Method for treating vascular occlusion

Information

  • Patent Grant
  • 11832838
  • Patent Number
    11,832,838
  • Date Filed
    Tuesday, January 11, 2022
    3 years ago
  • Date Issued
    Tuesday, December 5, 2023
    a year ago
Abstract
A method is disclosed for removing a vascular occlusion, such as a clot, from a blood vessel. A tubular sheath is inserted into the vessel and a self-expanding Nitinol mesh filter is deployed from a distal end of the tubular sheath at a location proximal to a clot. An inner catheter is advanced through the tubular sheath and through the mesh filter for contacting the clot. An expandable agitation element is provided along a distal end portion of the inner catheter for cutting or chopping the clot, thereby facilitating removal of the clot and improving blood flow through the vessel. Resulting clot particles are captured by the mesh filter. Negative pressure may be applied along a proximal end portion of the sheath for aspirating remaining particles. Certain embodiments of the method are well-suited for treating deep vein thrombosis and do not require the use of thrombolytic drugs.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates generally to medical devices and, more particularly, the invention relates to a filter device that is adapted to capture and remove particles from a body lumen.


Description of the Related Art

Vascular filters are used in a wide variety of applications wherein it is desirable to capture particles from the blood. One primary use of vascular filters is for protecting against a condition called pulmonary embolism (PE). A pulmonary embolism occurs when a blood clot (embolus) or other particle in the cardio-pulmonary blood circulation creates a pulmonary arterial blockage. A pulmonary embolism can be a life-threatening condition because the clot may effectively cut off the body's oxygen supply. To reduce the likelihood of this event, a vascular filter may be implanted within a blood vessel, such as the inferior vena cava or other large vein, for capturing blood clots before they can reach the pulmonary vasculature. The use of vascular filters has been particularly useful for treating patients suffering from deep vein thrombosis (DVT), a condition wherein a blood clot (thrombus) can form in a leg and then break free (now an embolus) and migrate into the cardio-pulmonary vasculature.


Delivery of a vascular filter to a blood vessel is usually achieved through a peripheral vein access site, such as, for example, the jugular or femoral veins. One of the earliest examples of a vascular filter is the Mobin-Uddin (“MU”) umbrella filter, which was developed in 1967. The MU filter provided an alternative to a variety of treatment techniques, such as surgical ligation, caval plication, and caval clips, which were used at the time for treating venous stasis and preventing PE. The MU filter is composed of six flat Elgiloy spokes radiating from a hub and partially covered by a web designed to capture blood clots. MU filters were typically introduced into the body via a cutdown of the jugular or femoral vein and subsequent passing of a catheter through the access site to the filter implant site in the infrarenal inferior vena cava.


In 1973, Greenfield et al. introduced a new stainless steel filter. This type of filter is conical in shape and is composed of six equally spaced stainless steel wires. The filter is adapted to hold a clot in the infrarenal vena cava until the body's own lytic system dissolves the clot. Since the introduction of the original Greenfield filter, subsequent derivatives have been developed to reduce the size of the introducer catheter for facilitating percutaneous introduction. For example, in 1989, the Titanium Greenfield Filter (TGF) was introduced as a low-profile system to facilitate the ease of percutaneous insertion.


Still other vena cava filters were introduced in the United States in the late 1980s, including the Vena Tech-LGM vena cava filter, the Bird's Nest vena cava filter, and the Simon-Nitinol vena cava filter. The Vena Tech-LGM filter is a conical filter made from a Phynox alloy, with longitudinal stabilizing legs in addition to the intraluminal cone. The Bird's Nest filter is a “nest” of stainless steel wire which is wound into the vena cava, while the Simon Nitinol filter is a two-stage filter made from nickel-titanium (NiTi) alloy with a conical lower section and a petal-shaped upper section. The TrapEase filter is yet another filter that was approved by the FDA in the summer of 2000. The TrapEase filter is laser cut from a single tube of Nitinol material and is formed with a symmetric double-basket configuration providing two levels of clot trapping.


Although vascular filters are widely used for capturing emboli in blood vessels, existing filter configurations suffer from a variety of shortcomings that limit their effectiveness. In one primary shortcoming, vascular filters are susceptible to clogging with embolic material. When a filter becomes partially or totally clogged, the flow of blood through the vessel may be substantially reduced or stopped completely. When this occurs, serious complications can arise and therefore the patient must be treated immediately to restore adequate blood flow. Because of the potential for clogging, existing vascular filters are typically manufactured with relatively large pores or gaps such that only large emboli, such as those with diameters of 7 mm or greater, are captured. The large pore size is necessary for reducing the likelihood of clogging due to smaller particles. Unfortunately, in certain cases, the passage of smaller emboli may still be capable of causing a pulmonary embolism or stroke. Accordingly, physicians and filter manufacturers are required to balance the risk of clogging against the risk of pulmonary embolism and/or stroke.


Catheter-based mechanical thrombectomy devices provide an alternative treatment method for removing blood clots from a patient's vasculature. Thrombectomy devices are typically used for removing a thrombus that has formed in a blood vessel and has occluded the flow of blood. Existing thrombectomy devices include the Oasis™ Thrombectomy System by Boston Scientific, the Hydrolyser™ by Cordis, the Helix™ Clot Buster® by ev3/Microvena, the Arrow Trerotola PTD™ kit by Arrow International, the MTI-Cragg Brush™ by MicroTherapeutics, the Angiojet Xpeedior™ 100 Catheter by Possis, and the Thrombex PMT™ system by Edwards Lifesciences.


Thrombectomy devices have gained popularity in recent years as experience with the devices has increased. However, the use of these devices can be cumbersome, time-consuming and expensive. Furthermore, these devices do not capture emboli in the blood. Rather, these devices are used to remove a thrombus that has formed within a vessel. In certain cases, these devices may actually produce emboli and cause a stroke or PE. Still further, the contact surfaces or fluid pressures of these mechanical thrombectomy devices may produce a variety of undesirable side-effects, such as endothelial denudation and hemolysis. Finally, these devices have not yet proven to be sufficiently mechanically reliable for widespread use.


Therefore, due to the numerous shortcomings associated with existing vascular filters and thrombectomy devices, an urgent need exists for improved devices and methods for capturing and removing blood clots from a patient's vasculature. The present invention addresses this need.


SUMMARY OF THE INVENTION

The present invention provides a vascular filter device adapted for capturing and breaking down embolic material from the blood.


Preferred embodiments of the present invention generally comprise a filter body sized for deployment in a blood vessel, and an agitation member movably coupled to the filter body. During use, movement of the agitation member acts to break apart particles captured within the filter body. To reduce the possibility of filter migration, the filter body may be provided with anchoring elements for engagement with an inner wall of the blood vessel. The anchoring elements may comprise penetrating tips, barbs, hooks or any other structure configured to engage the inner wall. In another variation, the filter device may be supported by a stent structure that expands for engagement with the inner wall.


The filter body preferably comprises a plurality of elongate legs coupled together at one end to form a substantially conically-shaped body having an interior volume configured for capturing emboli. The vascular filter is preferably configured to be collapsible for delivery to a treatment site. In one variation, the vascular filter is self-expanding. In another variation, the vascular filter is balloon expandable. The filter body is coated with an anti-coagulent material.


In one aspect, the agitation member is rotatably coupled to the filter body. A flow-receiving member may be provided for causing the agitation member to rotate relative to the filter body. In one variation, the agitation member is capable of reversing direction during use. If desired, the vascular filter may further comprise a clutch mechanism such that the agitation member only rotates relative to the filter body when a particle is trapped within the filter body. To further enhance the dissolution of particles trapped within the filter body, the filter body may further comprise inwardly protruding members that cooperate with the agitation member to break down the particle.


In another variation, movement of the agitation mechanism may be provided by an elongate drive mechanism. The elongate drive mechanism may be removably attachable to the agitation member or the components may be provided as a single unit. The drive mechanism preferably includes a rotatable inner catheter contained within an outer catheter. The outer catheter couples to the filter body and remains rotationally fixed. The inner catheter couples to the agitation member and causes the agitation member to rotate.


In another aspect, the agitation member is configured to vibrate within the filter body. In one preferred embodiment, the agitation member vibrates at ultrasonic frequencies.


In another aspect, the agitation member is configured to emit a pressurized flow of fluid for producing hydrodynamic forces for breaking apart a clot.


In another aspect, the vascular filter further comprises an energy storage device coupled to the agitation member for producing movement of the agitation member.


Preferred embodiments of the present invention also provide a method of making a vascular filter. In one embodiment, the method comprises providing a filter body sized for capturing particles from the blood and coupling an agitation member to the filter body, wherein the agitation member is rotatable relative to the filter body.


Preferred embodiments of the present invention also provide a method of filtering particles from blood in a blood vessel, comprising providing a vascular filter having a filter body and an agitation member movably coupled to the filter body. The method further comprises collapsing the vascular filter, inserting the vascular filter into a lumen of a delivery catheter, introducing the delivery catheter into the blood vessel, and deploying the vascular filter from a distal end of the delivery catheter at a desired location within the blood vessel. After delivery, captured particles are broken apart by causing the agitation member to move relative to the filter body.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates one method of deploying a filter device in a blood vessel for capturing emboli.



FIG. 1A illustrates the filter device of FIG. 1 after capturing a large embolus.



FIG. 2 is a side view illustrating an improved vascular filter according to one preferred embodiment of the present invention.



FIG. 3 is an enlarge view illustrating the cooperation between the shaft portion and the hub of the vascular filter of FIG. 2.



FIGS. 4 through 6 illustrate the vascular filter of FIG. 2 during use.



FIGS. 7 and 8 illustrate alternative embodiments of a force receiving mechanism for causing the agitation member to rotate for acting on an embolus.



FIGS. 9 and 9A illustrate another alternative embodiment of a vascular filter device wherein a spring couples the agitation member to the filter body to allow limited longitudinal movement between the two.



FIG. 10 illustrates another alternative embodiment of a vascular filter device wherein a flow-receiving member comprises vanes extending parallel to the filter body.



FIG. 11 illustrates another alternative embodiment of a vascular filter device wherein the agitation member is capable of reversing direction.



FIG. 12 illustrates another alternative embodiment of a vascular filter device further comprising an elongate drive mechanism, the drive mechanism being removably attachable to the filter device.



FIG. 12A illustrates the vascular filter device of FIG. 12 with the elongate drive mechanism coupled to the filter body for driving the agitation member.



FIG. 13 illustrates another alternative embodiment of a vascular filter device wherein the elongate drive mechanism, filter body and agitation member are integrated into a single unit.



FIG. 14 illustrates the embodiment of FIG. 13 wherein the elongate drive mechanism is disposed within a lumen of a delivery sheath.



FIG. 15 illustrates the embodiment of FIG. 14 during use.



FIGS. 16 and 16A illustrate an alternative filter body embodiment having stiffened members for creating an enclosed volume when withdrawn into a delivery sheath.



FIGS. 17A through 17C illustrate an alternative agitation member having a controllable diameter.



FIG. 18 illustrates the embodiment of FIGS. 17A-17C during use.



FIG. 19 illustrates another alternative embodiment of a vascular filter device wherein the agitation member is a nozzle for emitting pressurized fluid.



FIG. 20 illustrates another alternative embodiment of a vascular filter device wherein the agitation member is a vibrational mechanism.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Preferred embodiments of the present invention provide improved devices and methods for capturing and dissolving blood clots within a patient's vasculature. In one important embodiment, the present invention provides an implantable mechanical device that is powered by the flow of blood through a blood vessel. Embodiment of the present invention may be used to capture and dissolve a wide variety of particles. As a result, embodiments of the present invention may be used to improve circulation and reduce the chance of clot-related health problems, such as stroke and pulmonary embolism.


Referring to FIG. 1, for background purposes, a filter device 10 for filtering particles from the blood is illustrated. The filter device is shown during implantation in the inferior vena cava 12. The filter device 10 is delivered to a treatment site through a catheter 14. The delivery catheter 14 is inserted through an access site 16 adjacent the jugular vein. With reference now to FIG. 1A, the filter device 10 is shown with a large blood clot 20 captured therein. The filter device is configured to hold the captured clot until the body's natural lytic system causes the clot to dissolve. However, as can be seen in FIG. 1A, in one primary shortcoming of the illustrated filter device, the captured blood clot may partially or completely occlude the flow of blood through the inferior vena cava. Occlusion of the inferior vena cava can have serious consequences and therefore requires immediate medical attention.


With reference now to FIG. 2, a preferred embodiment of an improved filter device 100 is illustrated. The filter device 100 generally comprises a filter body 102 and an agitation member 104 movably coupled to the filter body. The agitation member 104 is coupled to a shaft portion 106 and a flow receiving member 108. In the illustrated embodiment, the shaft portion 110 extends through an opening in a hub 112 for rotatably coupling the agitation member to the filter body. As shown in the enlarge view of FIG. 3, regions of expanded diameter 130, 132 are provided along the shaft portion 110 at locations proximal and distal to the hub 112 for preventing the agitation member 104 from moving longitudinally with respect to the filter body 102.


The filter body 102 preferably comprises a plurality of elongate legs 120 having first and second ends. The elongate legs 120 are joined along the first ends at the hub. In a preferred embodiment, six elongate legs are provided. In the deployed condition (as shown), the elongate legs are configured to provide the filter body 102 with a substantially conical shape. The filter body 102 defines an interior volume 116 which provides an entrapment region for capturing and holding particles. The spacing between the elongate legs 120 can be configured for the particular application. However, in one preferred embodiment, the legs are spaced for capturing clots having a diameter of 7 mm or greater, while allowing smaller particles to pass therethrough. The elongate legs 120 are preferably arranged to create very little resistance to blood flow through the vessel. In one variation, one or more protruding elements 124 are provided along the inner surfaces of the elongate legs. The filter body 102 is preferably configured to be collapsible into a smaller cross-sectional profile for facilitating percutaneous delivery to a treatment site. Although the filter body is illustrated as comprising a plurality of elongated legs, the filter body may also take various alternative forms capable of capturing particles, such as, for example, a mesh or bird's nest arrangement.


One or more anchors 122 are preferably provided along the second ends of the elongate legs 120 for engaging the inner wall of the blood vessel. In various preferred embodiments, the anchors may comprise barbs, hooks or any other shape well-suited for engaging the inner wall. Preferably, the anchors are sized and configured such that they do not penetrate through the wall of the blood vessel. Over time, the anchors along the elongate legs are incorporated by endothelial tissue, thereby substantially reducing the possibility of undesirable filter migration. In another variation, the filter device may be supported by an expandable stent structure (not shown) that expands for engagement with the inner wall of the vessel. The stent may be used to help improve alignment and reduce the likelihood of undesirable filter migration.


The agitation member 104 is an elongate member having corkscrew-shaped portion. The agitation member 104 is preferably disposed within the interior volume 116 of the filter body 102. The agitation member preferably includes a pointed tip 126 adapted for engaging and penetrating a captured embolus. The agitation member is formed to break apart an embolus by producing forces which help separate the embolus into smaller pieces which can be more easily broken down by the body's natural lytic system. In other words, the agitation member provides a mechanical element for emulsifying an embolus trapped within the filter body. The agitation member preferably has a relatively small cross-sectional profile such that rotational resistance will be minimized during engagement with an embolus. Although the agitation member is illustrated as comprising a corkscrew-shaped member coupled to shaft portion and a flow receiving member, as will be described in more detail below, any movable element configured for movement within a filter body for acting on a captured particle is contemplated to fall within the scope of the present invention.


The flow receiving member 108 is coupled to the shaft portion and comprises a series of angled blades 126. The blades are configured to be acted upon by the flow of blood (shown by arrow A) for causing rotation of the shaft portion and the agitation member. The shape and arrangement of the blades is configured for producing sufficient torque to overcome resistance caused by engagement of the agitation member with the embolus.


With reference now to FIGS. 4 through 6, the filter device 102 is shown during use. When an embolus 200 (or other particle in the blood) reaches the filter device 100, the embolus 200 enters the mouth of the filter body 102 and is funneled toward the center of the interior volume 116. The flow of blood pushes the embolus 200 into contact with the pointed tip of the agitation member 104, thereby causing the pointed tip to penetrate the captured embolus. Rotational movement causes the agitation member to penetrate deeper into the embolus and thereby draw the embolus further toward the apex (i.e., cephalad end) of the filter body.


With particular reference to FIG. 5, the filter device 100 is shown during use as it pulls the embolus 200 into the filter body 102. As the embolus is pulled inward, it is acted on by the protruding members 124 which help break apart the embolus. As the embolus is drawn further into the filter, pieces 202 of the embolus break away. The protruding members also prevent the embolus from rotating with the filter body, thereby ensuring that the embolus is drawn further into the filter body. When the embolus 200 reaches the apex of the filter body, as shown in FIG. 6, rotational movement of the agitation member continues to impart mechanical forces on the embolus, thereby causing it to compress and eventually dissolve into harmless smaller particles. As the embolus is broken into smaller pieces, the body's own lytic capabilities are able to quickly dissolve the remaining pieces. The remaining particles may be held within the filter body or the filter body may be configured with a pore size sufficient to allow the harmless smaller particles to pass through the filter wherein they may be dissolved downstream. It is recognized that the agitation member may not penetrate all emboli that enter the filter body. However, even if a particle enters the region between the corkscrew shaped member and the filter body, the movement of the agitation member will still act on the particle and cause it to break apart over time.


To further enhance dissolution of emboli, the vascular filter may be used in combination with one or more thrombolytic drugs. In one method, the drugs may be delivered from a catheter. The fluid pressure from the delivery of the drugs may be used to further drive the movement of the agitation member, such as by imparting forces on the flow receiving member.


Components of the filter device are preferably manufactured from biocompatible, non-corrosive materials having high fatigue strengths. In various configurations, the components of the filter device may be made of stainless steel or titanium. In another variation, some or all of the components may be made of a nickel-titanium alloy (such as Nitinol) have shape-memory properties. In one embodiment, the nickel-titanium alloy may further include Niobium for desirable material characteristics.


Components of the vascular filter device may also be coated with one or more drugs (e.g., therapeutic agents) to prevent cell growth onto or adjacent to the device. This feature helps reduce the likelihood of cell/tissue ingrowth adversely affecting the functionality of the moving parts. The therapeutic agent(s) is preferably selected from the group consisting of antiproliferative agents, anti-inflammatory, anti-matrix metalloproteinase, and lipid lowering, anti-thrombotic, and/or antiplatelet agent. In a variation, the elements of the device may contain and deliver the therapeutic agent and/or the agent may be applied to the device along certain or all surface(s) and delivered by means of a polymer or no polymer. In another alternative embodiment, the vascular filter device may include a radioactive element, such as a radioactive core, to reduce or prevent cell growth in the along the device.


Preferred embodiments of the filter device are configured to be collapsible for delivery to a treatment site. During delivery to a treatment site, the filter device is collapsed to fit within a lumen of a delivery catheter. Preferably, the filter device is self-expanding such that it expands to engage the inner surface of the vessel after delivery. The use of shape-memory materials advantageously allows the filter device components to be collapsed or crimped into a small diameter for facilitating percutaneous delivery to a treatment site, such as through a catheter or sheath. A pushing element or other deployment member may be used to expel the filter device from the sheath at the treatment site, wherein the filter expands to its desired shape.


With reference now to FIG. 7, a filter device 300 is shown having an alternative flow receiving member 308 configured for causing the agitation member 304 to move. In this embodiment, the flow receiving member includes an annular element 326 located around the filter body 302. It will be understood that, when an embolus is captured and held within the filter body 302, blood flows through an annular gap around the embolus. In other words, the blood is effectively channeled around the thrombus and toward the blades. Accordingly, in this embodiment, the flow rate of blood passing along the flow receiving member is advantageously increased when an embolus is trapped within the interior volume 316 of the filter body 302. As a result, the rotation of the agitation member and the available torque also increase while the embolus is captured. After the embolus has been broken down, the flow rate through the annular region decreases due to the removal of the occlusion and the resulting increased cross-sectional flow area.


In addition to the flow receiving members illustrated and described herein, a wide variety of alternative configuration may also be used. In any case, it is desirable that the flow receiving member be configured to minimize hemolytic effects and the impedance of blood flow through the vessel. Preferably, the flow of blood should remain substantially laminar as it passes through the filter device. In alternative configurations, it is contemplated that the flow receiving member may be located upstream or downstream of the filter body. Alternatively, the flow receiving member may be located within the filter body itself. Still further, the flow receiving member may also function as an agitation member. With reference to FIG. 8, an alternative flow-receiving member 358 is provided as a threaded structure similar to an “Archimedes screw.”


With reference now to FIG. 9, an alternative embodiment of a filter device 400 is illustrated wherein the agitation member 404 takes the form of a longitudinally moving body that is disposed within the interior volume of the filter body 402. In this embodiment, the agitation member is configured to penetrate and hold a captured embolus. At least one end of the agitation member is coupled to the filter body 402 by a deformable member, such as a spring 405. In this embodiment, the captured embolus is subjected to shear forces as changes in the flow rate of the blood cause the agitation to member to oscillate or pulse longitudinally within the filter body. FIG. 9A illustrates the filter device during use.


With reference now to FIG. 10, another alternative embodiment of a filter device 500 comprises an agitation member 504 including a plurality of vanes 510 that are substantially parallel with the wall of the filter body 502. In this embodiment, the flow receiving member and the agitation member are provided by the same structure. As the agitation member 504 rotates relative to the filter body 502, forces are exerted on a captured embolus for accelerating the dissolution of the embolus. A coupling member 520 is provided for maintaining the agitation member 504 in the proper alignment.


With reference now to FIG. 11, another alternative embodiment of a filter device 600 comprises an agitation member 604 that is capable of reversing direction. First and second vanes 610, 612 extend laterally across the opening to the filter body 602. Projections 622 are provided at the ends of the vanes, which are received by openings 620 along the rim of the filter body 602. The openings are configured such that projections 622 may rotate (i.e., readjust) within the openings. When the projections settle in a first position, the vanes 610, 612 are positioned to cause the agitation member to rotate in a first direction. When the projections 622 are turned 90 degrees and settle again, the vanes are then positioned to cause the rotating element to rotate in a second direction. After being implanted in a vessel, the vane positions may be readjusted by the patient's movements. Alternatively, the fluctuations in the blood flow may cause the vanes to readjust. In any event, the reversibility of the vanes advantageously reduces the possibility of clogging or jamming of the rotating element within the filter body.


In yet another alternative embodiment of a filter device, a mechanical clutch mechanism is provided such that the agitation member only rotates when a large clot is captured and contained within the filter. More particularly, when a clot is captured within the filter, hydrodynamic forces push the clot against the agitation member, thereby overcoming a biasing force and releasing the agitation member from engagement with the filter body such that it becomes free to rotate. In contrast, when there is no clot in the filter, the biasing force causes the agitation member to advance back into the rest position wherein the engagement members prevent the agitation member from rotating.


In other alternative embodiments, it is contemplated that the agitation member may be driven by an external source of power, rather than by the flow of blood through the vessel. With reference now to FIG. 12, in one preferred embodiment, a filter device 700 is configured to be powered by an elongate drive mechanism 750 that is advanceable through the patient's vasculature. The drive mechanism 750 is an elongate catheter body comprising an outer catheter 752 and an inner catheter 754. The inner catheter is configured to rotate within and relative to the outer catheter. The outer catheter is configured to remain rotationally fixed with respect to the filter body 702 and blood vessel. The distal end of the inner catheter 754 is formed with a recess 756 for mating with a shaft portion 706 of the agitation member 704. The outer catheter 752 is shaped for guiding the inner catheter into alignment with the shaft portion. With reference now to FIG. 12A, the outer catheter 752 mates with the hub 712 to hold the filter body 702 rotatably fixed while rotation of the inner catheter causes the agitation member to rotate within the filter body. The proximal end of the catheter body (not shown) extends outside of the patient and is connected to an external power source. Powered movement of the agitation member 704 may be used to macerate a captured embolus in a very quick and efficient manner at a high rotational velocity. When the maceration is complete, the catheter body may be withdrawn proximally such that is becomes decoupled from the shaft portion of the filter device. The catheter body may then be removed from the patient's vasculature.


Although the system is illustrated such that the elongate catheter body couples to the shaft portion from the downstream side (using access via the jugular vein), it will be appreciated that the system may be configured such that an elongate catheter or other drive mechanism may be advanceable from the upstream side (using access via the femoral vein) for driving the agitation mechanism. In another variation, it is contemplated that movement of the inner catheter is produced by manual movement of a control mechanism by a clinician. In various preferred embodiments, the control mechanism may take the form of a rotatable knob or a pull-wire. The pull wire may be used to produce relative linear movement of an agitation member for cutting, chopping and/or breaking up embolic material into smaller harmless pieces.


Using a vascular filter in combination with a powered (e.g., electrically, pneumatically, hydraulically, etc.) detachable mechanical drive mechanism provides a very efficient and effective method of emulsifying an embolus or other particle. In one advantage, distal embolization is minimized or eliminated because the embolus is macerated within the filter body. Furthermore, the agitation member is preferably disposed entirely within the filter body. Therefore, resulting damage to the inner wall of the vessel is minimized or eliminated. This provides a substantial advantage over existing mechanical thrombectomy systems wherein rotating blades or high velocity fluids can produce substantial damage to the vessel (i.e., endothelial denudation) and therefore presents a serious shortcoming.


With reference to FIG. 13, in yet another alternative embodiment, a preferred configuration of the filter device 800 is well-suited for placement in a blood vessel 830 for use as a thrombectomy system. The filter device 800 comprises a filter body 802 and a powered rotatable agitation member 804 integrated together as a single unit. In this variation, the agitation member may be entirely or partially located within the interior volume 816 of the filter body 802. However, as illustrated in FIG. 13, the agitation member 804 is preferably longitudinally advanceable relative to the filter body 802. In this case, the agitation member is disposed along the distal end portion of a rotatable inner catheter 854, which is slidably and rotatably contained within a rotationally fixed outer catheter 852. The filter body 802 is disposed along the distal end portion of the outer catheter 852. A hub 812 may be provided at the junction between the outer catheter and the filter body. In one advantageous feature of this embodiment, the extendable agitation member may also be used as a guidewire during delivery of the device to a treatment site.


With reference now to FIG. 14, a variation of a filter device 800A which further comprises an aspiration catheter 820 for creating a fluid flow into the mouth of the filter body 802 and also for removing resulting particles from the vessel. The aspiration catheter may be used for aspirating fluid and particles from the vessel before, during or after maceration of an embolus. As illustrated, the aspiration catheter may be combined with the drive catheter into a single device. The aspiration catheter may further provide a delivery sheath for delivering the filter body to the treatment site.


With reference now to FIG. 15, the filter device 800A of FIG. 14 is shown during use. After being advanced through a vessel 830 to a treatment site, negative pressure is applied at a proximal end of the aspiration catheter 820 to create a fluid flow into the mouth of the filter body 802. The inner catheter 854 may then be rotated for causing the agitation member 804 to rotate. While the agitation member is rotating, it may be advanced toward a thrombus 200 (or other particle) for macerating the thrombus and thereby removing the occlusion. During the maceration of the thrombus, resulting particles are drawn into the interior volume 816 of the filter body 802. Particles small enough to pass through the filter body are drawn into the aspiration catheter. As can be seen, this embodiment provides a very safe and effective mechanism for removing a thrombus from a blood vessel without any danger of distal embolization. It can further be seen that the filter helps center the agitation member such that the inner wall of the vessel is not damaged. At the end of the procedure, the inner catheter 854, outer catheter 852 and filter body 802 may all be withdrawn into the aspiration catheter 820 (or sheath) for safe removal from the patient's vasculature. It may be desirable to continue applying negative pressure along the proximal end of the aspiration catheter during removal such that the particles are not released from the filter.


With reference now to FIG. 16, an alternative filter body 852 is illustrated for further reducing the likelihood of particles escaping from the filter device. In this embodiment, the filter body 852 is formed with a plurality of stiffened members 854 which are hingedly attached to the hub 812. A flexible membrane 860 is disposed over the stiffened members. The stiffened members are biased into the open position to form a hemispherically-shaped filter body when in the non-constrained condition. With reference now to FIG. 16A, when the filter body 852 is withdrawn into an aspiration catheter 820 (or sheath), the stiffened members hingedly rotate (or flex) adjacent to the hub. Due to the curved shape of the stiffened members, when in the constrained condition, the distal ends of the stiffened member come together such that the distal opening of the filter body is nearly or completely closed, thereby preventing any particles from escaping. The membrane is configured to fold as the stiffened members come together.


With reference now to FIGS. 17A through 17C, an alternative agitation member 904 is illustrated wherein the diameter of the distal end is controllable. In this embodiment, the agitation member 904 may be disposed at the distal end of a rotatable inner catheter 906, similar to the device described above with reference to FIG. 15. However, in this embodiment, the agitation member comprises two flexible members 910, 912 disposed along the distal end of the inner catheter 906. In the illustrated embodiment, the flexible members further comprise weighted tips 920, 922. As the inner catheter 906 rotates, centrifugal forces cause the flexible members 910, 912 to flex outward away from the axis of rotation, thereby effectively increasing the diameter of the agitation member 904. Therefore, it can be seen that the diameter of the agitation member can be controlled by varying the rotational velocity ω (omega) of the inner catheter. For example, at ω1 the diameter of the agitation member is D1, as shown in FIG. 17A. At ω2 the diameter of the agitation member is D2, as shown in FIG. 17B. Finally, at ω3 the diameter of the agitation member is D3, as shown in FIG. 17C.


With reference now to FIG. 18, it can be seen that this feature advantageously allows the clinician to control the diameter of the agitation member to suit the diameter of the vessel 940 being treated. This allows for efficient thrombectomy without damaging the inner wall of the vessel. More particularly, the inner catheter 906 is advanced distally through an outer catheter 930 and out from the interior volume of the filter body 902. The inner catheter is rotated at a rotational velocity that causes its diameter to match the particular application. The rotating agitation member 904 may then be advanced for removing debris, such as an embolus 200, from the vessel 940. If desired, particles may be aspirated through the aspiration catheter 920.


With reference now to FIG. 19, in yet another alternative embodiment of the filter device, an agitation member 944 comprises a nozzle or jet 946 for emitting a pressurized fluid flow. In the illustrated embodiment, this feature is used in combination with the inner catheter, outer catheter, filter body and aspiration catheter arrangement described above. However, in this embodiment, it is not necessary for the inner catheter to be rotatable. Rather, the inner catheter is configured with a fluid delivery lumen. If desired, the inner catheter may be configured to be deflectable, such as by using a pull wire of the type known in the art. The fluid delivered to the thrombus may be saline or any suitable fluid. In one variation, the fluid may comprise at least in part a thrombolytic drug for helping to break down the thrombus (or other particle).


With reference now to FIG. 20, in yet another alternative embodiment of the filter device, the agitation member 980 is configured to produce vibrational energy to help dissolve particles. In one variation, the agitation member 980 is capable of producing ultrasonic vibrations. The vibrations may be produced by movement of a mechanical mechanism, such as a vibrating ball. In another embodiment, the vibration may be produced by a transducer, such as a piezoelectric element 982 which oscillates in response to an electrical input. Ultrasonic vibrational energy may be used to quickly and efficiently dissolve (lyse) a clot, primarily by disrupting the fibrin matrix of the clot. The disruption is created by mechanical energy as well as by the formation of microbubbles caused by cavitation of fluids in the clot or in the surrounding blood or tissue. When ultrasound is used, the vibrations are provided in the range of about 19 to 45 kHz with a power input ranging from about 15 to 25 Watts. If desired, the delivery of vibrational (e.g., ultrasonic) vibrations to the clot may be accompanied by the delivery of thrombolytic drugs. The power required to produce the vibration of the agitation mechanism may be provided by electricity, such as through a wire in a catheter, through hydraulic pressure, or from an energy storage device contained within the filter device.


In yet another alternative embodiment of a filter device, an electric current may be delivered to the filter device for driving a motor located on the filter device. For example, when delivered temporarily, such as during an angioplasty procedure, an elongate wire may be provided for delivering an electrical current to an electric motor contained with the filter device, preferably along the hub. In various alternative embodiments, an electrical current may be applied to the agitation member or the filter body to help dissolve embolic material or other particles through electrical dissolution, rather than by mechanical maceration.


In yet another alternative embodiment of a filter device, an energy storage device, such as a battery, may be contained within the filter device for providing powered movement of the rotating member. In one variation, a control mechanism may be provided for turning the power on and off. In one example, the control mechanism may include a remote transmitter for sending a signal, such as by a RF signal, which turns a switch on and off. In this variation, the movable element only rotates when desired. In another embodiment, the filter device may further comprise a sensing mechanism, such as a pressure sensor of the type known in the art, for detecting when a clot is present in the filter. The sensing mechanism may be used to turn the agitation member on and off when necessary.


In yet another alternative embodiment, the agitation member is made, at least in part, of a ferro-magnetic material. In this embodiment, a variable magnetic field is used to produce movement (e.g., rotation) of the agitation member in the filter body by macerating particles. A sufficiently powerful magnetic field may be created outside of the patient's body by techniques known in the art.


In one alternative method of use, embodiments of the present invention are well-suited for use with patients undergoing total hip or knee replacement surgery. In this subset of patients, the risk of embolism is short-term and is typically limited to a definable period of time. Accordingly, for these patient's, it may be desirable to provide a temporary filter device coupled to a tether for facilitating removal thereof. The tether may take the form of a flexible elongate member coupled to the filter device in a manner as known in the art. During use, the tethered temporary filter device is preferably deployed from a catheter and is implanted in the infrarenal vena cava with the tether extending out of the puncture site in the neck (jugular) or groin (femoral), or buried subcutaneously within the soft tissues in the patient's neck. The tether remains coupled to the filter after deployment. When it is desirable to remove the filter, the tether may be used to manipulate the filter from a location outside the body. For example, the filter may be pulled proximally such that it is withdrawn into a catheter lumen. This embodiment may also be used for retrieving a filter during the initial deployment procedure. This is particularly useful when the initial deployment orientation is not desirable.


Although the improvements disclosed herein are primarily discussed in the context of use with a vascular filter for use in a blood vessel, the device described herein may also be used in a wide variety of other body lumens. In one alternative application, embodiments of the vascular filter may be used in the coronary arteries. The device may be delivered for use during an angioplasty procedure to help break down embolic debris released during the procedure. In one embodiment, the pulse of blood after removal of angioplasty balloon can be used to rotate the blades. Still further, the principles of the present invention may be applicable to any application, not necessarily biological, wherein it is desirable to capture and break apart particles.


While the foregoing detailed description has described several embodiments of the apparatus of the present invention, it is to be understood that the above description is illustrative only and is not limiting of the disclosed invention. It will be appreciated that the specific features of the invention can differ from those described above while remaining within the scope of the present invention. For example, the present invention is intended to include any filter device having a movable component within the interior volume for breaking apart captured particles and thereby providing a self-cleaning device. The movable component may be powered by the flow of a fluid through the filter or by an internal or external source of power.

Claims
  • 1. A thrombus extraction system for removing a vascular thrombus from a blood vessel of a person, the thrombus extraction system comprising: an outer sheath;a catheter extending through the sheath, the catheter including a tubular portion with a distal region and an expandable section at the distal region of the tubular portion, wherein the expandable section is tapered having an increasing diameter in a distal direction and an open distal end in an expanded state, and the catheter and the outer sheath are longitudinally moveable with respect to each other;an elongated structure extending through the catheter and being longitudinally moveable along the catheter; andan agitator extending from the elongated structure, wherein at least a portion of the agitator extends distally of the expandable section in a deployed state and the agitator is configured to (a) be radially and longitudinally moveable with respect to the expandable section and (b) incrementally engage and macerate a proximal portion of clot material as the agitator moves distally with respect to the expandable section of the tubular portion such that at least a portion of the clot material enters the expandable section and is removed from the blood vessel, and wherein the agitator has flexible members that extend distally and diverge radially outwardly as the agitator moves distally with respect to the expandable section of the tubular portion such that a radially outward-most portion of the members is immediately adjacent an inner surface of the vessel wall, and wherein the radially-outward most portion of the members is at least partially rounded.
  • 2. The system of claim 1, further comprising a vacuum source configured to fluidically draw clot material into the expandable section.
  • 3. The system of claim 1 wherein the agitator comprises a thrombus extraction member that moves linearly as it engages the thrombus.
  • 4. The system of claim 3 wherein the thrombus extraction member is actively driven longitudinally and radially against the thrombus via the elongated structure to cause a portion of the thrombus to enter the expandable section.
  • 5. A method of capturing and removing a thrombus from a blood vessel in a human, comprising: advancing an outer sheath to a location proximal a thrombus;advancing a catheter distally with respect the outer sheath, the catheter having a tubular portion with a distal region and an expandable section at the distal region of the tubular portion, wherein the catheter is advanced distally such that the expandable section is in an expanded state in which it is tapered having an increasing diameter in a distal direction and an open distal end;advancing an agitator extending from an elongated structure through the catheter such that at least a portion of the agitator extends distally beyond the expandable section of the catheter; andmoving the agitator radially and longitudinally against the thrombus and thereby disrupting material from a proximal portion of the thrombus such that at least a portion of the thrombus enters the expandable member for removal from the blood vessel, and wherein the agitator has flexible members that extend distally and diverge radially outwardly as they expand such that a radially outward-most portion of the members is immediately adjacent an inner surface of the vessel wall, and wherein the radially-outward most portion of the members is at least partially rounded.
  • 6. The method of claim 5 wherein the elongated structure actively drives the agitator axially and radially against the thrombus.
  • 7. The method of claim 5, further comprising applying a vacuum to the catheter to fluidically draw at least a portion of the thrombus into the expandable section.
  • 8. A thrombus extraction system for removing a vascular thrombus from a blood vessel of a patient, the thrombus extraction system comprising: a first catheter;a second catheter extending through the first catheter, the second catheter including tubular portion with a distal region and an expandable section at the distal region of the tubular portion, wherein the expandable section is tapered having an increasing diameter in a distal direction and an open distal end in an expanded state, and the second catheter and the first catheter are longitudinally moveable with respect to each other;an elongated structure extending through the second catheter and being longitudinally moveable along the second catheter;an agitator extending from the elongated structure, wherein at least a portion of the agitator extends distally of the expandable section in a deployed state and the agitator is configured to (a) be radially and longitudinally moveable with respect to the expandable section and (b) incrementally engage and macerate a proximal portion of clot material as the agitator moves distally with respect to the expandable section of the tubular portion such that at least a portion of the clot material enters the expandable section and is removed from the blood vessel, and wherein the agitator has members that extend distally and diverge radially outwardly as the agitator moves distally with respect to the expandable section of the tubular portion such that a radially outward-most portion of the members is immediately adjacent an inner surface of the vessel wall, and wherein the radially-outward most portion of the members is at least partially rounded; and a vacuum source fluidically coupled to the first catheter and configured to aspirate the first catheter.
  • 9. The system of claim 8, wherein the vacuum source is configured to aspirate the first catheter to fluidically draw the clot material into the expandable section.
RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 17/477,508, filed on Sep. 16, 2021, which is a continuation of U.S. patent application Ser. No. 17/065,041, filed on Oct. 7, 2020, which is a continuation of U.S. application Ser. No. 16/030,622, filed Jul. 9, 2018, now U.S. Pat. No. 10,799,331, which is a continuation of U.S. patent application Ser. No. 15/834,869, filed Dec. 7, 2017, now U.S. Pat. No. 10,016,266, which is a continuation of U.S. patent application Ser. No. 14/623,425, filed Feb. 16, 2015, now U.S. Pat. No. 9,848,975, which is a continuation of U.S. patent application Ser. No. 13/597,118, filed Aug. 28, 2012, now U.S. Pat. No. 8,956,386, which is a continuation of U.S. patent application Ser. No. 12/749,233, filed Mar. 29, 2010, now U.S. Pat. No. 8,252,020, which is a continuation of U.S. patent application Ser. No. 10/594,198, filed Sep. 25, 2006, now U.S. Pat. No. 7,686,825, which is a National Phase Application of International Patent Application No. PCT/US2005/010160, filed Mar. 25, 2005, which claims the benefit of U.S. Provisional Patent Application No. 60/556,152, filed Mar. 25, 2004. The contents of each of the above-referenced applications are is-hereby incorporated by reference in their entireties.

US Referenced Citations (751)
Number Name Date Kind
2846179 Monckton Aug 1958 A
2955592 Maclean Oct 1960 A
3088363 Sparks May 1963 A
3197173 Taubenheim Jul 1965 A
3435826 Fogarty Apr 1969 A
3515137 Santomieri Jun 1970 A
3675657 Gauthier Jul 1972 A
3892161 Sokol Jul 1975 A
3923065 Nozick et al. Dec 1975 A
4030503 Clark, III Jun 1977 A
4034642 Iannucci et al. Jul 1977 A
4222380 Terayama Sep 1980 A
4243040 Beecher Jan 1981 A
4287808 Leonard et al. Sep 1981 A
4324262 Hall Apr 1982 A
4393872 Reznik et al. Jul 1983 A
4469100 Hardwick Sep 1984 A
4523738 Raftis et al. Jun 1985 A
4551862 Haber Nov 1985 A
4604094 Shook Aug 1986 A
4611594 Grayhack et al. Sep 1986 A
4643184 Mobin-Uddin Feb 1987 A
4646736 Auth et al. Mar 1987 A
4650466 Luther Mar 1987 A
4776337 Palmaz Oct 1988 A
4790812 Hawkins, Jr. et al. Dec 1988 A
4863440 Chin et al. Sep 1989 A
4870953 DonMichael et al. Oct 1989 A
4883458 Shiber Nov 1989 A
4886062 Wiktor Dec 1989 A
4890611 Monfort et al. Jan 1990 A
4898575 Fischell et al. Feb 1990 A
4946440 Hall Aug 1990 A
4960259 Sunnanvader et al. Oct 1990 A
4978341 Niederhauser Dec 1990 A
5011488 Ginsburg Apr 1991 A
5030201 Palestrant Jul 1991 A
5059178 Ya Oct 1991 A
5100423 Fearnot Mar 1992 A
5127626 Hilal et al. Jul 1992 A
5129910 Phan et al. Jul 1992 A
5135484 Wright Aug 1992 A
5154724 Andrews Oct 1992 A
5158533 Strauss et al. Oct 1992 A
5158564 Schnepp-Pesch Oct 1992 A
5192274 Bierman Mar 1993 A
5192286 Phan et al. Mar 1993 A
5192290 Hilal Mar 1993 A
5197485 Grooters Mar 1993 A
5242461 Kortenbach Sep 1993 A
5244619 Burnham Sep 1993 A
5329923 Lundquist Jul 1994 A
5360417 Gravener et al. Nov 1994 A
5364345 Lowery et al. Nov 1994 A
5376101 Green et al. Dec 1994 A
5383887 Nadal Jan 1995 A
5389100 Bacich et al. Feb 1995 A
5419774 Willard et al. May 1995 A
5421824 Clement et al. Jun 1995 A
5443443 Shiber Aug 1995 A
5456667 Ham et al. Oct 1995 A
5476450 Ruggio Dec 1995 A
5490859 Mische et al. Feb 1996 A
5496365 Sgro Mar 1996 A
5527326 Hermann et al. Jun 1996 A
5549626 Miller et al. Aug 1996 A
5591137 Stevens Jan 1997 A
5653684 Laptewicz et al. Aug 1997 A
5662703 Yurek et al. Sep 1997 A
5746758 Nordgren et al. May 1998 A
5749858 Cramer May 1998 A
5769816 Barbut et al. Jun 1998 A
5782817 Franzel et al. Jul 1998 A
5800457 Gelbfish Sep 1998 A
5827229 Auth et al. Oct 1998 A
5846251 Hart Dec 1998 A
5860938 Lafontaine et al. Jan 1999 A
5873866 Kondo et al. Feb 1999 A
5873882 Straub et al. Feb 1999 A
5876414 Straub Mar 1999 A
5895406 Gray et al. Apr 1999 A
5908435 Samuels Jun 1999 A
5911710 Barry et al. Jun 1999 A
5911733 Parodi Jun 1999 A
5911754 Kanesaka et al. Jun 1999 A
5941869 Patterson et al. Aug 1999 A
5947985 Imram Sep 1999 A
5954737 Lee Sep 1999 A
5971938 Hart et al. Oct 1999 A
5972019 Engelson et al. Oct 1999 A
5974938 Lloyd Nov 1999 A
5989233 Yoon Nov 1999 A
5993483 Gianotti Nov 1999 A
6030397 Moneti et al. Feb 2000 A
6059814 Ladd May 2000 A
6066158 Engelson et al. May 2000 A
6068645 Tu May 2000 A
6126635 Simpson et al. Oct 2000 A
6142987 Tsugita Nov 2000 A
6146396 Konya et al. Nov 2000 A
6146403 St. Germain Nov 2000 A
6152144 Lesh et al. Nov 2000 A
6152946 Broome et al. Nov 2000 A
6156055 Ravenscroft Dec 2000 A
6159230 Samuels Dec 2000 A
6165196 Stack et al. Dec 2000 A
6168579 Tsugita Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6221006 Dubrul et al. Apr 2001 B1
6228060 Howell May 2001 B1
6238412 Dubrul et al. May 2001 B1
6245078 Ouchi Jun 2001 B1
6245089 Daniel et al. Jun 2001 B1
6254571 Hart Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6264663 Cano Jul 2001 B1
6306163 Fitz Oct 2001 B1
6322572 Lee Nov 2001 B1
6350271 Kurz et al. Feb 2002 B1
6361545 Macoviak et al. Mar 2002 B1
6364895 Greenhalgh Apr 2002 B1
6368339 Amplatz Apr 2002 B1
6383205 Samson et al. May 2002 B1
6402771 Palmer et al. Jun 2002 B1
6413235 Parodi Jul 2002 B1
6423032 Parodi Jul 2002 B2
6432122 Gilson et al. Aug 2002 B1
6451036 Heitzmann et al. Sep 2002 B1
6458103 Albert et al. Oct 2002 B1
6475236 Roubin et al. Nov 2002 B1
6485502 Don Michael Nov 2002 B2
6508782 Evans et al. Jan 2003 B1
6511492 Rosenbluth et al. Jan 2003 B1
6514273 Voss et al. Feb 2003 B1
6530923 Dubrul et al. Mar 2003 B1
6530935 Wensel et al. Mar 2003 B2
6540722 Boyle et al. Apr 2003 B1
6544276 Azizi Apr 2003 B1
6544278 Vrba et al. Apr 2003 B1
6544279 Hopkins et al. Apr 2003 B1
6551342 Shen et al. Apr 2003 B1
6564828 Ishida May 2003 B1
6569181 Burns May 2003 B1
6575995 Huter et al. Jun 2003 B1
6589263 Hopkins et al. Jul 2003 B1
6596011 Johnson et al. Jul 2003 B2
6602271 Adams et al. Aug 2003 B2
6605074 Zadno-azizi et al. Aug 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6610077 Hancock et al. Aug 2003 B1
6620148 Tsugita Sep 2003 B1
6620179 Brook et al. Sep 2003 B2
6620182 Khosravi et al. Sep 2003 B1
6623460 Heck Sep 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6645222 Parodi et al. Nov 2003 B1
6660013 Rabiner et al. Dec 2003 B2
6660014 Demarais et al. Dec 2003 B2
6663650 Sepetka et al. Dec 2003 B2
6692504 Kurz et al. Feb 2004 B2
6699260 Dubrul et al. Mar 2004 B2
6702830 Demarais et al. Mar 2004 B1
6719717 Johnson et al. Apr 2004 B1
6755847 Eskuri Jun 2004 B2
6767353 Shiber Jul 2004 B1
6790204 Zadno-azizi et al. Sep 2004 B2
6800080 Bates Oct 2004 B1
6818006 Douk et al. Nov 2004 B2
6824545 Sepetka et al. Nov 2004 B2
6824550 Noriega Nov 2004 B1
6824553 Gene et al. Nov 2004 B1
6830561 Jansen et al. Dec 2004 B2
6846029 Ragner et al. Jan 2005 B1
6902540 Dorros et al. Jun 2005 B2
6939361 Kleshinski Sep 2005 B1
6942682 Vrba et al. Sep 2005 B2
6945977 Demarais et al. Sep 2005 B2
6960189 Bates et al. Nov 2005 B2
6960222 Vo et al. Nov 2005 B2
7004931 Hogendijk Feb 2006 B2
7004954 Voss et al. Feb 2006 B1
7036707 Aota et al. May 2006 B2
7041084 Fotjik May 2006 B2
7052500 Bashiri et al. May 2006 B2
7056328 Arnott Jun 2006 B2
7063707 Bose et al. Jun 2006 B2
7069835 Nishri et al. Jul 2006 B2
7094249 Thomas et al. Aug 2006 B1
7128073 van der Burg et al. Oct 2006 B1
7152605 Khairkhahan et al. Dec 2006 B2
7179273 Palmer et al. Feb 2007 B1
7223253 Hogendijk May 2007 B2
7232432 Fulton, III et al. Jun 2007 B2
7244243 Lary Jul 2007 B2
7285126 Sepetka et al. Oct 2007 B2
7300458 Henkes et al. Nov 2007 B2
7306618 Demond et al. Dec 2007 B2
7320698 Eskuri Jan 2008 B2
7323002 Johnson et al. Jan 2008 B2
7331980 Dubrul et al. Feb 2008 B2
7534234 Fotjik May 2009 B2
7578830 Kusleika et al. Aug 2009 B2
7621870 Berrada et al. Nov 2009 B2
7674247 Fotjik Mar 2010 B2
7678131 Muller Mar 2010 B2
7691121 Rosenbluth et al. Apr 2010 B2
7695458 Belley et al. Apr 2010 B2
7713282 Frazier et al. May 2010 B2
7722641 van der Burg et al. May 2010 B2
7763010 Evans et al. Jul 2010 B2
7766934 Pal et al. Aug 2010 B2
7775501 Kees Aug 2010 B2
7780696 Daniel et al. Aug 2010 B2
7905877 Oscar et al. Mar 2011 B1
7905896 Straub Mar 2011 B2
7938809 Lampropoulos et al. May 2011 B2
7938820 Webster et al. May 2011 B2
7967790 Whiting et al. Jun 2011 B2
7976511 Fotjik Jul 2011 B2
7993302 Hebert et al. Aug 2011 B2
7993363 Demond et al. Aug 2011 B2
8043313 Krolik et al. Oct 2011 B2
8052640 Fiorella et al. Nov 2011 B2
8057496 Fischer, Jr. Nov 2011 B2
8057497 Raju et al. Nov 2011 B1
8066757 Ferrera et al. Nov 2011 B2
8070769 Broome Dec 2011 B2
8070791 Ferrera et al. Dec 2011 B2
8075510 Aklog et al. Dec 2011 B2
8080032 van der Burg et al. Dec 2011 B2
8088140 Ferrera et al. Jan 2012 B2
8092486 Berrada et al. Jan 2012 B2
8100935 Rosenbluth et al. Jan 2012 B2
8109962 Pal Feb 2012 B2
8118829 Carrison et al. Feb 2012 B2
8197493 Ferrera et al. Jun 2012 B2
8246641 Osborne et al. Aug 2012 B2
8261648 Marchand et al. Sep 2012 B1
8267897 Wells Sep 2012 B2
8298257 Sepetka et al. Oct 2012 B2
8317748 Fiorella et al. Nov 2012 B2
8337450 Fotjik Dec 2012 B2
RE43902 Hopkins et al. Jan 2013 E
8357178 Grandfield et al. Jan 2013 B2
8361104 Jones et al. Jan 2013 B2
8409215 Sepetka et al. Apr 2013 B2
8480708 Kassab et al. Jul 2013 B2
8486105 Demond et al. Jul 2013 B2
8491539 Fotjik Jul 2013 B2
8512352 Martin Aug 2013 B2
8523897 van der Burg et al. Sep 2013 B2
8535283 Heaton et al. Sep 2013 B2
8535334 Martin Sep 2013 B2
8535343 van der Burg et al. Sep 2013 B2
8545526 Martin et al. Oct 2013 B2
8568432 Straub Oct 2013 B2
8574262 Ferrera et al. Nov 2013 B2
8579915 French et al. Nov 2013 B2
8585713 Ferrera et al. Nov 2013 B2
8608754 Wensel et al. Dec 2013 B2
8647367 Kassab et al. Feb 2014 B2
8657867 Dorn et al. Feb 2014 B2
8696622 Fiorella et al. Apr 2014 B2
8715314 Janardhan et al. May 2014 B1
8721714 Kelley May 2014 B2
8753322 Hu et al. Jun 2014 B2
8771289 Mohiuddin et al. Jul 2014 B2
8777893 Malewicz Jul 2014 B2
8784441 Rosenbluth et al. Jul 2014 B2
8784442 Jones et al. Jul 2014 B2
8784469 Kassab Jul 2014 B2
8795305 Martin et al. Aug 2014 B2
8795345 Grandfield et al. Aug 2014 B2
8801748 Martin Aug 2014 B2
8808259 Walton et al. Aug 2014 B2
8814927 Shin et al. Aug 2014 B2
8820207 Marchand et al. Sep 2014 B2
8826791 Thompson et al. Sep 2014 B2
8828044 Aggerholm et al. Sep 2014 B2
8833224 Thompson et al. Sep 2014 B2
8834519 van der Burg et al. Sep 2014 B2
8845621 Fotjik Sep 2014 B2
8852226 Gilson et al. Oct 2014 B2
8939991 Krolik et al. Jan 2015 B2
8945143 Ferrera et al. Feb 2015 B2
8945172 Ferrera et al. Feb 2015 B2
8956384 Berrada et al. Feb 2015 B2
8992504 Castella et al. Mar 2015 B2
9005172 Chung Apr 2015 B2
9011551 Oral et al. Apr 2015 B2
9028401 Bacich et al. May 2015 B1
9078682 Lenker et al. Jul 2015 B2
9101382 Krolik et al. Aug 2015 B2
9125683 Farhangnia et al. Sep 2015 B2
9126016 Fulton Sep 2015 B2
9149609 Ansel et al. Oct 2015 B2
9155552 Ulm, III Oct 2015 B2
9161766 Slee et al. Oct 2015 B2
9168043 van der Burg et al. Oct 2015 B2
9173668 Ulm, III Nov 2015 B2
9186487 Dubrul et al. Nov 2015 B2
9204887 Cully et al. Dec 2015 B2
9216277 Myers Dec 2015 B2
9358037 Farhangnia et al. Jan 2016 B2
9259237 Quick et al. Feb 2016 B2
9283066 Hopkins et al. Mar 2016 B2
9301769 Brady et al. Apr 2016 B2
9351747 Kugler et al. May 2016 B2
9439664 Sos Sep 2016 B2
9439751 White et al. Sep 2016 B2
9456834 Folk Oct 2016 B2
9463035 Greenhalgh et al. Oct 2016 B1
9463036 Brady et al. Oct 2016 B2
9526864 Quick Dec 2016 B2
9526865 Quick Dec 2016 B2
9566073 Kassab et al. Feb 2017 B2
9566424 Pessin Feb 2017 B2
9579116 Nguyen et al. Feb 2017 B1
9616213 Furnish et al. Apr 2017 B2
9636206 Nguyen et al. May 2017 B2
9643035 Mastenbroek May 2017 B2
9700332 Marchand et al. Jul 2017 B2
9717488 Kassab et al. Aug 2017 B2
9717514 Martin et al. Aug 2017 B2
9717519 Rosenbluth et al. Aug 2017 B2
9744024 Nguyen et al. Aug 2017 B2
9757137 Krolik et al. Sep 2017 B2
9827084 Bonnette et al. Nov 2017 B2
9844386 Nguyen et al. Dec 2017 B2
9844387 Marchand et al. Dec 2017 B2
9848975 Hauser Dec 2017 B2
9849014 Kusleika Dec 2017 B2
9962178 Greenhalgh et al. May 2018 B2
9980813 Eller May 2018 B2
9999493 Nguyen et al. Jun 2018 B2
10004531 Rosenbluth et al. Jun 2018 B2
10010335 Greenhalgh et al. Jul 2018 B2
10016266 Hauser Jul 2018 B2
10028759 Wallace et al. Jul 2018 B2
10045790 Cox et al. Aug 2018 B2
10098651 Marchand et al. Oct 2018 B2
10130385 Farhangnia et al. Nov 2018 B2
10226263 Look et al. Mar 2019 B2
10238406 Cox et al. Mar 2019 B2
10271864 Greenhalgh et al. Apr 2019 B2
10327883 Yachia Jun 2019 B2
10335186 Rosenbluth et al. Jul 2019 B2
10342571 Marchand et al. Jul 2019 B2
10349960 Quick Jul 2019 B2
10383644 Molaei et al. Aug 2019 B2
10478535 Ogle Nov 2019 B2
10524811 Marchand et al. Jan 2020 B2
10588655 Rosenbluth et al. Mar 2020 B2
10709471 Rosenbluth et al. Jul 2020 B2
10772636 Kassab et al. Sep 2020 B2
10912577 Marchand et al. Feb 2021 B2
11000682 Merritt et al. May 2021 B2
11013523 Arad Hadar May 2021 B2
11058445 Cox et al. Jul 2021 B2
11058451 Marchand et al. Jul 2021 B2
11147571 Cox et al. Oct 2021 B2
11154314 Quick Oct 2021 B2
11166703 Kassab et al. Nov 2021 B2
11259821 Buck et al. Mar 2022 B2
11406801 Fojtik et al. Aug 2022 B2
11433218 Quick et al. Sep 2022 B2
11439799 Buck et al. Sep 2022 B2
11457936 Buck et al. Oct 2022 B2
11529158 Hauser Dec 2022 B2
11554005 Merritt et al. Jan 2023 B2
11559382 Merritt et al. Jan 2023 B2
11642209 Merritt et al. May 2023 B2
11648028 Rosenbluth et al. May 2023 B2
20010004699 Gittings et al. Jun 2001 A1
20010031981 Evans et al. Oct 2001 A1
20010041909 Tsugita et al. Nov 2001 A1
20010049486 Evans et al. Dec 2001 A1
20010051810 Dubrul et al. Dec 2001 A1
20020022858 Demond et al. Feb 2002 A1
20020022859 Hogendijk Feb 2002 A1
20020026211 Khosravi et al. Feb 2002 A1
20020032455 Boock et al. Mar 2002 A1
20020049452 Kurz et al. Apr 2002 A1
20020095161 Dhindsa Jul 2002 A1
20020095171 Belef Jul 2002 A1
20020111648 Kusleika et al. Aug 2002 A1
20020120277 Hauschild et al. Aug 2002 A1
20020147458 Hiblar et al. Oct 2002 A1
20020151918 Lafontaine Oct 2002 A1
20020156457 Fisher Oct 2002 A1
20020161392 Dubrul Oct 2002 A1
20020169474 Kusleika Nov 2002 A1
20020173819 Leeflang et al. Nov 2002 A1
20020188276 Evans et al. Dec 2002 A1
20030083693 Daniel et al. May 2003 A1
20030100919 Hopkins et al. May 2003 A1
20030114875 Sjostrom Jun 2003 A1
20030116731 Hartley Jun 2003 A1
20030125663 Coleman et al. Jul 2003 A1
20030135230 Massey et al. Jul 2003 A1
20030135258 Andreas et al. Jul 2003 A1
20030153873 Luther et al. Aug 2003 A1
20030153973 Soun et al. Aug 2003 A1
20030168068 Poole et al. Sep 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030191516 Weldon et al. Oct 2003 A1
20030208224 Broome Nov 2003 A1
20030216774 Larson Nov 2003 A1
20040039412 Isshiki et al. Feb 2004 A1
20040068288 Palmer et al. Apr 2004 A1
20040073243 Sepetka et al. Apr 2004 A1
20040098033 Leeflang et al. May 2004 A1
20040102807 Kusleika et al. May 2004 A1
20040122359 Wenz et al. Jun 2004 A1
20040127936 Salahieh et al. Jul 2004 A1
20040133232 Rosenbluth et al. Jul 2004 A1
20040138525 Saadat et al. Jul 2004 A1
20040138692 Phung et al. Jul 2004 A1
20040167567 Cano et al. Aug 2004 A1
20040199201 Kellett et al. Oct 2004 A1
20040199202 Dubrul et al. Oct 2004 A1
20040260344 Lyons et al. Dec 2004 A1
20040267272 Henniges et al. Dec 2004 A1
20050033172 Dubrul et al. Feb 2005 A1
20050038468 Panetta et al. Feb 2005 A1
20050054995 Barzell et al. Mar 2005 A1
20050055047 Greenhalgh Mar 2005 A1
20050085769 MacMahon et al. Apr 2005 A1
20050085826 Nair et al. Apr 2005 A1
20050085846 Carrison et al. Apr 2005 A1
20050085849 Sepetka et al. Apr 2005 A1
20050119668 Teague et al. Jun 2005 A1
20050177132 Lentz et al. Aug 2005 A1
20050187570 Nguyen et al. Aug 2005 A1
20050203605 Dolan Sep 2005 A1
20050283165 Gadberry Dec 2005 A1
20050283166 Greenhalgh et al. Dec 2005 A1
20050283186 Berrada et al. Dec 2005 A1
20060020286 Niermann Jan 2006 A1
20060042786 West Mar 2006 A1
20060047286 West Mar 2006 A1
20060074401 Ross Apr 2006 A1
20060089533 Ziegler et al. Apr 2006 A1
20060100662 Daniel et al. May 2006 A1
20060155305 Freudenthal et al. Jul 2006 A1
20060173525 Behl et al. Aug 2006 A1
20060195137 Sepetka et al. Aug 2006 A1
20060200221 Malewicz Sep 2006 A1
20060217664 Hattler et al. Sep 2006 A1
20060224177 Finitsis Oct 2006 A1
20060229645 Bonnette et al. Oct 2006 A1
20060247500 Voegele et al. Nov 2006 A1
20060253145 Lucas Nov 2006 A1
20060264905 Eskridge et al. Nov 2006 A1
20060276874 Wilson et al. Dec 2006 A1
20060282111 Morsi Dec 2006 A1
20060293696 Fahey et al. Dec 2006 A1
20070010787 Hackett et al. Jan 2007 A1
20070038225 Osborne Feb 2007 A1
20070093744 Elmaleh Apr 2007 A1
20070112374 Paul, Jr. et al. May 2007 A1
20070118165 DeMello et al. May 2007 A1
20070149996 Coughlin Jun 2007 A1
20070161963 Smalling Jul 2007 A1
20070179513 Deutsch Aug 2007 A1
20070191866 Palmer et al. Aug 2007 A1
20070198028 Miloslavski et al. Aug 2007 A1
20070208361 Okushi et al. Sep 2007 A1
20070208367 Fiorella et al. Sep 2007 A1
20070213753 Waller Sep 2007 A1
20070213765 Adams et al. Sep 2007 A1
20070255252 Mehta Nov 2007 A1
20070288054 Tanaka et al. Dec 2007 A1
20080015541 Rosenbluth et al. Jan 2008 A1
20080088055 Ross Apr 2008 A1
20080157017 Macatangay et al. Jul 2008 A1
20080167678 Morsi Jul 2008 A1
20080183136 Lenker et al. Jul 2008 A1
20080228209 DeMello et al. Sep 2008 A1
20080234715 Pesce et al. Sep 2008 A1
20080234722 Bonnette et al. Sep 2008 A1
20080262528 Martin Oct 2008 A1
20080269798 Ramzipoor et al. Oct 2008 A1
20080300466 Gresham Dec 2008 A1
20090018566 Escudero et al. Jan 2009 A1
20090054918 Henson Feb 2009 A1
20090062841 Amplatz et al. Mar 2009 A1
20090069828 Martin et al. Mar 2009 A1
20090076417 Jones Mar 2009 A1
20090160112 Ostrovsky Jun 2009 A1
20090163846 Aklog et al. Jun 2009 A1
20090182362 Thompson et al. Jul 2009 A1
20090192495 Ostrovsky et al. Jul 2009 A1
20090281525 Harding et al. Nov 2009 A1
20090292307 Razack Nov 2009 A1
20090299393 Martin et al. Dec 2009 A1
20100016837 Howat Jan 2010 A1
20100030256 Dubrul et al. Feb 2010 A1
20100042136 Berrada et al. Feb 2010 A1
20100087844 Fischer, Jr. Apr 2010 A1
20100087850 Razack Apr 2010 A1
20100114113 Dubrul et al. May 2010 A1
20100121312 Gielenz et al. May 2010 A1
20100137846 Desai et al. Jun 2010 A1
20100190156 Van Wordragen et al. Jul 2010 A1
20100204712 Mallaby Aug 2010 A1
20100217276 Garrison et al. Aug 2010 A1
20100249815 Jantzen et al. Sep 2010 A1
20100268264 Bonnette et al. Oct 2010 A1
20100318178 Rapaport et al. Dec 2010 A1
20110034986 Chou et al. Feb 2011 A1
20110034987 Kennedy Feb 2011 A1
20110054405 Whiting et al. Mar 2011 A1
20110060212 Slee et al. Mar 2011 A1
20110118817 Gunderson et al. May 2011 A1
20110125181 Brady et al. May 2011 A1
20110144592 Wong et al. Jun 2011 A1
20110152823 Mohiuddin et al. Jun 2011 A1
20110152993 Marchand et al. Jun 2011 A1
20110160742 Ferrera et al. Jun 2011 A1
20110160763 Ferrera et al. Jun 2011 A1
20110190806 Wittens Aug 2011 A1
20110196309 Wells Aug 2011 A1
20110196414 Porter et al. Aug 2011 A1
20110213290 Chin et al. Sep 2011 A1
20110213403 Aboytes Sep 2011 A1
20110224707 Miloslavski et al. Sep 2011 A1
20110245807 Sakata et al. Oct 2011 A1
20110251629 Galdonik et al. Oct 2011 A1
20110264133 Hanlon et al. Oct 2011 A1
20110265681 Allen et al. Nov 2011 A1
20110288529 Fulton Nov 2011 A1
20110288572 Martin Nov 2011 A1
20110319917 Ferrera et al. Dec 2011 A1
20120059309 di Palma et al. Mar 2012 A1
20120059356 di Palma et al. Mar 2012 A1
20120083824 Berrada et al. Apr 2012 A1
20120083868 Shrivastava Apr 2012 A1
20120089216 Rapaport et al. Apr 2012 A1
20120101480 Ingle et al. Apr 2012 A1
20120101510 Lenker et al. Apr 2012 A1
20120138832 Townsend Jun 2012 A1
20120143239 Aklog et al. Jun 2012 A1
20120165919 Cox et al. Jun 2012 A1
20120172918 Fifer et al. Jul 2012 A1
20120179181 Straub et al. Jul 2012 A1
20120197277 Stinis Aug 2012 A1
20120232655 Lorrison et al. Sep 2012 A1
20120271105 Nakamura et al. Oct 2012 A1
20120271231 Agrawal Oct 2012 A1
20120277788 Cattaneo Nov 2012 A1
20120310166 Huff Dec 2012 A1
20130030460 Marks et al. Jan 2013 A1
20130035628 Garrison et al. Feb 2013 A1
20130046332 Jones et al. Feb 2013 A1
20130066348 Fiorella et al. Mar 2013 A1
20130092012 Marchand et al. Apr 2013 A1
20130096571 Massicotte et al. Apr 2013 A1
20130102996 Strauss Apr 2013 A1
20130116708 Ziniti et al. May 2013 A1
20130116721 Takagi et al. May 2013 A1
20130126559 Cowan et al. May 2013 A1
20130144326 Brady et al. Jun 2013 A1
20130165871 Fiorella et al. Jun 2013 A1
20130184703 Shireman et al. Jul 2013 A1
20130197454 Shibata et al. Aug 2013 A1
20130197567 Brady et al. Aug 2013 A1
20130226196 Smith Aug 2013 A1
20130281788 Garrison Oct 2013 A1
20130289608 Tanaka et al. Oct 2013 A1
20130317589 Martin et al. Nov 2013 A1
20130345739 Brady et al. Dec 2013 A1
20140005712 Martin Jan 2014 A1
20140005713 Bowman Jan 2014 A1
20140005715 Castella et al. Jan 2014 A1
20140005717 Martin et al. Jan 2014 A1
20140025048 Ward Jan 2014 A1
20140031856 Martin Jan 2014 A1
20140046133 Nakamura et al. Feb 2014 A1
20140046243 Ray et al. Feb 2014 A1
20140052161 Cully et al. Feb 2014 A1
20140074144 Shrivastava et al. Mar 2014 A1
20140121672 Folk May 2014 A1
20140155830 Bonnette et al. Jun 2014 A1
20140155980 Turjman Jun 2014 A1
20140180397 Gerberding et al. Jun 2014 A1
20140155908 Rosenbluth et al. Jul 2014 A1
20140188127 Dubrul et al. Jul 2014 A1
20140188143 Martin et al. Jul 2014 A1
20140236219 Dubrul et al. Aug 2014 A1
20140243882 Ma Aug 2014 A1
20140257253 Jemison Sep 2014 A1
20140257363 Lippert Sep 2014 A1
20140276403 Follmer et al. Sep 2014 A1
20140296868 Garrison et al. Oct 2014 A1
20140303658 Bonnette et al. Oct 2014 A1
20140318354 Thompson et al. Oct 2014 A1
20140324091 Rosenbluth Oct 2014 A1
20140330286 Wallace et al. Nov 2014 A1
20140336691 Jones et al. Nov 2014 A1
20140343593 Chin et al. Nov 2014 A1
20140364896 Consigny Dec 2014 A1
20140371779 Vale et al. Dec 2014 A1
20150005781 Lund-Clausen et al. Jan 2015 A1
20150005792 Ahn Jan 2015 A1
20150018859 Quick Jan 2015 A1
20150018860 Quick Jan 2015 A1
20150018929 Martin et al. Jan 2015 A1
20150025555 Sos Jan 2015 A1
20150032144 Holloway Jan 2015 A1
20150059908 Mollen Mar 2015 A1
20150088190 Jensen Mar 2015 A1
20150127035 Trapp et al. May 2015 A1
20150133990 Davidson May 2015 A1
20150150672 Ma Jun 2015 A1
20150164523 Brady et al. Jun 2015 A1
20150164666 Johnson et al. Jun 2015 A1
20150173782 Garrison et al. Jun 2015 A1
20150190155 Ulm, III Jul 2015 A1
20150190156 Ulm, III Jul 2015 A1
20150196380 Berrada et al. Jul 2015 A1
20150196744 Aboytes Jul 2015 A1
20150209058 Ferrera et al. Jul 2015 A1
20150209165 Grandfield et al. Jul 2015 A1
20150238207 Cox et al. Aug 2015 A1
20150250578 Cook et al. Sep 2015 A1
20150265299 Cooper et al. Sep 2015 A1
20150305756 Rosenbluth Oct 2015 A1
20150305859 Eller Oct 2015 A1
20150352325 Quick Dec 2015 A1
20150360001 Quick Dec 2015 A1
20150374391 Quick Dec 2015 A1
20160022293 Dubrul et al. Jan 2016 A1
20160030708 Casiello et al. Feb 2016 A1
20160058540 Don Michael Mar 2016 A1
20160074627 Cottone Mar 2016 A1
20160106448 Brady et al. Apr 2016 A1
20160106449 Brady et al. Apr 2016 A1
20160113663 Brady et al. Apr 2016 A1
20160113664 Brady et al. Apr 2016 A1
20160113665 Brady et al. Apr 2016 A1
20160113666 Quick Apr 2016 A1
20160135829 Holochwost et al. May 2016 A1
20160143721 Rosenbluth May 2016 A1
20160151605 Welch et al. Jun 2016 A1
20160192912 Kassab et al. Jul 2016 A1
20160206344 Bruzzi et al. Jul 2016 A1
20160008014 Rosenbluth Aug 2016 A1
20160220741 Garrison et al. Aug 2016 A1
20160228134 Martin et al. Aug 2016 A1
20160262774 Honda Sep 2016 A1
20160262790 Rosenbluth et al. Sep 2016 A1
20160287276 Cox et al. Oct 2016 A1
20160367285 Sos Dec 2016 A1
20170014560 Minskoff et al. Jan 2017 A1
20170021130 Dye Jan 2017 A1
20170037548 Lee Feb 2017 A1
20170042571 Levi Feb 2017 A1
20170049942 Conlan et al. Feb 2017 A1
20170056032 Look et al. Mar 2017 A1
20170058623 Jaffrey et al. Mar 2017 A1
20170079672 Quick Mar 2017 A1
20170086864 Greenhalgh et al. Mar 2017 A1
20170100142 Look et al. Apr 2017 A1
20170105743 Vale et al. Apr 2017 A1
20170105745 Rosenbluth et al. Apr 2017 A1
20170112514 Marchand et al. Apr 2017 A1
20170112513 Marchand et al. Jul 2017 A1
20170189041 Cox et al. Jul 2017 A1
20170196576 Long et al. Jul 2017 A1
20170233908 Kroczynski et al. Aug 2017 A1
20170252057 Bonnette et al. Sep 2017 A1
20170265878 Marchand et al. Sep 2017 A1
20170303939 Greenhalgh et al. Oct 2017 A1
20170303942 Greenhalgh et al. Oct 2017 A1
20170303947 Greenhalgh et al. Oct 2017 A1
20170303948 Wallace et al. Oct 2017 A1
20170319221 Chu Nov 2017 A1
20170325839 Rosenbluth et al. Nov 2017 A1
20170340867 Accisano, II Nov 2017 A1
20170348014 Wallace et al. Dec 2017 A1
20180042623 Batiste Feb 2018 A1
20180042624 Greenhalgh et al. Feb 2018 A1
20180042626 Greenhalgh et al. Feb 2018 A1
20180064453 Garrison et al. Mar 2018 A1
20180064454 Losordo et al. Mar 2018 A1
20180070968 Wallace et al. Mar 2018 A1
20180092652 Marchand et al. Apr 2018 A1
20180104404 Ngo-Chu Apr 2018 A1
20180105963 Quick Apr 2018 A1
20180125512 Nguyen et al. May 2018 A1
20180184912 Al-Ali Jul 2018 A1
20180193043 Marchand et al. Jul 2018 A1
20180236205 Krautkremer et al. Aug 2018 A1
20180256177 Cooper et al. Sep 2018 A1
20180256178 Cox et al. Sep 2018 A1
20180296240 Rosenbluth et al. Oct 2018 A1
20180344339 Cox et al. Dec 2018 A1
20180361116 Quick et al. Dec 2018 A1
20190000492 Casey et al. Jan 2019 A1
20190046219 Marchand et al. Feb 2019 A1
20190070401 Merritt et al. Mar 2019 A1
20190117244 Wallace et al. Apr 2019 A1
20190133622 Wallace et al. May 2019 A1
20190133623 Wallace et al. May 2019 A1
20190133624 Wallace et al. May 2019 A1
20190133625 Wallace et al. May 2019 A1
20190133626 Wallace et al. May 2019 A1
20190133627 Wallace et al. May 2019 A1
20190150959 Cox et al. May 2019 A1
20190231373 Quick Aug 2019 A1
20190239910 Brady et al. Aug 2019 A1
20190321071 Marchand et al. Oct 2019 A1
20190336142 Torrie et al. Nov 2019 A1
20190336148 Greenhalgh et al. Nov 2019 A1
20200046368 Merritt et al. Feb 2020 A1
20200113412 Jensen Apr 2020 A1
20210022843 Hauser Jan 2021 A1
20210038385 Popp et al. Feb 2021 A1
20210113224 Dinh Apr 2021 A1
20210137667 Sonnette et al. May 2021 A1
20210186541 Thress Jun 2021 A1
20210236148 Marchand et al. Aug 2021 A1
20210290925 Merritt et al. Sep 2021 A1
20210315598 Buck et al. Oct 2021 A1
20210330344 Rosenbluth et al. Oct 2021 A1
20210378694 Thress et al. Dec 2021 A1
20210393278 O'Malley et al. Dec 2021 A1
20220000505 Hauser Jan 2022 A1
20220000506 Hauser Jan 2022 A1
20220000507 Hauser Jan 2022 A1
20220015798 Marchand et al. Jan 2022 A1
20220022898 Cox et al. Jan 2022 A1
20220039815 Thress et al. Feb 2022 A1
20220142638 Enright et al. May 2022 A1
20220151647 Dolendo et al. May 2022 A1
20220152355 Dolendo et al. May 2022 A1
20220160381 Hauser May 2022 A1
20220160382 Hauser May 2022 A1
20220160383 Hauser May 2022 A1
20220211400 Cox et al. Jul 2022 A1
20220211992 Merritt et al. Jul 2022 A1
20220240959 Quick Aug 2022 A1
20220346800 Merritt et al. Nov 2022 A1
20220346801 Merritt et al. Nov 2022 A1
20220346813 Quick Nov 2022 A1
20220346814 Quick Nov 2022 A1
20220347455 Merritt et al. Nov 2022 A1
20220362512 Quick et al. Nov 2022 A1
20230046775 Quick Feb 2023 A1
20230070120 Cox et al. Mar 2023 A1
Foreign Referenced Citations (92)
Number Date Country
2015210338 Aug 2015 AU
102186427 Sep 2011 CN
103764049 Apr 2014 CN
103932756 Jul 2014 CN
104068910 Oct 2014 CN
108348319 Jul 2018 CN
110652645 Jan 2020 CN
111281482 Jun 2020 CN
102017004383 Jul 2018 DE
1254634 Nov 2002 EP
1867290 Feb 2013 EP
2942624 Nov 2015 EP
1588072 Apr 1981 GB
2498349 Jul 2013 GB
H6190049 Jul 1994 JP
H07323090 Dec 1995 JP
2001522631 May 1999 JP
2004097807 Apr 2004 JP
2005-095242 Jun 2005 JP
2005230132 Sep 2005 JP
2005323702 Nov 2005 JP
2006094876 Apr 2006 JP
2011526820 Jan 2010 JP
WO1997017889 May 1997 WO
WO9833443 Aug 1998 WO
WO9838920 Sep 1998 WO
WO9839053 Sep 1998 WO
WO9851237 Nov 1998 WO
WO1999044542 Sep 1999 WO
WO2000053120 Apr 2000 WO
WO0032118 Jun 2000 WO
WO0202162 Jan 2002 WO
WO03015840 Feb 2003 WO
WO2004018916 Mar 2004 WO
WO2004093696 Nov 2004 WO
WO2005046736 May 2005 WO
WO2006029270 Mar 2006 WO
WO2006110186 Oct 2006 WO
WO2006124307 Nov 2006 WO
WO2007092820 Aug 2007 WO
WO2009082513 Jul 2009 WO
WO2009086482 Jul 2009 WO
WO2009155571 Dec 2009 WO
WO2010002549 Jan 2010 WO
WO2010010545 Jan 2010 WO
WO2010023671 Mar 2010 WO
WO2010049121 May 2010 WO
WO2010102307 Sep 2010 WO
WO2011032712 Mar 2011 WO
WO2011054531 May 2011 WO
WO2011073176 Jun 2011 WO
WO2012009675 Jan 2012 WO
WO2012011097 Jan 2012 WO
WO2012049652 Apr 2012 WO
WO2012065748 May 2012 WO
WO2012120490 Sep 2012 WO
WO2012162437 Nov 2012 WO
WO2014047650 Mar 2014 WO
WO2014081892 May 2014 WO
WO2015006782 Jan 2015 WO
WO2015061365 Apr 2015 WO
WO2015121424 Aug 2015 WO
WO2015189354 Dec 2015 WO
WO2015191646 Dec 2015 WO
WO2016014955 Jan 2016 WO
WO2017024258 Feb 2017 WO
WO2017058280 Apr 2017 WO
WO2017070702 Apr 2017 WO
WO2017106877 Jun 2017 WO
WO2017189535 Nov 2017 WO
WO2017189550 Nov 2017 WO
WO2017189591 Nov 2017 WO
WO2017189615 Nov 2017 WO
WO2017210487 Dec 2017 WO
WO2018049317 Mar 2018 WO
WO2018080590 May 2018 WO
WO2018148174 Aug 2018 WO
WO2019010318 Jan 2019 WO
WO2019050765 Mar 2019 WO
WO2019075444 Apr 2019 WO
WO2019094456 May 2019 WO
WO2019222117 Nov 2019 WO
WO2019246240 Dec 2019 WO
WO2020036809 Feb 2020 WO
WO2021067134 Apr 2021 WO
WO2021076954 Apr 2021 WO
WO2021127202 Jun 2021 WO
WO2021248042 Dec 2021 WO
WO2022032173 Feb 2022 WO
WO2022103848 May 2022 WO
WO2022109021 May 2022 WO
WO2022109034 May 2022 WO
Non-Patent Literature Citations (86)
Entry
International Search Report and Written Opinion for International App. No. PCT/US21/35965, Date of Filing: Jun. 4, 2021, Applicant: Inari Medical, Inc., dated Sep. 28, 2021, 12 pages.
International Search Report and Written Opinion for International App. No. PCT/US21/45072 Date of Filing: Aug. 6, 2021, Applicant: Inari Medical, Inc., dated Jan. 20, 2022, 10 pages.
International Search Report and Written Opinion for International App. No. PCT/US21/58793; Date of Filing: Nov. 10, 2021, Applicant: Inari Medical, Inc., dated Mar. 16, 2022, 13 pages.
International Search Report and Written Opinion forInternational App. No. PCT/US21/59718; dated Nov. 17, 2021, Applicant: Inari Medical, Inc., dated Mar. 22, 2022, 13 pages.
International Search Report and Written Opinion for International App. No. PCT/US23/60502; Date of Filing: Jan. 11, 2023, Applicant: Inari Medical, Inc., dated May 25, 2023, 9 pages.
International Search Report and Written Opinion for International App. No. PCT/US23/61256; Date of Filing: Jan. 25, 2023, Applicant: Inari Medical, Inc., dated Jun. 7, 2023, 8 pages.
European Patent Application No. 13838945.7, Extended European Search Report, 9 pages, dated Apr. 15, 2016.
Australian Exam Report received for AU Application No. 2015274704, Applicant: Inceptus Medical, LLC, dated Sep. 7, 2017, 3 pages.
Boston Scientific; Fetch(TM) 2 Aspiration Catheter (product information);retrieved from the internet: http://www.bostonscientific.com/en-US/products/thrombectomy-systems/fetch2-aspiration-catheter.html; 2 pgs.; retrieved/printed: Mar. 24, 2016.
Capture Vascular Systems; (company website); retrieved from the internet: http://www.capturevascular.com; 1 page; retrieved/printed: Mar. 24, 2016.
Covidien; Solitaire(TM) AS Neurovascular Remodeling Device (product information); retrieved from the internet: http://www.ev3.net/neuro/intl/remodeling-devices/solitaire-ab.htm; © 2015; 2 pgs.; retrieved/printed: Mar. 24, 2016.
Edwards Lifesciences; Fogarty® Occlusion Catheters (product brochure); retrieved from the internet: http://web.archive.org/web/20150228193218/http://www.edwards.com/products/vascular/atraumaticocclusion/pages/occlusioncatheter.aspx; © 2011; 2 pgs.; retrieved/printed: Mar. 24, 2011.
English translation of Japanese Office Action received for JP Application No. 2016-564210, Applicant: Inceptus Medical, LLC, dated Sep. 4, 2017, 4 pages.
EP Examination Report for EP Patent Appln. No. 18745794.0 dated Jul. 20, 2020, 4 pages.
European First Office Action received for EP Application No. 13838945.7, Applicant: Inari Medical, Inc., dated Oct. 26, 2018, 7 pages.
European Search Report for European Application No. 16876941.2, Date of Filing: Dec. 19, 2016, Applicant: Inari Medical, Inc., dated Jul. 18, 2019, 7 pages.
European Search Report received for EP Application No. 15805810.7, Applicant: Inceptus Medical, LLC, dated Sep. 4, 2017, 6 pages.
Extended European Search Report for EP Patent Appln. No. 20185092.2 dated Sep. 11, 2020, 6 pages.
Extended European Search Report for European Application No. 16858462.1, Date of Filing: Oct. 24, 2016, Applicant: Inari Medical, Inc., dated Jun. 3, 2019, 10 pages.
Extended European Search Report for European Application No. 18853465.5, Applicant: Inari Medical, Inc., dated May 7, 2021, 2021, 7 pages.
Extended European Search Report for European Application No. 20191581.6, Applicant: Inari Medical, Inc., dated Mar. 31, 2021, 11 pages.
Extended European Search Report dated Aug. 22, 2018 for European patent appln No. 16852212.6, 6 pages.
Extended European Search Report dated Oct. 5, 2018 for European patent appln No. 18174891.4, 6 pages.
Extended European Search Report dated Oct. 8, 2019 for European Patent Application No. 19191925.7.
Gibbs, et al., “Temporary Stent as a bail-out device during percutaneous transluminal coronary angioplasty: preliminary clinical experience,” British Heart Journal, 1994, 71:372-377,Oct. 12, 1993 6 pgs.
Goldhaber, S. et al. “Percutaneous Mechanical Thrombectomy for Acute Pulmonary Embolism—A Double-Edged Sword,” American College of CHEST Physicians, Aug. 2007, 132:2, 363-372.
Goldhaber, S., “Advanced treatment strategies for acute pulmonary embolism, including thrombolysis and embolectomy,” Journal of Thrombosis and Haemostasis, 2009: 7 (Suppl. 1): 322-327.
Gupta, S et al., “Acute Pulmonary Embolism Advances in Treatment”, JAPI, Association of Physicians India, Mar. 2008, vol. 56, 185-191.
International Search Report and Written Opinion for International App. No. PCT/US13/61470, dated Jan. 17, 2014, 7 pages.
International Search Report and Written Opinion for International App. No. PCT/US2014/046567, dated Nov. 3, 2014, 13 pages.
International Search Report and Written Opinion for International App. No. PCT/US2014/061645, dated Jan. 23, 2015, 15 pages.
International Search Report and Written Opinion for International App. No. PCT/US2015/034987 filed Jun. 9, 2015, Applicant: Inceptus Medical, LLC, dated Sep. 17, 2015, 12 pages.
International Search Report and Written Opinion for International App. No. PCT/US2016/058536, Date of Filing: Oct. 24, 2016, Applicant: Inari Medical, Inc., dated Mar. 13, 2017, 14 pages.
International Search Report and Written Opinion for International App. No. PCT/US2016/067628 filed Dec. 19, 2016, Applicant: Inari Medical, Inc., dated Apr. 10, 2017, 11 pages.
International Search Report and Written Opinion for International App. No. PCT/US2017/029696, Date of Filing: Apr. 26, 2017, Applicant: Inari Medical, Inc., dated Sep. 15, 2017, 19 pages.
International Search Report and Written Opinion for International App. No. PCT/US2018/048786, Date of Filing: Aug. 30, 2018, Applicant: Inari Medical, Inc., dated Dec. 13, 2018, 12 pages.
International Search Report and Written Opinion for International App. No. PCT/US2018/055780, Date of Filing: Oct. 13, 2018, Applicant: Inceptus Medical LLC., dated Jan. 22, 2019, 8 pages.
International Search Report and Written Opinion for International App. No. PCT/US2019/045794, Date of Filing: Aug. 8, 2019, Applicant: Inari Medical, Inc., dated Nov. 1, 2019, 17 pages.
International Search Report and Written Opinion for International App. No. PCT/US2020/055645, Date of Filing: Dec. 17, 2020; Applicant: Inari Medical, Inc., dated Apr. 14, 2021, 12 pages.
International Search Report and Written Opinion for International App. No. PCT/US2020/056067, Date of Filing: Oct. 16, 2020; Applicant: Inari Medical, Inc., dated Jan. 22, 2021, 8 pages.
International Search Report and Written Opinion for International Patent Appln. No. PCT/US2019/050410 dated Oct. 25, 2019.
International search report and written opinion dated Feb. 28, 2018 for PCT/US2017/029345, Applicant Stryker Corporation 26 pages.
International Search Report and Written Opinion dated Mar. 28, 2019 for International Appin. No. PCT/US2018/059607.
International Search Report and Written Opinion dated May 6, 2016 for PCT/US2016/017982.
International search report and written opinion dated Nov. 14, 2018 for PCT/US2018/040937, Applicant Stryker Corporation 16 pages.
International Search Report for International App. No. PCT/US13/71101, dated Mar. 31, 2014, 4 pages.
Konstantinides, S. et al., “Pulmonary embolism hotline 2012—Recent and expected trials”, Thrombosis and Haemostasis, Jan. 9, 2013:33; 43-50.
Konstantinides, S. et al., “Pulmonary embolism: risk assessment and management”, European Society of Cardiology; European Heart Journal, Sep. 7, 2012:33, 3014-3022.
Kucher, N. et al., “Percutaneous Catheter Thrombectomy Device for Acute Pulmonary Embolism: In Vitro and in Vivo Testing”, Circulation, Sep. 2005:112:e28-e32.
Kucher, N., “Catheter Interventions in Massive Pulmonary Embolism”, CardiologyRounds, Mar. 2006 vol. 10, Issue 3, 6 pages.
Kucher, N. et al., “Management of Massive Pulmonary Embolism”, Radiology, Sep. 2005:236:3 852-858.
Kucher, N. et al., “Randomized, Controlled Trial of Ultrasound-Assisted Catheter-Directed Thrombolysis for Acute Intermediate-Risk Pulmonary Embolism.” Circulation, 2014, 129, pp. 9 pages.
Kuo, W. et al., “Catheter-directed Therapy for the Treatment of Massive Pulmonary Embolism: Systematic Review and Meta-analysis of Modern Techniques”, Journal of Vascular and Interventional Radiology, Nov. 2009:20:1431-1440.
Kuo, W. et al., “Catheter-Directed Embolectomy, Fragmentation, and Thrombolysis for the Treatment of Massive Pulmonary Embolism After Failure of Systemic Thrombolysis”, American College of CHEST Physicians 2008: 134:250-254.
Kuo, W. MD, “Endovascular Therapy for Acute Pulmonary Embolism”, Continuing Medical Education Society of Interventional Radiology (“CME”); Journal of Vascular and Interventional Radiology, Feb. 2012: 23:167-179.
Lee, L. et al., “Massive pulmonary embolism: review of management strategies with a focus on catheter-based techniques”, Expert Rev. Cardiovasc. Ther. 8(6), 863-873 (2010).
Liu, S. et al., “Massive Pulmonary Embolism: Treatment with the Rotarex Thrombectomy System”, Cardiovascular Interventional Radiology; 2011: 34:106-113.
Muller-Hulsbeck, S. et al. “Mechanical Thrombectomy of Major and Massive Pulmonary Embolism with Use of the Amplatz Thrombectomy Device”, Investigative Radiology, Jun. 2001:36:6:317-322.
O'Sullivan; Thrombolysis versus thrombectomy in acute deep vein thrombosis; Interventional Cardiology; 3(5); pp. 589-596; Oct. 2011.
Partial Supplementary European Search Report for European Application No. 17864818.4, Date of Filing: May 21, 2019, Applicant: Inari Medical, Inc., dated Apr. 24, 2020, 11 pages.
PCT International Search Report and Written Opinion for International Appln. No. PCT/US2017/029366, Applicant Stryker Corporation, dated Aug. 29, 2017.
PCT International Search Report and Written Opinion for International Appln. No. PCT/US2017/029440, Applicant Stryker Corporation, dated Jul. 7, 2017.
PCT International Search Report and Written Opinion for International Appln. No. PCT/US2017/029472, Applicant Stryker Corporation, dated Jul. 7, 2017.
PCT International Search Report and Written Opinion for International Appln. No. PCT/US2017/035543, Applicant Stryker Corporation, dated Aug. 14, 2017.
PCT International Search Report and Written Opinion for International Appln. No. PCT/US2017/050933, Applicant Stryker Corporation, forms PCT/ISA/210, 220, and 237, dated Nov. 10, 2017 (16 pages).
PCT International Search Report and Written Opinion for International Appln. No. PCT/US2020/014854, dated Oct. 5, 2020 (13 pages).
PCT International Search Report and Written Opinion for International Appln. No. PCT/US2020/017684, dated Nov. 30, 2020 (19 pages).
PCT International Search Report and Written Opinion for International AppIn. No. PCT/US2020/018655, dated Dec. 16, 2020 (22 pages).
PCT International Search Report and Written Opinion for International Patent Appln. No. PCT/US2019/032601, Applicant Stryker Corporation, dated Jul. 23, 2019 (12 pages).
PCT International Search Report and Written Opinion for International Patent Appln. No. PCT/US2019/050467, Applicant Stryker Corporation, dated Dec. 18, 2019 (17 pages).
Penumbra, Inc .; Indigo® System (product information); retrieved from the internet: http://www.penumbrainc.com/peripherallpercutaneous-thromboembolectomy/indigo-system; 7 pgs.; retrieved/printed: Mar. 24, 2016.
Reekers, J. et al., “Mechanical Thrombectomy for Early Treatment of Massive Pulmonary Embolism”, CardioVascular and Interventional Radiology, 2003: 26:246-250.
Schmitz-Rode et al., “New Mesh Basket for Percutaneous Removal of Wall-Adherent Thrombi in Dialysis Shunts,” Cardiovasc Intervent Radiol 16:7-10 1993 4 pgs.
Schmitz-Rode et al., “Temporary Pulmonary Stent Placement as Emergency Treatment of Pulmonary Embolism,” Journal of the American College of Cardiology, vol. 48, No. 4, 2006 (5 pgs.).
Schmitz-Rode, T. et al., “Massive Pulmonary Embolism: Percutaneous Emergency Treatment by Pigtail Rotation Catheter”, JACC Journal of the American College of Cardiology, Aug. 2000:36:2:375-380.
Spiotta, A et al., “Evolution of thrombectomy approaches and devices for acute stroke: a technical review.” J NeuroIntervent Surg 2015, 7, pp. 7 pages.
Svilaas, T. et al., “Thrombus Aspiration During Primary Percutaneous Coronary Intervention.” The New England Journal of Medicine, 2008, vol. 358, No. 6, 11 pages.
Tapson, V., “Acute Pulmonary Embolism”, The New England Journal of Medicine, Mar. 6, 2008:358:2037-52.
The Penumbra Pivotal Stroke Trial Investigators, “The Penumbra Pivotal Stroke Trial: Safety and Effectiveness of a New Generation of Mechanical Devices for Clot Removal in Intracranial Large Vessel Occlusive Disease.” Stroke, 2009, 40: p. 9 pages.
Truong et al., “Mechanical Thrombectomy of Iliocaval Thrombosis Using a Protective Expandable Sheath,” Cardiovasc Intervent Radiol27-254-258, 2004, 5 pgs.
Turk et al., “ADAPT FAST study: a direct aspiration first pass technique for acute stroke thrombectomy.” J NeuroIntervent Surg, vol. 6, 2014, 6 pages.
Uflacker, R., “Interventional Therapy for Pulmonary Embolism”, Journal of Vascular and Interventional Radiology, Feb. 2001: 12:147-164.
Verma, R., MD et al. “Evaluation of a Newly Developed Percutaneous Thrombectomy Basket Device in Sheep With Central Pulmonary Embolisms”, Investigative Radiology, Oct. 2006, 41, 729-734.
Vorwerk, D. MD, et al., “Use of a Temporary Caval Filter to Assist Percutaneous Iliocaval Thrombectomy: Experimental Results.” SCVIR, 1995, 4 pages.
Wikipedia; Embolectomy; retrieved from the internet: https://en.wikipedia.org/wiki/Embolectomy; 4 pgs.; retrieved/printed: Mar. 24, 2016.
Youtube; Merci Retrieval System X Series Animation; uploaded Mar. 16, 2009 (product information); posted on May 7, 2009 by SSMDePAUL, time 1:09, retrieved from the internet: https://www.youtube.com/watch?v=MGX7deuFkhc; 3 pgs.; retrieved/printed: Mar. 24, 2016.
Related Publications (1)
Number Date Country
20220125451 A1 Apr 2022 US
Provisional Applications (1)
Number Date Country
60556152 Mar 2004 US
Continuations (8)
Number Date Country
Parent 17477508 Sep 2021 US
Child 17573076 US
Parent 17065041 Oct 2020 US
Child 17477508 US
Parent 16030622 Jul 2018 US
Child 17065041 US
Parent 15834869 Dec 2017 US
Child 16030622 US
Parent 14623425 Feb 2015 US
Child 15834869 US
Parent 13597118 Aug 2012 US
Child 14623425 US
Parent 12749233 Mar 2010 US
Child 13597118 US
Parent 10594198 US
Child 12749233 US