1. Field of the Invention
The present invention relates, in general, to medical devices and, in particular, to systems and methods for determining an analyte in a bodily fluid sample.
2. Description of the Related Art
The determination (e.g., detection and/or concentration measurement) of an analyte in a bodily fluid sample is of particular interest in the medical field. For example, it can be desirable to determine glucose, cholesterol, acetaminophen and/or HbA1c concentrations in a sample of a bodily fluid such as urine, blood or interstitial fluid. Such determinations can be achieved using systems (also referred to herein as “kits”) that employ analytical test strips based on, for example, photometric or electrochemical techniques, along with an associated meter. For example, the OneTouch® Ultra® whole blood testing kit, available from LifeScan, Inc., Milpitas, USA, employs an electrochemical-based analytical test strip for the determination of blood glucose concentration in a whole blood sample.
Such systems can be relatively complex with a plurality of buttons, an integrated analytical test strip dispenser, and multiple software-based capabilities. Therefore, users of such systems are typically provided with a written operating manual for the system. Depending on the complexity of the system, a user may need to devote significant time and concentration before they understand and have memorized the manual's information and are able to successfully operate the system.
A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings, of which:
Meter 102 includes a graphics-based step-by-step tutorial module 106 (encompassed within the dashed line of
User interface 108 is configured to display the graphics-based images and, optionally, text-based images of the step-by-step tutorial stored in memory unit 110. Such a step-by-step tutorial can be displayed, for example, as a sequence of static graphics-based and text-based images or as a sequential display of animated images containing a combination of animated graphics-based images and text. The sequence of graphics-based images depicts the proper use of the system for determining an analyte in a bodily fluid sample in a clear and intuitive way, thereby beneficially tutoring a user in use of the system. Since the images are displayed in a sequential manner, a user is always tutored in the proper and complete step-by-step use of the system. The sequential display thus serves, through repetition, to beneficially reinforce the proper and complete use of the system in a user's memory.
Once apprised of the present disclosure, one skilled in the art will recognize that graphics-based images employed in embodiments of the present invention are illustrative, pictorial, diagrammatic and/or simplified in nature and are not, therefore, necessarily accurate with respect to all mechanical or visual details and/or in scale. However, such graphics-based images are sufficiently accurate and detailed for the intended purpose, namely for the purpose of tutoring a user in the proper step-by-step operation of a system for determining an analyte in a bodily fluid sample.
Analytical test strip 104 is configured for the application of a bodily fluid sample thereon and for insertion in meter 102 for subsequent determination of an analyte in the bodily fluid sample. Analytical test strip 104 can be any suitable analytical test strip including, for example, an electrochemical-based or photometric-based analytical test strip. As noted below, meter 102 can employ any suitable technique known to those of skill in the art for determining the analyte in conjunction with analytical test strip 104. Conventional analytical test strips that could be employed in the present invention are described, for example, in U.S. Pat. Nos. 5,708,247; 6,733,655; 5,753,452; 6,168,957; 6,555,061; 6,716,577; 6,723,500 and 6,241,862, each of which is hereby fully incorporated by reference.
User interface 108, microprocessor unit 109 and memory unit 110 are in operatively linked and configured for sequential display of the graphics-based step-by-step tutorial to a user during use of system 100. Such operative linking is depicted by double-headed arrows in
Meter 102 can employ any suitable analytical technique or techniques to determine the analyte in the bodily fluid sample including, for example, techniques employed in current commercially available meters. Such techniques include, but are not limited to, photometric and electrochemical-based techniques. Once apprised of the present disclosure, one skilled in the art will recognize various manners by which conventional meters could be adapted to implement an embodiment of the present invention. For example, a microprocessor unit, memory unit and a user interface as described herein could be suitably integrated with an otherwise conventional meter to implement an embodiment of the present invention. Conventional meters that could be modified for use in the present invention are described in, for example, U.S. Pat. Nos. 6,780,645; 5,605,837 and 6,576,416 and International Application PCT/US2005/047552 (published as WO2006/072035A1 on Jul. 6, 2001), each of which is incorporated fully herein by reference.
User interface 108 of graphics-based step-by-step tutorial module 106 can be any suitable user interface and can include, for example, a display screen (not depicted in
Memory unit 110 of graphics-based step-by-step tutorial module 106 can be any suitable memory unit known to those of skill in the art including, for example, solid state nonvolatile memory (NVM) units. Moreover, the graphics-based and/or text-based images of the graphics-based step-by-step tutorial module can be stored within memory unit 110 using any suitable conventional format including, for example, software-based formats.
Microprocessor unit 109 of graphics-based step-by-step tutorial module 106 can be any suitable microprocessor unit known to those of skill in the art including, for example, configurable microprocessor units.
Meter 202 includes an integrated (i.e., embedded) graphics-based step-by-step tutorial module with a user interface. The user interface includes display 206 and user operable buttons 208a, 208b and 208c. The graphics-based step-by-step tutorial module also includes a microprocessor unit and a memory unit (both of which are not visible in the view of
Meter 202 also includes a test strip actuation button 210 and an indicator light 212. Moreover, meter 202 includes an analytical test strip dispenser (not visible in the
Referring to
Images 304 through 328 of
Image 302a—a main menu screen;
Image 304—includes ‘Welcome’ text and a graphics-based image of meter 102;
Image 306—includes text ‘To start a test press the strip button’, and a test strip actuation of the meter is highlighted in the image;
Image 308—includes, in a graphics-based manner, a number in large font within the meter, an analytical test strip in the test position, and also includes the text ‘Strip will appear in strip port’;
Image 310—includes the expiry date on the screen of the meter and associated text;
Image 312—depicts, in a graphics-based manner, the meter with an indicator light thereon illuminated, a user's hand and a meter within the display window of the meter, while also depicting associated text;
Images 314, 316, 318 and 320 depict, in a sequential animated graphics-based manner, the application of a whole blood sample from a user's lanced index finger to an analytical test strip and associated text with the meter, hand, blood drop and indicator light, shown in an ideal position and/or orientation for correct sample application to the analytical test strip.
In particular, image 314 shows an exemplary embodiment of a graphics-based image of a hand with the middle, ring and small finger curled in towards the palm and only the index finger projecting outwards with a circular blood droplet on the end of the index finger. Below this image is a graphics-based outline of a portion of a meter with an analytical test strip protruding from a delivery port, ready to accept a blood sample. The indicator light of the meter is also shown illuminated. Image 314 can be sequentially displayed (i.e., sequentially displayed after the display of images 304 through 312), for example, to a user following actuation of an analytical test strip to the delivery port, and indicates to the user that the meter is in a state ready to receive a sample. In image 314, the hand and meter are separated.
In particular, image 316 is an image somewhat similar to image 314, however, in image 316 the index finger with blood droplet is contacting a sample application zone of the analytical test strip. In the embodiment of
Image 322 depicts a meter with an example test result displayed thereon;
Image 324—depicts the manner in which a user can depress the test strip actuation button (shown highlighted) to eject the used analytical test strip;
Image 326—includes a depiction of the remaining number of analytical test strips;
Image 328 depicts the meter turning off automatically and includes a graphics-based image of a meter with a blank display. If desired, the image can also employ text to instruct a user to consult the system's operating manual prior to system use.
Image 302b—depicts the main menu for system 100.
Images 304 through 320 of
Although the graphics and text-based images of
If desired, user interface 108 of system 100 can also be employed to display the number of analytical test strips remaining within system 100. In this regard,
Images such as those of
The system that is activated includes a meter and at least one analytical test strip configured for the application of the bodily fluid sample thereon and for insertion into the meter for subsequent determination of the analyte. Furthermore, the meter includes a graphics-based step-by-step tutorial module with a user interface, a microprocessor unit and a memory unit storing a step-by-step tutorial that includes graphics-based images depicting use of the system. In addition, the user interface, microprocessor unit and memory unit are operatively linked and configured for sequential display of the graphics-based images of the step-by-step tutorial to the user via, for example, a display screen.
At step 520 of method 500, the user is tutored by displaying the graphics-based images of the step-by-step tutorial on the user interface in a sequential manner.
Once apprised of the present disclosure, one skilled in the art will recognize that methods according to embodiments of the present invention can include steps that carry out functional characteristics of embodiments of systems according to the present invention. For example, the tutoring step can occur automatically upon activation of the meter in the manner described herein and/or the tutoring step can include a user scrolling through graphics-based images. Moreover, the activating step of methods according to the present invention can include the activation of any suitable system described with respect to system embodiments of the present invention.
It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that structures and methods within the scope of these claims and their equivalents be covered thereby.