. (Step 2.)
The 4-benzyloxy-3-nitrophenylethanol (IV, A=BzO) is then reacted with a molar excess of p-toluenesulfonyl chloride in pyridine at 0.degree. C. to produce a 4-benzyloxy-3-nitrophenylethyl tosylate (V, A=BzO). The tosylate (V, A=BzO) is extracted using ethyl acetate. Similarly, compounds in which A=H may be prepared by the same method, substituting 3-nitrophenylethanol (IV, A=H) for 4-benzyloxy-3-nitrophenylethanol. (Step 3.)
The tosylate (V, A=BzO) is reacted with an equimolar amount of the desired dialkyl amine or cycloalkyl amine in dimethylformamide (DMF) at 65.degree. C. to produce a 2-benzyloxy-5-dialkyl or cycloalkyl aminoethylnitrobenzene (VI, A=BzO). Similarly, compounds in which A.sub.32 H may be prepared by the same method, substituting 3-nitrophenylethyl tosylate (V, A=H) for 4-benzyloxy-3-nitrophenylethyl tosylate. Dialkyl and cycloalkyl amines may be obtained from commercial sources, e.g., Aldrich Chemical Co., or may be made by methods known in the art (Step 4.)
The 2-benzyloxy-5-dialkyl or cycloalkyl aminoethylnitrobenzene (VI, A=BzO) is then reduced to a 2-benzyloxy-5-dialkyl or cycloalkyl aminoethylaniline derivative (VII, A=BzO) with hydrazine and Raney nickel in refluxing ethanol at ambient pressure with an equimolar amount of hydrogen, using the general method known for other unrelated compounds. See, e.g., Introduction to Organic Chemistry, by Andrew Streitwieser, Jr., and Clayton H. Heathcock, Ch. 32, p. 961 (1976). Similarly, compounds in which A=H may be prepared by the same method, substituting 3-dialkyl or cycloalkyl aminoethylnitrobenzene (VI, A=H) for 2-benzyloxy-5-dialkyl or cycloalkyl aminoethylnitrobenzene. (Step 5.)
The sequence is completed by reacting the aniline derivative formyl derivative, carboxylic acid derivative, isocyanate, or alkylisocyanate.
If a formamido derivative (VIIIa, A=H or BzO) is desired, the novel aniline derivative (VII, A=H or BzO) is reacted at 0.degree. C. with an equimolar amount of an appropriate reactive formyl derivative (e.g., formic acetic anhydride, which may be generated in situ from sodium formate and acetyl chloride, which are commercially available) in an appropriate aprotic base. (Step 6a.)
To produce a compound in which R.sub.4 is lower alkyl (VIIIb, A=H or BzO), the aniline derivative (VII, A=H or BzO) is reacted at 25.degree. C. with an equimolar amount of an appropriate reactive carboxylic acid derivative, especially an acyl halide, in an appropriate aprotic base. Carboxylic acid chlorides are available commercially, or may be prepared from commercially available carboxylic acids by methods known in the art. (Step 6b.)
To produce a ureidobenzene derivative (VIIIc, A=H or BzO), the aniline derivative (VII, A=H or BzO) is reacted at 25.degree. C. with an equimolar amount of an appropriate cyanate salt, e.g., potassium cyanate, in an acidic medium. (Step 6c.)
To produce an alkyl ureidobenzene derivative (VIIId, A=H or BzO), the aniline derivative (VII, A=H or BzO) is reacted at 25.degree. C. with an equimolar amount of an appropriate alkyl isocyanate, using the general method known in the art for unrelated compounds. See, e.g., Introduction to Organic Chemistry, Streitwieser & Heathcock, Ch. 27, p. 801. Alkyl isocyanates may be obtained commercially, or may be produced by reacting the appropriate alkyl halide with a reactive cyanate salt. (Step 6d.)
In compounds wherein R.sub.3 is hydro, Step 6a, b, c, or d produces the compound of formula I directly. Where R.sub.3 is hydroxy, it is necessary to remove the benzyloxy protecting group. This may be accomplished by the method described in Catalytic Hydrogenation in Organic Synthesis: Procedures and Commentary, M. Freifelder, (Wiley, 1978), p. 109, e.g., by catalytic hydrogenolysis of the penultimate compound (VIIIa-d) using palladium on carbon in methanol at ambient temperature and a pressure of 2 atmospheres, affording the compound of the invention (I).
In summary, compound of formula I are prepared by the following methods:
Compounds of formula I in which R.sub.3 is H are prepared by reacting a compound of formula VII (where A=H) with an appropriate reactive formyl derivative, carboxylic acid derivative, isocyanate salt, or alkylisocyanate, to produce the corresponding formanilide derivative, alkanylanilide derivative, ureidobenzene derivative, or alkylurea derivative. These reactions may be performed at atmospheric pressure, and at temperatures between the freezing and boiling points of the solvents employed, preferably between about -5.degree. C. and about 110.degree. C., and most preferably at about 25.degree. C.
Compounds of formula I in which R.sub.3 is OH are prepared by performing the same procedure using a compound of formula VII (where A=BzO), followed by removal of the protecting benzyloxy group, e.g., by catalytic hydrogenolysis with H.sub.2 over palladium on carbon at about 60.degree. C. and pressure of about two atmospheres.
Pharmaceutically acceptable acid addition salts of the compounds of formula I are prepared by reacting a free base of formula I with an appropriate acid. Free bases of formula I are prepared by reacting an acid addition salt of a compound of formula I with an appropriate base.
The following specific description is given to enable those skilled in the art to more clearly understand and practice the invention. It should not be considered as a limitation upon the scope of the invention, but merely as being illustrative and representative thereof.
PREPARATION 1
(Preparation of Compounds of Formula III Wherein A is Benzyloxy) (Step 1)
The carboxy function of 4-hydroxy-3-nitrophenylacetic acid (II) is first protected by forming the methyl ester using HCl in methanol, the procedure for which is known in the art. Then, 10.5 g methyl 4-hydroxy-3-nitrophenylacetate and 10 g benzyl chloride are reacted with 5 g potassium carbonate in ethanol. The product is extracted with ether.
PREPARATION 2
(Preparation of Compounds of Formula IV Wherein A is Hydrogen or Benzyloxy) (Step 2)
(A) 40 g of 3-nitrophenylacetic acid was added to a solution of 26 ml of 10M borane-methyl sulfide in 200 ml of THF, and the mixture was stirred at 25.degree. C. for 3 hr. The solution was then acidified with HCl in methanol, followed by evaporation of the solvent. The product 3-nitrophenylethanol (IV, A=H) was partitioned between diethyl ether (Et.sub.2 O) and aqueous sodium carbonate, and the Et.sub.2 O layer dried over sodium sulfate. Evaporation of the Et.sub.2 O afforded 34.8 g of 3-nitrophenylethanol (IV, A=H) as an oil.
(B) Similarly, proceeding as in Part A above, but substituting methyl 4-benzyloxy-3-nitrophenylacetate for 3-nitrophenylacetic acid, the compound 4-benzyloxy-3-nitrophenylethanol (IV, A=BzO) is produced.
PREPARATION 3
(Preparation of Compounds of Formula V) (Step 3)
(A) 34.6 g of 3-nitrophenylethanol (IV, A=H) was added to 41 g of p-toluenesulfonyl chloride in 200 ml of pyridine at 0.degree. C. and allowed to stand for 24 hr. Water was added, and the mixture extracted with ethyl acetate. The ethyl acetate extract was washed with 5% HCl, water, and brine, dried over Na.sub.2 SO.sub.4, and evaporated to a residue. The residue was recrystallized from Et.sub.2 O to afford 34 g of 3-nitrophenylethyltosylate (V, A=H).
(B) Similarly, proceeding as in Part A above, but substituting 4-benzyloxy-3-nitrophenylethanol for 3-nitrophenylethanol, the compound 4-benzyloxy-3-nitrophenylethyltosylate (V, A=BzO) is produced.
PREPARATION 4
(Preparation of Compounds of Formula VI) (Step 4)
(A) A mixture of 18.8 g of 3-nitrophenylethyl-2-tosylate and 25 ml of di-n-propylamine in 100 ml of DMF was stirred at 65.degree. C. for 12 hr. The solution was diluted with water and acidified with HCl. The mixture was then washed with Et.sub.2 O, basified with NH.sub.4 OH, and extracted with ethyl acetate. Evaporation of the solvent (after drying over Na.sub.2 SO.sub.4) produced 10.1 g of 3-(2-N,N-di-n-propylaminoethyl)nitrobenzene (VI, A=H).
(B) Similarly, proceeding as above, substituting the appropriate dialkylamine or cycloalkylamine for di-n-propylamine, the following compounds (VI, A=H) are prepared:
3-(2-N,N-ethyl-n-propylaminoethyl)nitrobenzene;
3-(2-N,N-ethyl-i-propylaminoethyl)nitrobenzene;
3-(2-N,N-ethyl-n-butylaminoethyl)nitrobenzene;
3-(2-N,N-ethyl-s-butylaminoethyl)nitrobenzene;
3-(2-N,N-ethyl-t-butylaminoethyl)nitrobenzene;
3-(2-N,N-n-propyl-n-butylaminoethyl)nitrobenzene;
3-(2-N,N-n-propyl-s-butylaminoethyl)nitrobenzene;
3-(2-N,N-n-propyl-t-butylaminoethyl)nitrobenzene;
3-(2-N,N-diisopropylaminoethyl)nitrobenzene;
3-(2-N,N-i-propyl-n-butylaminoethyl)nitrobenzene;
3-(2-N,N-i-propyl-s-butylaminoethyl)nitrobenzene;
3-(2-N,N-di-n-butylaminoethyl)nitrobenzene;
3-[2-(1-piperidyl)ethyl]nitrobenzene;
3-[2-(3,5-dimethyl-1-piperidyl)ethyl]nitrobenzene;
3-[2-(1-pyrrolidyl)ethyl]nitrobenzene;
3-[2-(3,4-dimethyl-1-pyrrolidyl)ethyl]nitrobenzene; and
3-[2-(1-azacycloheptyl)ethyl]nitrobenzene.
(C) Similarly, proceeding as in Part A and Part B above, but substituting 4-benzyloxy-3-nitrophenylethyltosylate for 3-nitrophenylethyltosylate, the following compounds (VI, A=BzO) are produced:
2-benzyloxy-5-(2-N,N-di-n-propylaminoethyl)nitrobenzene;
2-benzyloxy-5-(2-N,N-ethyl-n-propylaminoethyl)nitrobenzene;
2-benzyloxy-5-(2-N,N-ethyl-i-propylaminoethyl)nitrobenzene;
2-benzyloxy-5-(2-N,N-ethyl-n-butylaminoethyl)nitrobenzene;
2-benzyloxy-5-(2-N,N-ethyl-s-butylaminoethyl)nitrobenzene;
2-benzyloxy-5-(2-N,N-ethyl-t-butylaminoethyl)nitrobenzene;
2-benzyloxy-5-(2-N,N-n-propyl-n-butylaminoethyl)nitrobenzene;
2-benzyloxy-5-(2-N,N-n-propyl-s-butylaminoethyl)nitrobenzene;
2-benzyloxy-5-(2-N,N-n-propyl-t-butylaminoethyl)nitrobenzene;
2-benzyloxy-5-(2-N,N-diisopropylaminoethyl)nitrobenzene;
2-benzyloxy-5-(2-N,N-i-propyl-n-butylaminoethyl)nitrobenzene;
2-benzyloxy-5-(2-N,N-i-propyl-s-butylaminoethyl)nitrobenzene;
2-benzyloxy-5-(2-N,N-di-n-butylaminoethyl)nitrobenzene;
2-benzyloxy-5-[2-(1-piperidyl)ethyl]nitrobenzene;
2-benzyloxy-5-[2-(3,5-dimethyl-1-piperidyl)ethyl]nitrobenzene;
2-benzyloxy-5-[2-(1-pyrrolidyl)ethyl]nitrobenzene;
2-benzyloxy-5-[2-(3,4-dimethyl-1-pyrrolidyl)ethyl]nitrobenzene; and
2-benzyloxy-5-[2-(1-azacycloheptyl)ethyl]nitrobenzene.
PREPARATION 5
(Preparation of Compounds of Formula VII, Novel Intermediates of the Invention) (Step 5)
(A) To 10.1 g of 3-(2-N,N-di-n-propylaminoethyl)nitrobenzene (VI) in 200 ml of ethanol was added 1.0 g of Raney nickel and the solution heated to reflux. A solution of 10 ml of hydrazine hydrate in ethanol was slowly added. After filtration and evaporation, the mixture yielded 6.8 g of 3-(2-N,N-di-n-propylaminoethyl)aniline (VII, A=H) as an oil.
(B) Similarly, proceeding as in Part A above, but substituting the compounds made in Preparation 4(B) above for 3-(2-N,N-di-n-propylaminoethyl)nitrobenzene, the following compounds are prepared:
3-(2-N,N-ethyl-n-propylaminoethyl)aniline;
3-(2-N,N-ethyl-i-propylaminoethyl)aniline;
3-(2-N,N-ethyl-n-butylaminoethyl)aniline;
3-(2-N,N-ethyl-s-butylaminoethyl)aniline;
3-(2-N,N-ethyl-t-butylaminoethyl)aniline;
3-(2-N,N-n-propyl-n-butylaminoethyl)aniline;
3-(2-N,N-n-propyl-s-butylaminoethyl)aniline;
3-(2-N,N-n-propyl-t-butylaminoethyl)aniline;
3-(2-N,N-diisopropylaminoethyl)aniline;
3-(2-N,N-i-propyl-n-butylaminoethyl)aniline;
3-(2-N,N-i-propyl-s-butylaminoethyl)aniline;
3-(2-N,N-di-n-butylaminoethyl)aniline;
3-[2-(1-piperidyl)ethyl]aniline;
3-[2-(3,5-dimethyl-1-piperidyl)ethyl]aniline;
3-[2-(1-pyrrolidyl)ethyl]aniline;
3-[2-(3,4-dimethyl-1-pyrrolidyl)ethyl]aniline; and
3-[2-(1-azacycloheptyl)ethyl]aniline.
(C) Similarly, proceeding as in Part A and Part B above, but substituting the compounds prepared in Preparation 4(C) above for 3-(2-N,N-di-n-propylaminoethyl)nitrobenzene, the following compounds (VII, A=BzO) are prepared:
2-benzyloxy-5-(2-N,N-ethyl-n-propylaminoethyl)aniline;
2-benzyloxy-5-(2-N,N-ethyl-i-propylaminoethyl)aniline;
2-benzyloxy-5-(2-N,N-ethyl-n-butylaminoethyl)aniline;
2-benzyloxy-5-(2-N,N-ethyl-s-butylaminoethyl)aniline;
2-benzyloxy-5-(2-N,N-ethyl-t-butylaminoethyl)aniline;
2-benzyloxy-5-(2-N,N-n-propyl-n-butylaminoethyl)aniline;
2-benzyloxy-5-(2-N,N-n-propyl-s-butylaminoethyl)aniline;
2-benzyloxy-5-(2-N,N-n-propyl-t-butylaminoethyl)aniline;
2-benzyloxy-5-(2-N,N-diisopropylaminoethyl)aniline;
2-benzyloxy-5-(2-N,N-i-propyl-n-butylaminoethyl)aniline;
2-benzyloxy-5-(2-N,N-i-propyl-s-butylaminoethyl)aniline;
2-benzyloxy-5-(2-N,N-di-n-butylaminoethyl)aniline;
2-benzyloxy-5-[2-(1-piperidyl)ethyl]aniline;
2-benzyloxy-5-[2-(3,5-dimethyl-1-piperidyl)ethyl]aniline;
2-benzyloxy-5-[2-(1-pyrrolidyl)ethyl]aniline;
2-benzyloxy-5-[2-(3,4-dimethyl-1-pyrrolidyl)ethyl]aniline; and
2-benzyloxy-5-[2-(1-azacycloheptyl)ethyl]aniline.





EXAMPLE 1
(Preparation of Compounds of Formula VIIIa) (Step 6a)
(A) 3.4 g of sodium formate is added to 3.6 ml of acetyl chloride in 20 ml THF at 0.degree. C. and allowed to stand for 24 hr to form formic acetic anhydride. To this solution is added 10 g of 3-(2-N,N-di-n-propylaminoethyl)aniline in 50 ml of pyridine. The solution is allowed to stand at 0.degree. C. for 12 hr, and is then added to water and extracted with CH.sub.2 Cl.sub.2. The solvent is evaporated, and the residue is purified by silica gel chromatography to afford 3-(2-N,N-di-n-propylaminoethyl)formanilide (VIIIa, A=H).
(B) Similarly, proceeding as in Part A above, but substituting the compounds prepared in Preparation 5(B) above for 3-(2-N,N-di-n-propylaminoethyl)aniline, the following compounds (VIIIa, A=H) are prepared:
3-(2-N,N-ethyl-i-propylaminoethyl)formanilide;
3-(2-N,N-ethyl-n-butylaminoethyl)formanilide;
3-(2-N,N-ethyl-s-butylaminoethyl)formanilide;
3-(2-N,N-ethyl-t-butylaminoethyl)formanilide;
3-(2-N,N-n-propyl-n-butylaminoethyl)formanilide;
3-(2-N,N-n-propyl-s-butylaminoethyl)formanilide;
3-(2-N,N-n-propyl-t-butylaminoethyl)formanilide;
3-(2-N,N-diisopropylaminoethyl)formanilide;
3-(2-N,N-i-propyl-n-butylaminoethyl)formanilide;
3-(2-N,N-i-propyl-s-butylaminoethyl)formanilide;
3-(2-N,N-di-n-butylaminoethyl)formanilide;
3-[2-(1-piperidyl)ethyl]formanilide;
3-[2-(3,5-dimethyl-1-piperidyl)ethyl]formanilide;
3-[2-(1-pyrrolidyl)ethyl]formanilide;
3-[2-(3,4-dimethyl-1-pyrrolidyl)ethyl]formanilide; and
3-[2-(1-azacycloheptyl)ethyl]formanilide.
(C) Similarly, proceeding as in Part A and Part B above, but substituting the compounds prepared in Preparation 5(C) for 3-(2-N,N-di-n-propylaminoethyl)aniline, the following compounds (VIIIa, A=BzO) are prepared:
2-benzyloxy-5-(2-N,N-di-n-propylaminoethyl)formanilide;
2-benzyloxy-5-(2-N,N-ethyl-n-propylaminoethyl)formanilide;
2-benzyloxy-5-(2-N,N-ethyl-i-propylaminoethyl)formanilide;
2-benzyloxy-5-(2-N,N-ethyl-n-butylaminoethyl)formanilide;
2-benzyloxy-5-(2-N,N-ethyl-s-butylaminoethyl)formanilide;
2-benzyloxy-5-(2-N,N-ethyl-t-butylaminoethyl)formanilide;
2-benzyloxy-5-(2-N,N-n-propyl-n-butylaminoethyl)formanilide;
2-benzyloxy-5-(2-N,N-n-propyl-s-butylaminoethyl)formanilide;
2-benzyloxy- 5-(2-N,N-n-propyl-t-butylaminoethyl)formanilide;
2-benzyloxy-5-(2-N,N-diisopropylaminoethyl)formanilide;
2-benzyloxy-5-(2-N,N-i-propyl-n-butylaminoethyl)formanilide;
2-benzyloxy-5-(2-N,N-i-propyl-s-butylaminoethyl)formanilide;
2-benzyloxy-5-(2-N,N-di-n-butylaminoethyl)formanilide;
2-benzyloxy-5-[2-(1-piperidyl)ethyl]formanilide;
2-benzyloxy-5-[2-(3,5-dimethyl-1-piperidyl)ethyl]formanilide;
2-benzyloxy-5-[2-(1-pyrrolidyl)ethyl]formanilide;
2-benzyloxy-5-[2-(3,4-dimethyl-1-pyrrolidyl)ethyl]formanilide; and
2-benzyloxy-5-[2-(1-azacycloheptyl)ethyl]formanilide.
EXAMPLE 2
(Preparation of Compounds of Formula VIIIb) (Step 6b)
(A) 3.5 g of 3-(2-N,N-di-n-propylaminoethyl)aniline in 20 ml of pyridine is treated with 1 ml of acetyl chloride at 0.degree. C. The solution is added to water and extracted with CH.sub.2 Cl.sub.2. The solvent is evaporated and the product 3-(2-N,N-di-n-propylaminoethyl)acetanilide (VIIIb, A=H) is purified by silica gel chromatography (HBr salt m.p. 212.degree.-213.degree. C.).
(B) Similarly, proceeding as in Part A above, but substituting propanoyl chloride or butanoyl chloride for acetyl chloride, the following compounds are prepared:
3-(2-N,N-di-n-propylaminoethyl)propionanilide;
3-(2-N,N-di-n-propylaminoethyl)butyranilide.
(C) Similarly, proceeding as in Part A above, but substituting the compounds prepared in Preparation 5(B) above for 3-(2-N,N-di-n-propylaminoethyl)aniline, the following compounds (VIIIb, A=H) are prepared:
3-(2-N,N-ethyl-n-propylaminoethyl)acetanilide;
3-(2-N,N-ethyl-i-propylaminoethyl)acetanilide;
3-(2-N,N-ethyl-n-butylaminoethyl)acetanilide;
3-(2-N,N-ethyl-s-butylaminoethyl)acetanilide;
3-(2-N,N-ethyl-t-butylaminoethyl)acetanilide;
3-(2-N,N-n-propyl-n-butylaminoethyl)acetanilide;
3-(2-N,N-n-propyl-s-butylaminoethyl)acetanilide;
3-(2-N,N-n-propyl-t-butylaminoethyl)acetanilide;
3-(2-N,N-diisopropylaminoethyl)acetanilide;
3-(2-N,N-i-propyl-n-butylaminoethyl)acetanilide;
3-(2-N,N-i-propyl-s-butylaminoethyl)acetanilide;
3-(2-N,N-di-n-butylaminoethyl)acetanilide;
3-[2-(1-piperidyl)ethyl]acetanilide;
3-[2-(3,5-dimethyl-1-piperidyl)ethyl]acetanilide;
3-[2-(1-pyrrolidyl)ethyl]acetanilide;
3-[2-(3,4-dimethyl-1-pyrrolidyl)ethyl]acetanilide; and
3-[2-(1-azacycloheptyl)ethyl]acetanilide.
(D) Similarly, proceeding as in Parts A, B, and C above, but substituting the compounds made in Preparation 5(C) for 3-(2-N,N-di-n-propylaminoethyl)aniline and propanoyl chloride or butanoyl chloride for acetyl chloride, the corresponding propionanilide and butyranilide derivatives (VIIIb, A=H) are prepared.
(E) Similarly, proceeding as in Part A above, but substituting the compounds made in Preparation 5(C) for 3-(2-N,N-di-n-propylaminoethyl)aniline, the following compounds (VIIIb, A=BzO) are prepared:
2-benzyloxy-5-(2-N,N-di-n-propylaminoethyl)acetanilide;
2-benzyloxy-5-(2-N,N-di-n-propylaminoethyl)acetanilide;
2-benzyloxy-5-(2-N,N-ethyl-n-propylaminoethyl)acetanilide;
2-benzyloxy-5-(2-N,N-ethyl-i-propylaminoethyl)acetanilide;
2-benzyloxy-5-(2-N,N-ethyl-n-butylaminoethyl)acetanilide;
2-benzyloxy-5-(2-N,N-ethyl-s-butylaminoethyl)acetanilide;
2-benzyloxy-5-(2-N,N-ethyl-t-butylaminoethyl)acetanilide;
2-benzyloxy-5-(2-N,N-n-propyl-n-butylaminoethyl)acetanilide;
2-benzyloxy-5-(2-N,N-n-propyl-s-butylaminoethyl)acetanilide;
2-benzyloxy-5-(2-N,N-n-propyl-t-butylaminoethyl)acetanilide;
2-benzyloxy-5-(2-N,N-diisopropylaminoethyl)acetanilide;
2-benzyloxy-5-(2-N,N-i-propyl-n-butylaminoethyl)acetanilide;
2-benzyloxy-5-(2-N,N-i-propyl-s-butylaminoethyl)acetanilide;
2-benzyloxy-5-(2-N,N-di-n-butylaminoethyl)acetanilide;
2-benzyloxy-5-[2-(1-piperidyl)ethyl]acetanilide;
2-benzyloxy-5-[2-(3,5-dimethyl-1-piperidyl)ethyl]acetanilide;
2-benzyloxy-5-[2-(1-pyrrolidyl)ethyl]acetanilide;
2-benzyloxy-5-[2-(3,4-dimethyl-1-pyrrolidyl)ethyl]acetanilide; and
2-benzyloxy-5-[2-(1-azacycloheptyl)ethyl]acetanilide.
(F) Similarly, proceeding as in Parts B and E above, the corresponding 2-benzyloxy-propionanilide and butyranilide derivatives (VIIIb, A=BzO) are prepared.
EXAMPLE 3
(Preparation of Compounds of Formula VIIIc)
(Step 6c)
(A) A solution of 2.2 g of 3-(2-N,N-di-n-propylaminoethy)aniline in 10 ml 2:1 water/acetic acid was treated with 1.5 g of potassium cyanate in 5 ml of water. The mixture was then made basic with NH.sub.4 OH and extracted with CH.sub.2 Cl.sub.2. The CH.sub.2 Cl.sub.2 was evaporated, and the residue dissolved in methanol. Then, 48% aqueous HBr or HCl was added until the solution was acidic. The product, 3-(2-N,N-di-n-propylaminoethyl)ureidobenzene.HBr, (VIIIc, A=H) was precipitated from the solution with Et.sub.2 O. The yield was 3.0 g, m.p. 186.degree.-189.degree. C.
(B) Similarly, proceeding as in Part A above, but substituting the compounds prepared in Preparation 5(B) above for 3-(2-N,N-di-n-propylaminoethyl)aniline, the following compounds (VIIIc, A=H) are prepared:
3-(2-N,N-ethyl-n-propylaminoethyl)ureidobenzene.HBr;
3-(2-N,N-ethyl-i-propylaminoethyl)ureidobenzene.HBr;
3-(2-N,N-ethyl-n-butylaminoethyl)ureidobenzene.HBr;
3-(2-N,N-ethyl-s-butylaminoethyl)ureidobenzene.HBr;
3-(2-N,N-ethyl-t-butylaminoethyl)ureidobenzene.HBr;
3-(2-N,N-n-propyl-n-butylaminoethyl)ureidobenzene.HCl, m.p. 194.degree.-196.degree. C.;
3-(2-N,N-n-propyl-s-butylaminoethyl)ureidobenzene.HBr;
3-(2-N,N-n-propyl-t-butylaminoethyl)ureidobenzene.HBr;
3-(2-N,N-diisopropylaminoethyl)ureidobenzene.HBr;
3-(2-N,N-i-propyl-n-butylaminoethyl)ureidobenzene.HBr;
3-(2-N,N-i-propyl-s-butylaminoethyl)ureidobenzene.HBr;
3-(2-N,N-di-n-butylaminoethyl)ureidobenzene.HCl, m.p. 200.degree.-200.5.degree. C.;
3-[2-(1-piperidyl)ethyl]ureidobenzene.HBr;
3-[2-(3,5-dimethyl-1-piperidyl)ethyl]ureidobenzene.HCl, m.p. 189.degree.-191.degree. C.;
3-[2-(1-pyrrolidyl)ethyl]ureidobenzene.HBr;
3-[2-(3,4-dimethyl-1-pyrrolidyl)ethyl]ureidobenzene.HBr; and
3-[2-(1-azacycloheptyl)ethyl]ureidobenzene.HBr.
(C) Similarly, proceeding as in Part A and Part B above, but substituting the compounds prepared in Preparation 5(C) for 3-(2-N,N-di-n-propylaminoethyl)aniline, the following compounds (VIIIc, A=BzO) are produced:
2-benzyloxy-5-(2-N,N-di-n-propylaminoethyl)ureidobenzene.HBr;
2-benzyloxy-5-(2-N,N-ethyl-n-propylaminoethyl)ureidobenzene.HBr;
2-benzyloxy-5-(2-N,N-ethyl-i-propylaminoethyl)ureidobenzene.HBr;
2-benzyloxy-5-(2-N,N-ethyl-n-butylaminoethyl)ureidobenzene.HBr;
2-benzyloxy-5-(2-N,N-ethyl-s-butylaminoethyl)ureidobenzene.HBr;
2-benzyloxy-5-(2-N,N-ethyl-t-butylaminoethyl)ureidobenzene.HBr;
2-benzyloxy-5-(2-N,N-n-propyl-n-butylaminoethyl)ureidobenzene.HBr;
2-benzyloxy-5-(2-N,N-n-propyl-s-butylaminoethyl)ureidobenzene.HBr;
2-benzyloxy-5-(2-N,N-n-propyl-t-butylaminoethyl)ureidobenzene.HBr;
2-benzyloxy-5-(2-N,N-diisopropylaminoethyl)ureidobenzene.HBr;
2-benzyloxy-5-(2-N,N-i-propyl-n-butylaminoethyl)ureidobenzene.HBr;
2-benzyloxy-5-(2-N,N-i-propyl-s-butylaminoethyl)ureidobenzene.HBr;
2-benzyloxy-5-(2-N,N-di-n-butylaminoethyl)ureidobenzene.HBr;
2-benzyloxy-5-[2-(1-piperidyl)ethyl]ureidobenzene.HBr;
2-benzyloxy-5-[2-(3,5-dimethyl-1-piperidyl)ethyl]ureidobenzene.HBr;
2-benzyloxy-5-[2-(1-pyrrolidyl)ethyl]ureidobenzene.HBr;
2-benzyloxy-5-[2-(3,4-dimethyl-1-pyrrolidyl)ethyl]ureidobenzene.HBr; and
2-benzyloxy-5-[2-(1-azacycloheptyl)ethyl]ureidobenzene.HBr.
EXAMPLE 4
(Preparation of Compounds of Formula VIIId)
(Step 6d)
(A) A solution of 2.2 g of 3-(2-N,N-di-n-propylaminoethyl)aniline in 10 ml of 2:1 water/acetic acid is treated with 1.1 g of methyl isocyanate in 5 ml of water. The mixture is made basic with NH.sub.4 OH and extracted with CH.sub.2 Cl.sub.2. The solvent is evaporated to afford 1-[3-(2-N,N-di-n-propylaminoethyl)phenyl]-3-methylurea (VIIId, A=H) (HCl salt m.p. 151.degree.-152.degree. C.).
(B) Similarly, proceeding as in Part A above, but substituting ethylisocyanate or propylisocyanate for methyl isocyanate, the following compounds (VIIId, A=H) are prepared:
1-[3-(2-N,N-di-n-propylaminoethyl)phenyl]-3-ethylurea;
1-[3-(2-N,N-di-n-propylaminoethyl)phenyl]-3-propylurea.
(C) Similarly, proceeding as in Part A above, but substituting the compounds prepared in Preparation 5(B) above for 3-(2-N,N-di-n-propylaminoethyl)aniline, the following compounds (VIIId, A=H) are prepared:
1-[3-(2-N,N-ethyl-n-propylaminoethyl)phenyl]-3-methylurea;
1-[3-(2-N,N-ethyl-i-propylaminoethyl)phenyl]-3-methylurea;
1-[3-(2-N,N-ethyl-n-butylaminoethyl)phenyl]-3-methylurea;
1-[3-(2-N,N-ethyl-s-butylaminoethyl)phenyl]-3-methylurea;
1-[3-(2-N,N-ethyl-t-butylaminoethyl)phenyl]-3-methylurea;
1-[3-(2-N,N-n-propyl-n-butylaminoethyl)phenyl]-3-methylurea;
1-[3-(2-N,N-n-propyl-s-butylaminoethyl)phenyl]-3-methylurea;
1-[3-(2-N,N-n-propyl-t-butylaminoethyl)phenyl]-3-methylurea;
1-[3-(2-N,N-diisopropylaminoethyl)phenyl]-3-methylurea;
1-[3-(2-N,N-i-propyl-n-butylaminoethyl)phenyl]-3-methylurea;
1-[3-(2-N,N-i-propyl-s-butylaminoethyl)phenyl]-3-methylurea;
1-[3-(2-N,N-di-n-butylaminoethyl)phenyl]-3-methylurea;
1-(3-[2-(1-piperidyl)ethyl]phenyl)-3-methylurea;
1-(3-[2-(3,5-dimethyl-1-piperidyl)ethyl]phenyl)-3-methylurea;
1-(3-[2-(1-pyrrolidyl)ethyl]phenyl)-3-methylurea;
1-(3-[2-(3,4-dimethyl-1-pyrrolidyl)ethyl]phenyl)-3-methylurea; and
1-(3-[2-(1-azacycloheptyl)ethyl]phenyl)-3-methylurea.
(D) Similarly, proceeding as in Part A above, but substituting the compounds made in Preparation 5(C) for 3-(2-N,N-di-n-propylaminoethyl)aniline, the following compounds (VIIId, A=BzO) are prepared:
1-[2-benzyloxy-5-(2-N,N-di-n-propylaminoethyl)phenyl]-3-methylurea;
1-[2-benzyloxy-5-(2-N,N-ethyl-n-propylaminoethyl)phenyl]-3-methylurea;
1-[2-benzyloxy-5-(2-N,N-ethyl-i-propylaminoethyl)phenyl]-3-methylurea;
1-[2-benzyloxy-5-(2-N,N-ethyl-n-butylaminoethyl)phenyl]-3-methylurea;
1-[2-benzyloxy-5-(2-N,N-ethyl-s-butylaminoethyl)phenyl]-3-methylurea;
1-[2-benzyloxy-5-(2-N,N-ethyl-t-butylaminoethyl)phenyl]-3-methylurea;
1-[2-benzyloxy-5-(2-N,N-n-propyl-n-butylaminoethyl)phenyl]-3-methylurea;
1-[2-benzyloxy-5-(2-N,N-n-propyl-s-butylaminoethyl)phenyl]-3-methylurea;
1-[2-benzyloxy-5-(2-N,N-n-propyl-t-butylaminoethyl)phenyl]-3-methylurea;
1-[2-benzyloxy-5-(2-N,N-diisopropylaminoethyl)phenyl]-3-methylurea;
1-[2-benzyloxy-5-(2-N,N-i-propyl-n-butylaminoethyl)phenyl]-3-methylurea;
1-[2-benzyloxy-5-(2-N,N-i-propyl-s-butylaminoethyl)phenyl]-3-methylurea;
1-[2-benzyloxy-5-(2-N,N-di-n-butylaminoethyl)phenyl]-3-methylurea;
1-(2-benzyloxy-5-[2-(1-piperidyl)ethyl]phenyl)-3-methylurea;
1-(2-benzyloxy-5-[2-(3,5-dimethyl-1-piperidyl)ethyl]phenyl)-3-methylurea;
1-(2-benzyloxy-5-[2-(1-pyrrolidyl)ethyl]phenyl)-3-methylurea;
1-(2-benzyloxy-5-[2-(3,4-dimethyl-1-pyrrolidyl)ethyl]phenyl)-3-methylurea; and
1-(2-benzyloxy-5-[2-(1-azacycloheptyl)ethyl]phenyl)-3-methylurea.
(E) Similarly, proceeding as in Part B above, but substituting the compounds made in Preparation 5(C) for 3-(2-N,N-di-n-propylaminoethyl)aniline, the corresponding 3-ethylurea and 3-propylurea compounds (VIIId, A=BzO) are prepared.
EXAMPLE 5
(Preparation of Compounds of Formula I wherein R.sub.3 is Hydroxy)(Step 7)
(A) A solution of 3.3 g of 2-benzyloxy-5-(2-N,N-di-n-propylaminoethyl)ureidobenzene (VIIIc, A=BzO) in 150 ml of methanol was hydrogenated with 0.5 g of 10% Pd-C for 6 hr. at 2 atmospheres and 60.degree. C. Filtration and evaporation afforded an oil which was dissolved in methanol and acidified with hydrogen bromide. Addition of Et.sub.2 O precipitated the HBr salt, 2-hydroxy-5-(2-N,N-di-n-propylaminoethyl)ureidobenzene.HBr 148.degree.-149.degree. C. (I.HBr).
Similarly, proceeding as above but substituting hydrogen chloride for hydrogen bromide, the hydrochloride salts are prepared.
(B) Similarly, proceeding as in Part A above, but substituting the compounds prepared in Example 1(C) for 2-benzyloxy-5-(2-N,N-di-n-propylaminoethyl)ureidobenzene, the following compounds are prepared:
2-hydroxy-5-(2-N,N-di-n-propylaminoethyl)formanilide.HBr, m.p. 116.degree.-119.degree. C.;
2-hydroxy-5-(2-N,N-ethyl-n-propylaminoethyl)formanilide.HBr;
2-hydroxy-5-(2-N,N-ethyl-i-propylaminoethyl)formanilide.HBr;
2-hydroxy-5-(2-N,N-ethyl-n-butylaminoethyl)formanilide.HBr;
2-hydroxy-5-(2-N,N-ethyl-s-butylaminoethyl)formanilide-HBr;
2-hydroxy-5-(2-N,N-ethyl-t-butylaminoethyl)formanilide.HBr;
2-hydroxy-5-(2-N,N-n-propyl-n-butylaminoethyl)formanilide.HBr;
2-hydroxy-5-(2-N,N-n-propyl-s-butylaminoethyl)formanilide.HBr;
2-hydroxy-5-(2-N,N-n-propyl-t-butylaminoethyl)formanilide.HBr;
2-hydroxy-5-(2-N,N-diisopropylaminoethyl)formanilide.HBr;
2-hydroxy-5-(2-N,N-i-propyl-n-butylaminoethyl)formanilide.HBr;
2-hydroxy-5-(2-N,N-i-propyl-s-butylaminoethyl)formanilide.HBr;
2-hydroxy-5-(2-N,N-di-n-butylaminoethyl)formanilide.HBr;
2-hydroxy-5-[2-(1-piperidyl)ethyl]formanilide.HBr;
2-hydroxy-5-[2-(3,5-dimethyl-1-piperidyl)ethyl]formanilide.HBr;
2-hydroxy-5-[2-(1-pyrrolidyl)ethyl]formanilide.HBr;
2-hydroxy-5-[2-(3,4-dimethyl-1-pyrrolidyl)ethyl]formanilide.HBr; and
2-hydroxy-5-[2-(1-azacycloheptyl)ethyl]formanilide.HBr.
(C) Similarly, proceeding as in Part A above, but substituting the compounds prepared in Example 2(D) for 2-benzyloxy-5-(2-N,N-di-n-propylaminoethyl)ureidobenzene, the following compounds are produced:
2-hydroxy-5-(2-N,N-di-n-propylaminoethyl)acetanilide.HCl, m.p. 158.degree.-160.degree. C.;
2-hydroxy-5-(2-N,N-ethyl-n-propylaminoethyl)acetanilide.HBr;
2-hydroxy-5-(2-N,N-ethyl-i-propylaminoethyl)acetanilide.HBr;
2-hydroxy-5-(2-N,N-ethyl-n-butylaminoethyl)acetanilide.HBr;
2-hydroxy-5-(2-N,N-ethyl-s-butylaminoethyl)acetanilide.HBr;
2-hydroxy-5-(2-N,N-ethyl-t-butylaminoethyl)acetanilide.HBr;
2-hydroxy-5-(2-N,N-n-propyl-n-butylaminoethyl)acetanlide.HBr;
2-hydroxy-5-(2-N,N-n-propyl-s-butylaminoethyl)acetanilide.HBr;
2-hydroxy-5-(2-N,N-n-propyl-t-butylaminoethyl)acetanilide.HBr;
2-hydroxy-5-(2-N,N-diisopropylaminoethyl)acetanilide.HBr;
2-hydroxy-5-(2-N,N-i-propyl-n-butylaminoethyl)acetanilide.HBr;
2-hydroxy-5-(2-N,N-i-propyl-s-butylaminoethyl)acetanilide.HBr;
2-hydroxy-5-(2-N,N-di-n-butylaminoethyl)acetanilide.HBr;
2-hydroxy-5-[2-(1-piperidyl)ethyl]acetanilide.HBr;
2-hydroxy-5-[2-(3,5-dimethyl-1-piperidyl)ethyl]acetanilide.HBr;
2-hydroxy-5-[2-(1-pyrrolidyl)ethyl]acetanilide.HBr;
2-hydroxy-5-[2-(3,4-dimethyl-1-pyrrolidyl)ethyl]acetanilide.HBr; and
2-hydroxy-5-[2-(1-azacycloheptyl)ethyl]acetanilide.HBr.
(D) Similarly, proceeding as in Part A above, but substituting the compounds prepared in Example 2(F) for 2-benzyloxy-5-(2-N,N-di-n-propylaminoethyl)ureidobenzene, the corresponding propionanilide and butyranilide derivatives (VIIIb, A=H) are prepared.
(E) Similarly, proceeding as in Part A above, but substituting the compounds prepared in Example 3(C) for 2-benzyloxy-5-(2-N,N-di-n-propylaminoethyl)ureidobenzene, the following compounds are prepared:
2-hydroxy-5-(2-N,N-ethyl-n-propylaminoethyl)ureidobenzene.HBr;
2-hydroxy-5-(2-N,N-ethyl-i-propylaminoethyl)ureidobenzene.HBr;
2-hydroxy-5-(2-N,N-ethyl-n-butylaminoethyl)ureidobenzene.HBr;
2-hydroxy-5-(2-N,N-ethyl-s-butylaminoethyl)ureidobenzene.HBr;
2-hydroxy-5-(2-N,N-ethyl-t-butylaminoethyl)ureidobenzene.HBr;
2-hydroxy-5-(2-N,N-n-propyl-n-butylaminoethyl)ureidonbenzene.HBr;
2-hydroxy-5-(2-N,N-n-propyl-s-butylaminoethyl)ureidobenzene.HBr;
2-hydroxy-5-(2-N,N-n-propyl-t-butylaminoethyl)ureidobenzene.HBr;
2-hydroxy-5-(2-N,N-diisopropylaminoethyl)ureidobenzene.HBr;
2-hydroxy-5-(2-N,N-i-propyl-n-butylaminoethyl)ureidobenzene.HBr;
2-hydroxy-5-(2-N,N-i-propyl-s-butylaminoethyl)ureidobenzene.HBr;
2-hydroxy-5-(2-N,N-di-n-butylaminoethyl)ureidobenzene.HBr;
2-hydroxy-5-[2-(1-piperidyl)ethyl]ureidobenzene.HBr;
2-hydroxy-5-[2-(3,5-dimethyl-1-piperidyl)ethyl]ureidobenzene.HBr;
2-hydroxy-5-[2-(1-pyrrolidyl)ethyl]ureidobenzene.HBr;
2-hydroxy-5-[2-(3,4-dimethyl-1-pyrrolidyl)ethyl]ureidobenzene.HBr; and
2-hydroxy-5-[2-(1-azacycloheptyl)ethyl]ureidobenzene.HBr.
(F) Similarly, proceeding as in Part A above, but substituting the compounds prepared in Example 4(D) for 2-benzyloxy-5-(2-N,N-di-n-propylaminoethyl)ureidobenzene, the following compounds are prepared:
1-[2-hydroxy-5-(2-N,N-di-n-propylaminoethyl)phenyl]-3-methylurea.HBr;
1-[2-hydroxy-5-(2-N,N-ethyl-n-propylaminoethyl)phenyl]-3-methylurea.HBr;
1-[2-hydroxy-5-(2-N,N-ethyl-i-propylaminoethyl)phenyl]-3-methylurea.HBr;
1-[2-hydroxy-5-(2-N,N-ethyl-n-butylaminoethyl)phenyl]-3-methylurea.HBr;
1-[2-hydroxy-5-(2-N,N-ethyl-s-butylaminoethyl)phenyl]-3-methylurea.HBr;
1-[2-hydroxy-5-(2-N,N-ethyl-t-butylaminoethyl)phenyl]-3-methylurea.HBr;
1-[2-hydroxy-5-(2-N,N-n-propyl-n-butylaminoethyl)phenyl]-3-methylurea.HBr;
1-[2-hydroxy-5-(2-N,N-n-propyl-s-butylaminoethyl)phenyl]-3-methylurea.HBr;
1-[2-hydroxy-5-(2-N,N-n-propyl-t-butylaminoethyl)phenyl]-3-methylurea.HBr;
1-[2-hydroxy-5-(2-N,N-diisopropylaminoethyl)phenyl]-3-methylurea.HBr;
1-[2-hydroxy-5-(2-N,N-i-propyl-n-butylaminoethyl)phenyl]-3-methylurea.HBr;
1-[2-hydroxy-5-(2-N,N-i-propyl-s-butylaminoethyl)phenyl]-3-methylurea.HBr;
1-[2-hydroxy-5-(2-N,N-di-n-butylaminoethyl)phenyl]-3-methylurea.HBr;
1-(2-hydroxy-5-[2-(1-piperidyl)ethyl]phenyl)-3-methylurea.HBr;
1-(2-hydroxy-5-[2-(3,5-dimethyl-1-piperidyl)ethyl]phenyl-3-methylurea.HBr;
1-(2-hydroxy-5-[2-(1-pyrrolidyl)ethyl]phenyl)-3-methylurea.HBr;
1-(2-hydroxy-5-[2-(3,4-dimethyl-1-pyrrolidyl)ethyl]phenyl)-3-methylurea.HBr; and
1-(2-hydroxy-5-[2-(1-azacycloheptyl)ethyl]phenyl)-3-methylurea.HBr.
(G) Similarly, proceeding as in Part A above, but substituting the compounds prepared in Example 4(E) for 2-benzyloxy-5-(2-N,N-di-n-propylaminoethyl)ureidobenzene, the corresponding 3-ethylurea and 3-propylurea derivatives are prepared.
EXAMPLE 6
(Preparation of Salts From Free Bases)
8.0 g of 1-[3-(2-N,N-di-n-propylaminoethyl)phenyl]-3-methylurea is dissolved in methanol and acidified with methanolic HCl. The precipitate is washed with Et.sub.2 O to give 7.0 g of the hydrochloride salt of 1-[3-(2-N,N-di-n-propylaminoethyl)phenyl]-3-methylurea.
In a similar manner, all compounds of formula I in base form prepared in accordance with the methods described above can be converted to their pharmaceutically acceptable acid addition salts by treatment with the appropriate acid, for example, HBr, sulfuric acid, nitric acid, phosphoric acid, acetic acid, propionic acid, glycolic acid, pyruvic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid and the like.
EXAMPLE 7
(Preparation of Free Bases From Salts)
A solution of 3.5 g of 1-[3-(2-N,N-di-n-propylaminoethyl)phenyl]-3-methylurea hydrochloride salt in water (50 ml) is adjusted to pH 12 with NH.sub.4 OH solution and extracted with methylene chloride. The methylene chloride is then evaporated to afford 3 g of 1-[3-(2-N,N-di-n-propylaminoethyl)phenyl]-3-methylurea as the free base.
In a similar manner, all acid addition salts of compounds of formula I prepared in accordance with the methods described above can be converted to their free base form.
EXAMPLE 8
(Formulations)
The following example illustrates the preparation of representative pharmaceutical formulations containing an active compound of Formula (I), e.g., 3-(2-N,N-di-n-propylaminoethyl)ureidobenzene.
______________________________________Intraocular Solution______________________________________Active compound 0.10 gBenzalkonium Chloride 0.01 gEDTA 0.10 gSodium Phosphate Buffer qs pH 7.42% Boric acid solution qs 100 ml______________________________________
The active compound is dissolved in 2% Boric acid solution, benzalkonium chloride, sodium phosphate buffer and ethylenediaminetetraacetic acid (EDTA). The solution is then filtered through a 0.2 micron membrane filter and packaged under sterile conditions.
______________________________________Intraocular Ointment______________________________________Active Compound 1 gBenzalkonium Chloride 0.1 gEDTA 1.0 gWhite Wax 50 gPetrolatum 950 g______________________________________
The wax is melted over a water bath. The petrolatum is then added and heated until it liquifies. The mixture is then cooled and stirred until it congeals. The remaining ingredients are then added as micronized powders and the mixture packaged under sterile conditions.
EXAMPLE 9
(Ocular Irritation Test)
Each studied compound is tested individually on a single animal by administering, at the same time, into one eye of the animal the ophthalmic solution with the test compound as an active ingredient and to the other eye only vehicle ophthalmic solution. An irritation, if any, caused by tested compounds is compared to the non-irritating effect of the vehicle ophthalmic solution applied to the other eye. Irritation is measured by the number of blinks of each eye during the same time period. Tests are performed on rats, dogs and monkeys.
Ophthalmic solutions with compounds of the invention as the active ingredient are prepared at concentrations of 0.01% to 0.5%. One drop of the test ophthalmic solution with active ingredient is administered directly into the conjuctival sack of the rat's left eye. At the same time one drop of vehicle is administered to the conjunctival sack of the rat's right eye.
Irritation of each eye is measured by counting the number of blinks for one minute after the application. The results are expressed as the mean number of blinks.+-.standard error per eye. The mean number of blinks/minute is averaged for the vehicle treatment and compared to the active compound-treated eye. Compounds may be similarly tested in mongrel dogs and rhesus monkeys.
The compounds of this invention do not elicit any irritation of the eyes, and their effects are comparable to the effect of the vehicle ophthalmic solution without any active compound added.
EXAMPLE 10
(Reduction Of Intraocular Pressure)
This example illustrates the effect of compounds of the current invention on intraocular pressure (IOP).
Two groups of normal albino white New Zealand rabbits are used for this study.
Control group: 4 animals
Experimental group: 8 animals
Experimental Schedule
At time 0, the intraocular pressure of both eyes of each animal in control and experimental groups is determined.
All animals receive the treatment either with saline (control group) or the tested compound (experimental group) immediately after the 0 hour intraocular pressure reading. The control group receives 50 .mu.l of vehicle in each eye, while experimental animals receive 50 .mu.l of vehicle in the left eyes and 50 .mu.l of 1% solution of the tested compound in the right eyes.
Intraocular pressure is measured at 30 minutes, 1, 2, and 4 hours after administration.
Experimental Procedure
The effects of tested compounds on intraocular pressure (IOP) of rabbits are determined using a Digilab Model 30D pneuma-tonometer. Initial IOP readings are obtained in al animals after the administration of 50 .mu.l of 0.5% Opthaine (proparacaine hydrochloride). A group of 4 rabbits serves as control and is treated with 50 .mu.l of saline in both eyes. Eight additional rabbits receive 50 .mu.l of test compound in the right eye, and 50 .mu.l of drug vehicle in the contralateral left eye. IOP readings are made 30 minutes, 1 hours, 2 hours, and 4 hours after administration. Rabbits are observed for any signs of ocular irritation.
This procedure permits the comparison of the active compound-treated eyes with the contralateral vehicle treated eyes, and also with saline treated eyes. For purposes of statistical analysis comparisons are made between the IOP values for active compound-treated eyes, vehicle treated contralateral eyes and the saline treated eyes. The compounds of formula I are active in this assay.
Claims
  • 1. An isotonic ophthamic composition for reducing elevated intraocular pressure, comprising a ophthalmologically acceptable, non-toxic carrier and a buffer and 0.001-10% wl/vol of a compound of formula I: ##STR10## or a pharmaceutically acceptable acid addition salt thereof, wherein
  • R.sub.1 is alkyl of two to four carbon atoms; and
  • R.sub.2 is alkyl of three or four carbon atoms; or
  • R.sub.1 and R.sub.2 taken together with N form ##STR11## wherein n is 0, 1, or 2 and R.sub.5 and R.sub.6 are each independently lower alkyl or hydro;
  • R.sub.3 is hydro or hydroxy;
  • R.sub.4 is hydro, lower alkyl, amino, or lower alkylamino.
  • 2. The composition of claim 1 in which the compound is 3-(2-N,N-di-n-propylaminoethyl)ureidobenzene or a pharmaceutically acceptable salt thereof.
  • 3. The composition of claim 1 in which the compound is 3-[2-(1-piperidyl)ethyl]ureidobenzene.
  • 4. The composition of claim 1 in which the compound is 3-[2-(3,5-dimethyl-1-piperidyl)ethyl]ureidobenzene.
  • 5. The composition of claim 1 in which the compound is 2-hydroxy-5-(2-N,N-di-n-propylaminoethyl)ureidobenzene.
  • 6. The composition of claim 1 in which the compound is 2-hydroxy-5-[2-(1-piperidyl)ethyl]ureidobenzene.
  • 7. The composition of claim 1 in which the compound is 2-hydroxy-5-[2-(3,5-dimethyl-1-piperidyl)ethyl]ureidobenzene.
  • 8. The composition of claim 1 in which the compound is 3-(2-N,N-n-propyl-n-butylaminoethyl)ureidobenzene.HBr.
  • 9. A method of preparing an isotonic ophthamic composition, comprising adding 0.001-10% wt/vol of a compound of formula I to an ophthalmologically acceptable, non-toxic carrier wherein the compound of Formula I is: ##STR12## or a pharmaceutically acceptable acid addition salt thereof, wherein R.sub.1 is alkyl of two to four carbon atoms; and
  • R.sub.2 is alkyl of three or four carbon atoms; or
  • R.sub.1 and R.sub.2 taken together with N form ##STR13## wherein n is 0, 1, or 2 and R.sub.5 and R.sub.6 are each independently lower alkyl or hydro;
  • R.sub.3 is hydro or hydroxy;
  • R.sub.4 is hydro, lower alkyl, amino, or lower alkylamino adjusting the H to a range of 6.8 to 8 with an acceptable buffer and sterilizing the composition.
  • 10. The method of claim 9 wherein the compound of Formula I is added in an amount of 0.005-7% wt/vol.
  • 11. The method as claimed in claim 10, wherein the compound of formula I is
  • 3-(2-N,N-di-n-propylaminoethyl)ureidobenzene or a pharmaceutically acceptable salt thereof.
  • 12. The method as claimed in claim 10, wherein the compound of formula I is 3-[2-(1-piperidyl)ethyl]ureidobenzene.
  • 13. The method as claimed in claim 10, wherein the compound of formula I is 3-[2-(3,5-dimethyl-1-piperidyl)ethyl]ureidobenzene.
  • 14. The method as claimed in claim 10, wherein the compound of formula I is
  • 2-hydroxy-5-(2-N,N-di-n-propylaminoethyl)-ureidobenzene.
  • 15. The method as claimed in claim 10, wherein the compound of formula I is
  • 2-hydroxy-5-[2-(1-piperidyl)ethyl]ureido-benzene.
  • 16. The method as claimed in claim 10, wherein the compound of formula I is
  • 2-hydroxy-5-[2-(3,5-dimethyl-1-piperidyl)-ethyl]ureidobenzene.
  • 17. The method as claimed in claim 10, wherein the compound of formula I is 3-(2-N,N-n-propyl-n-butylaminoethyl)ureidobenzene.HBr.
RELATED U.S. APPLICATION DATA

This application is a divisional of U.S. application Ser. No. 722,038 filed Apr. 11, 1985 (now U.S. Pat. No. 4,629,730 issued Dec. 16, 1986) to which earlier application Applicants claim priority under 35 USC 517 120.

US Referenced Citations (12)
Number Name Date Kind
2050557 Brokmuhl et al. Aug 1936
3644520 Hartley et al. Feb 1972
3689524 Jack et al. Sep 1972
3763232 Kaiser et al. Oct 1973
3803230 Jack et al. Apr 1974
3976783 Cox et al. Aug 1976
4127674 Leopold Nov 1978
4146645 Schromm et al. Mar 1979
4287211 Ferrari et al. Sep 1981
4404222 Baker et al. Sep 1983
4482566 Hirai et al. Nov 1984
4507320 Marinis et al. Mar 1985
Non-Patent Literature Citations (3)
Entry
Remington's Pharmaceutical Sci. 16th Ed., (Mack Pub. Co., 1980), Chapter 86, 1498-1517.
T. Nogrady, "Medicinal Chemistry, A Biochemical Approach", Ch. 4.3-4.4, pp. 140-174, (Oxford U. Press), 1985.
A. M. Barrett, Design of .beta.-Blocking Drugs in "Drug Design", vol. III, pp. 205-208 (Academic Press, 1972).
Divisions (1)
Number Date Country
Parent 722038 Apr 1985