The present application is the national stage entry of International Patent Application No. PCT/EP2019/079223, filed on Oct. 25, 2019, and published as WO 2020/108893 A1 on Jun. 4, 2020, which claims the benefit of priority of European Patent Application No. 18209172.8, filed on Nov. 29, 2018, all of which are incorporated by reference herein in their entirety.
The present disclosure relates to a method for tuning at least one parameter of a noise cancellation enabled audio system with an ear mountable playback device, e.g. a headphone, comprising a speaker and a microphone. The present disclosure further relates to a corresponding noise cancellation enabled audio system.
Nowadays a significant number of headphones, including earphones, are equipped with noise cancellation techniques. For example, such noise cancellation techniques are referred to as active noise cancellation or ambient noise cancellation, both abbreviated with ANC. ANC generally makes use of recording ambient noise that is processed for generating an anti-noise signal, which is then combined with a useful audio signal to be played over a speaker of the headphone. ANC can also be employed in other audio devices like handsets or mobile phones.
Various ANC approaches make use of feedback, FB, microphones, feedforward, FF, microphones or a combination of feedback and feedforward microphones.
FF and FB ANC is achieved by tuning a filter based on given acoustics of a system.
Tuning is regularly performed during or at the end of production of the ANC devices, for example by measuring acoustic properties of the device. At present, tuning is performed during a calibration process with some measurement fixture like an artificial head with a microphone in the ear canal of the artificial head. The measurement, including the playing of some test sound, is coordinated from some kind of processing device which can be a personal computer or the like. To achieve an optimum ANC performance for each ANC device produced, a dedicated measurement has to be performed for each of the ANC devices under control of the processing device, which is time-consuming, especially if larger volumes of ANC devices are to be calibrated.
The present disclosure provides an improved tuning concept for noise cancellation enabled audio systems that allows to reduce tuning effort.
The improved tuning concept is based on the idea that instead of using an external processing system for coordinating the calibration procedure of a noise cancellation enabled audio system, the audio system itself takes control of the calibration process and performs tuning. Only playback of a test sound is performed externally. The improved tuning concept also allows that multiple noise cancellation enabled audio systems perform tuning in parallel or concurrently, in particular without any dependencies between the single audio systems. Only dedicated measurement fixtures with respective microphones are needed. A parameter of the audio system to be tuned may be a gain factor of a feedforward filter of a FF ANC system. However, tuning of other parameters like filter frequencies or phases can be performed as well. For example, the shape or response of the feedforward filter may be varied with the variation of the parameter.
In an embodiment of a method for tuning at least one parameter of a noise cancellation enabled audio system with an ear mountable playback device comprising a speaker and a feedforward microphone, the playback device is placed onto a measurement fixture. The playback device is placed such that the speaker faces an ear canal representation of the measurement fixture and a test microphone located within the ear canal representation. The parameter is varied between a plurality of settings while a test sound is played from an ambient sound source. A measurement signal from the test microphone is received and stored in the audio system, at least while the parameter is varied. A power minimum in the stored measurement signal is determined in the audio system. A tune parameter associated with the power minimum is determined in the audio system from the plurality of settings of the varied parameter. The latter determination, for example, is made based on the fixed time relationship between the variation of the parameter and a time instant of the power minimum in a course of power in the stored measurement signal.
For example, control of the variation of the parameter takes place from within the audio system, e.g. without being controlled from an external device.
For example, the tune parameter or a parameter derived from the tune parameter is set as the at least one parameter of the audio system. As the recording and the evaluation of the recorded signal take place within the audio system, no external processing device like a personal computer coordinating the calibration process is needed. All of the processing occurs in the audio system, so the system is autonomous. This makes it easy to calibrate large numbers of units simultaneously without large infrastructure costs.
For example, during the variation of the parameter and the recording or storing of the measurement signal, ANC is performed in the audio system, depending on the varied parameter. The at least one parameter is e.g. related to the ANC. The power of the measurement signal corresponds to the ANC performance at the user's ear, in particular at the user's eardrum. Consequently, the power minimum in the measurement signal corresponds to an optimum performance of the ANC process with respect to the varied parameter.
In various embodiments the at least one parameter is a gain factor of a feedforward filter for the noise cancellation of the audio system. This allows to keep a fixed frequency response of the FF ANC filter while adjusting or tuning only the gain of the filter to an optimum value. For example, the gain factor is subject to mechanical tolerances during production of the playback device.
For example, the at least one parameter is varied by varying the gain factor between a minimum value and a maximum value in a continuous or stepwise manner. For example, the gain factor is varied from a minimum value to the maximum value or from the maximum value to the minimum value. Such variation allows to determine the time relationship between the power minimum and the associated gain factor easily. Furthermore, it allows to see how the power of the measurement signal results around the power minimum, that is around the determined parameter associated with the power minimum more easily.
In other embodiments, varying the parameter to be tuned in a different way, like some predetermined pattern or a predetermined sequence of parameter values is still possible to determine the relationship between a power minimum and the associated parameter. For example it would be possible to find the power minimum using a binary search algorithm or an adaptive algorithm.
In various embodiments the at least one parameter determines the shape or response of a feedforward filter for the noise cancellation of the audio system. This allows flexible parametrization of the audio system.
The noise cancellation enabled audio system may comprise the ear mountable playback device, like a headphone or headset with the speaker and the microphone and further of some processing logic for playing back one or more audio signals and performing the ANC processing. To this end, the audio system may comprise a processor with memory etc., forming a signal processing portion. The signal processing portion may be included into the headphone, for example into a housing of the headphone or may be included in a separate housing like a dongle that is connected to the speaker housing via a cable. The signal processing portion may also be included in a mobile device, to which the playback device is connected by wire or wirelessly. In the latter case, the tune parameter determined during the calibration process may be stored in connection with the playback device, for example in the playback device, such that the mobile device could be exchanged without losing the calibration result.
In some embodiments the method is performed for two or more ANC enabled audio systems concurrently, for example while the same test sound is played from the ambient sound source. Hence, only one ambient sound source is necessary for tuning parameters of a plurality of ANC enabled audio systems that perform their tuning independently from each other.
In various embodiments the measurement signal is received over an audio input of the audio system. For example, during a regular mode of operation the audio input is used for receiving an audio signal to be played over the playback device. During a calibration mode of operation, where the tuning is performed, the measurement signal is received over the same audio input. The audio input can be a wired connection, for example an audio cable or audio connector, or can be a wireless connection. In both options the measurement signal from the test microphone is provided to the audio input like a regular audio signal.
In various embodiments the test sound, for example, consists of a predefined number of sinusoidal waves of different frequencies with respective predefined amplitudes. For example, the test sound is the sum of an integer number of amplitude weighted sine waves wherein the number of sine wave may be between 1 and 8, for example 3 or 4. The number and frequencies of the sine waves are, for example, selected by the manufacturer of the audio system and may be chosen to be in the frequency band where ANC operates well. It may be beneficial if the frequencies are not multiples of each other or multiples of a mains power frequency to minimize problems with harmonic distortion.
Results of the tuning can be improved if the frequencies are weighted according to user preferences. For example, the frequencies may be weighted to achieve equal loudness at the ear canal. This weighting is, for example, corresponding to a passive attenuation of the playback device or headphone.
In some implementations frequencies may be used for the test signal that are not in the ANC band. This can have the effect of minimizing an overshoot at the specified frequency. Frequencies and weighting factors may be determined in advance by user experimentation.
The amplitude of the test sound may be approximately 80 dB sound pressure level, SPL, at the ear canal.
Various options are available to determine the power minimum in the measurement signal. However, if the test sound comprises the sinusoidal waves of different frequencies as described above, determining the power minimum may comprise filtering the stored measurement signal with bandpass filters at the frequencies of the sinusoidal waves of the test sound to achieve a first intermediate signal. For example, the bandpass filters may be peak filters that reject all frequencies other than the frequencies of the sinusoidal waves. The peak filters may have a Q factor around 10, which may be chosen the same for all bandpass filters.
The first intermediate signal is then smoothed to achieve an absolute power signal. The power minimum is determined as the minimum of the absolute power signal. Smoothing may include finding absolute values of first intermediate signal. Furthermore, the signal may be smoothed with a number of top-hat filters, where the number corresponds to the number of different frequencies. The length of each of the top-hat filters may match the period of the corresponding sinusoidal wave. For example, the top-hat filters are of a non-causal type so that the signals are not time-shifted.
Determining the minimum in the absolute power signal may be a simple minimum method or may include a polynomial fit. The expected shape for a polynomial fit may be the square root of a quadratic. Furthermore, for example, it would be possible to find the minimum using a binary search algorithm or an adaptive algorithm. The position of the minimum is the time at which the best ANC occurred.
In order to determine the tune parameter, the time at which the power minimum occurred can be converted to the gain at which the power minimum occurred using linear interpolation, if the varied parameter was strapped linearly between the minimum value and the maximum value as described above.
The best ANC tends to occur at a slightly different gain value on a test fixture compared to a human. This different is called the Real Ear Calibrator Difference, RECD. The RECD is the level difference (in dB) between the optimum gain measured by calibration equipment and the optimum gain on a human. The value is usually a constant offset, measured in dB, that is specific to the design of the headphone or other playback device under test. Usually RECD is approximately 0 dB for headphones and often about 2 dB for earphones.
The value for RECD is determined experimentally by making two measurements. The first measurement is to take a golden, optimally configured headphone and ask a group of people to individually select the optimum ANC level. The second measurement is to run the calibration algorithm described above to determine the optimum tune parameter, that is the gain factor in this case. The output of the gain calibration should be equal to the average gain from the group of testers. If the result is not the same the value of RECD may be modified accordingly.
In some embodiments the method further comprises determining, in the audio system, a noise cancellation performance of the audio system based on the tune parameter and the stored measurement signal. For example, the ANC performance is determined if the determined tune parameter is set for the noise cancellation. To this end, a residual mean square, RMS, level of the overall system including ambient sound source and audio system, could be determined by muting the ANC function such that no ANC takes place, and recording the measurement signal resulting thereof. The RMS determined this way corresponds to the power of the measurement signal during muting. The muted RMS level is then compared to the RMS power level with the tune parameter set as the at least one parameter, wherein the difference, respectively ratio, corresponds to the ANC performance.
In the previous disclosure the various embodiments have been described with a single channel ANC, which may be applied in mono audio systems. However, if a stereo ANC system is used, for example with a stereo headphone, ANC is performed independently for both audio channels, i.e. left and right audio channels, independently from each other. Hence, also tuning may be performed independently.
For example, in such a configuration the playback device comprises a further speaker and a further feedforward microphone associated with the further speaker. The measurement fixture comprises a further ear canal representation and a further test microphone located within the further ear canal representation.
In such embodiments of the method, placing the playback device onto the measurement fixture comprises that the further speaker faces the further ear canal representation and the further test microphone. The method further comprises varying a further parameter of the audio system between a plurality of settings while the test sound is played. The further parameter may be an ANC-related parameter associated with the further feedforward microphone and the further speaker. A further measurement signal is received and stored, in the audio system, from the further test microphone at least while the further parameter is varied. A further power minimum in the stored further measurement signal is determined in the audio system. From the plurality of settings of the varied further parameter, a further tune parameter associated with the further power minimum is determined in the audio system. The further tune parameter or a parameter derived from the further tune parameter may be set in the audio device or the playback device.
The various implementations described above for the single channel approach also apply to the implementation with a further speaker and a further microphone in the playback device, corresponding to a dual channel approach, which should be apparent to the skilled reader.
For example, the tune parameter and the further tune parameter are both respective gain factors of the FF ANC filters of a first and a second channel. Accordingly, the optimum gains can be set for both channels. However, as in the single channel approach, tuning of other parameters like filter frequencies or phases can be performed as well. For example, the shape or response of respective feedforward filters may be varied with the variation of the parameters of the channels.
A secondary consideration with such two channels or stereo channel systems is that the ANC performance for both channels should be similar. One option for dealing with situations where this is not the case is to adjust the parameter of the higher performing channel so that its ANC performance becomes closer to that of the lower performing channel. Accordingly, still an overall improved hearing impression can be achieved.
For example, under the condition that the expected shape of the power of the measurement signal at the ear channel varies as the square root of a quadratic versus the varied parameter, e.g. gain, it should become apparent to the skilled reader to calculate a parameter of the higher performing channel where this condition is satisfied.
In a further implementation of the improved tuning concept, a noise cancellation enabled audio system with an audio processor and an ear mountable playback device comprising a speaker and a feedforward microphone is configured to be operated in a regular mode of operation and in a calibration mode of operation. The audio processor is configured, in the calibration mode of operation, for varying a parameter, which e.g. is associated with the noise cancellation at the speaker, between a plurality of settings when a test sound is played from an ambient sound source and the playback device is placed onto a measurement fixture, the speaker facing an ear canal representation of the measurement fixture and a test microphone located within the ear canal representation.
The audio processor is further configured for, in a calibration mode of operation, receiving and storing a measurement signal from the test microphone at least while the parameter is varied, determining a power minimum in the stored measurement signal, and determining from the plurality of settings of the varied parameter a tune parameter associated with the power minimum. This allows a calibration of the audio system with little external effort, in particular only the measurement fixture with the test microphone and an ambient sound source, but without the need for external coordination or processing.
In some implementations the audio processor is further configured for, in the calibration mode of operation, setting the tune parameter or a parameter derived from the tune parameter as the parameter for the regular mode of operation. The parameter may be a gain factor of a feedforward filter for the noise cancellation. However, tuning of other parameters like filter frequencies or phases can be performed as well. For example, the shape or response of the feedforward filter may be individually determined with the variation of the parameter.
In some implementations, the audio system further comprises an audio input for receiving a useful audio signal to be played over the speaker during the regular mode of operation and for receiving the measurement signal during the calibration mode of operation. Hence, both signals, the useful audio signal and the measurement signal, are received over the same audio input. The audio input can be a wired connection, for example an audio cable or audio connector, or can be a wireless connection.
In some implementations the ear mountable playback device further comprises a further speaker and a further feedforward microphone associated with the further speaker, for example for establishing a stereo system. In such a configuration the audio processor is further configured for, in the calibration mode operation, varying a further parameter, which is associated with a noise cancellation at the further speaker, between a plurality of settings while a test sound is played, the further speaker facing a further ear canal representation of the measurement fixture and a further test microphone located within the further ear canal representation. The audio processor, in the calibration mode of operation, receives and stores a further measurement signal from the further test microphone at least while the further parameter is varied, determines a further power minimum in the stored further measurement signal, and determines from the plurality of settings of the varied further parameter a further tune parameter associated with the further power minimum. Such a configuration allows tuning of a stereo audio system, for example.
Further embodiments of such an audio system become apparent to the skilled reader from the various implementations described above for the tuning method.
In all of the embodiments described above, ANC can be performed both with digital and/or analog filters. All of the audio systems may include feedback ANC as well. Processing and recording of the measurement signal(s) is preferably performed in the digital domain.
The improved tuning concept will be described in more detail in the following with the aid of drawings. Elements having the same or similar function bear the same reference numerals throughout the drawings. Hence their description is not necessarily repeated in following drawings.
In the drawings:
A feed-forward noise cancellation system usually comprises of one or more microphones located on the outside of a headphone and a speaker located near the user's ear. It attenuates the ambient sound by measuring the ambient noise before it enters the ear, and processing that signal so that the acoustical signal leaving its speaker is equal and opposite to the ambient noise entering the ear, thus interfering destructively.
The headphone HP in this example features a loudspeaker SP, a feedforward microphone FF_MIC and, optionally, a feedback microphone FB_MIC. Internal processing details of the headphone HP are not shown here for reasons of a better overview.
In the configuration shown in
If the feedback microphone FB_MIC is present, an acoustic transfer function DFBM represents a sound path between the speaker SP and the feedback microphone FB_MIC, and may be called a driver-to-feedback response function. The transfer function DFBM may include the response of the speaker SP itself. In such configuration, an acoustic transfer function AFBM represents the acoustic sound path between the ambient sound source and the feedback microphone FB_MIC, and may be called an ambient-to-feedback response function.
Response functions or transfer functions of the headphone HP, in particular between the microphones FF_MIC and FB_MIC and the speaker SP, can be used with a feedforward filter function and feedback filter function, respectively, which may be parameterized as noise cancellation filters during operation. The feedforward filter function is indicated in
The path AE can also be called a direct path from the ambient sound source to the eardrum ED. An indirect path from the ambient sound through the noise cancellation is composed of three parts. The first part is denoted by the acoustic transfer function AFFM. The second part is denoted F which represents the transfer function through the noise cancellation accessory. It comprises e.g. the accessory's microphone response and the feedforward ANC filter, which, for a digital system, is composed of the ADC, DAC, ANC filter and any associated processing delay. The third part of the indirect path is given by the driver-to-ear response function DE.
The headphone HP as an example of the ear-mountable playback device may be embodied with both the microphones FB_MIC and FF_MIC being active or enabled such that hybrid ANC can be performed, or as a FF ANC device, where only the feedforward microphone FF_MIC is active and a feedback microphone FB_MIC is not present or at least not active.
Any specific details on processing of the microphone signals or any signal transmission are left out in
The objective of feedforward calibration is to find a parameter, e.g. the gain, of the feedforward system that causes the amplitude of the direct path AE from the ambient sound source to the ear-drum ED to be equal to the indirect path, i.e. a combination of paths AM, F and DE from the ambient sound source through the feedforward ANC to the ear-drum ED. One can find this parameter by playing a noise source from an ambient speaker, then adjusting the parameter, e.g. gain, of the feedforward ANC channel and monitoring the signal at the ear canal. One can expect to see a minimum in the signal at the ear canal when the parameter to be calibrated of the feedforward channel is ideal.
The headphone HP is placed onto a measurement fixture MF, which may be an artificial head with an ear canal representation EC, at the end of which a test microphone ECM is located for recording a measurement signal MES via a microphone amplifier MICAMP. The measurement signal MES is transmitted to the audio system or headphone HP via an audio input of the audio system and can be stored by the audio processor PROC for further evaluation.
It should be noted that at least a measurement fixture MF and ambient sound source ASS are represented in their basic functions, namely playing a test signal TST and recording a measurement signal MES without excluding more sophisticated implementations.
As can be seen both from
Referring back to
Referring now to
In block 420, playing of a test sound is started or continued. For example, the test sound comprises or consists of a predefined number of sinusoidal waves of different frequencies with respective predefined amplitudes. The test sound may be a sum of a limited number of sine waves, for example one to eight sine waves, wherein three or four sine waves have been found to deliver good results. The amplitudes may be weighted to achieve equal loudness at the ear canal, respectively ear canal representation.
In block 430, at least one noise cancellation related parameter is started to vary while the test sound is played from the ambient sound source. Referring to
Referring again to
Referring now back to
Referring back to
Alternatively, a parameter derived from the tune parameter may be set in the playback device or audio system. As a further optional step, in block 480 an ANC performance, for example at the set parameter, may be determined. This will be explained below in more detail.
Referring now to
In subsequent steps shown in the upper processing flow of
In the lower processing flow of
It should be noted that evaluation of the measurement signal or the power of the measurement signal, respectively, can be used to determine other properties of the audio system as well. For example, if ANC is not working correctly due to some reasons like manufacturing errors during production, the measurement signal can have a different shape, in particular between time instants t5 and t6. For example, the signal shape may have not the curved form like shown in the middle signal of
Referring now to
Referring now to
The two different gains can be set in the audio system or playback device as determined from their respective power minimums. However, in order to have comparable acoustical behavior and loudness at both channels, deviations of the determined tune parameters could also be envisaged to achieve a better user experience. Another consideration could be that the ANC performance for the left and right channels should be similar. One option for dealing with the situation where this is not the case is to adjust the gain of the higher performing channel so that its ANC performance becomes close to that of the lower performing channel. Knowing the expected shape of the measurement signal or its power signal derived thereof, the skilled person is enabled to calculate a gain where this condition is satisfied.
In various implementations described above, the variation of the parameter to be calibrated has been exemplified with tuning of a gain factor of the feedforward filter. However, it will be apparent to the skilled reader that any other parameter, in particular ANC related parameter can be calibrated as well, e.g. parameters that determine the shape or response of the feedforward filter.
Referring now to
In a further implementation, not shown, a headphone HP, e.g. like that shown in
Number | Date | Country | Kind |
---|---|---|---|
18209172 | Nov 2018 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/079223 | 10/25/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/108893 | 6/4/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6393396 | Nakagawa | May 2002 | B1 |
9532139 | Lu et al. | Dec 2016 | B1 |
20040013273 | Vaishya et al. | Jan 2004 | A1 |
20060161280 | Platzer et al. | Jul 2006 | A1 |
20080008070 | Kwon | Jan 2008 | A1 |
20080181422 | Christoph | Jul 2008 | A1 |
20090086988 | Ou et al. | Apr 2009 | A1 |
20090279709 | Asada et al. | Nov 2009 | A1 |
20100014685 | Wurm | Jan 2010 | A1 |
20100105447 | Sibbald et al. | Apr 2010 | A1 |
20120207317 | Abdollahzadeh Milani et al. | Aug 2012 | A1 |
20130039507 | Park et al. | Feb 2013 | A1 |
20130156213 | Pan et al. | Jun 2013 | A1 |
20130208908 | Theiler | Aug 2013 | A1 |
20140286499 | Ganeshkumar et al. | Sep 2014 | A1 |
20180288518 | Schmidt | Oct 2018 | A1 |
20190037324 | Darlington | Jan 2019 | A1 |
20210219081 | Mahalingam | Jul 2021 | A1 |
20220182032 | Kim et al. | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
101577847 | Nov 2009 | CN |
103988525 | Aug 2014 | CN |
105051810 | Nov 2015 | CN |
107369456 | Nov 2017 | CN |
108702581 | Oct 2018 | CN |
108886665 | Nov 2018 | CN |
1681662 | Jul 2006 | EP |
2538432 | Nov 2016 | GB |
2000047696 | Feb 2000 | JP |
20080067578 | Jul 2008 | KR |
2017129951 | Aug 2017 | WO |
Entry |
---|
International Search Report and written opinion mailed Jan. 13, 2020 for corresponding International Application No. PCT/EP2019/079223, 12 pages. |
Chinese Office Action issued in corresponding Chinese Patent Application No. 2019800783106 dated Aug. 8, 2023, with English language translation attached, 12 pages. |
Korean Office Action issued in corresponding Korean Patent Application No. 10-2021-7019663 dated Aug. 21, 2023, with English language translation attached, 16 pages. |
Chinese Office Action issued in corresponding Chinese Patent Application No. 2019800783106 dated Nov. 14, 2023, with English language translation attached, 9 pages. |
Korean Notice of Allowance issued in corresponding Korean Patent Application No. 10-2021-7019663 dated Feb. 26, 2024, with English language translation attached, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20220014850 A1 | Jan 2022 | US |