Method for typing and detecting HBV

Information

  • Patent Grant
  • 6709812
  • Patent Number
    6,709,812
  • Date Filed
    Thursday, October 8, 1998
    25 years ago
  • Date Issued
    Tuesday, March 23, 2004
    20 years ago
Abstract
The present invention relates to a method for detection and/or genetic analysis of HBV in a biological sample, comprising hybridizing the polynucleic acids of the sample with a combination of at least two nucleotide probes, with said combination hybridizing specifically to a mutant target sequence chosen from the HBV RT pol gene region and/or to a mutant target sequence chosen from the HBV preCore region and/or to a mutant target sequence chosen from the HBsAg region of HBV and/or to a HBV genotype-specific target sequence, with said target sequences being chosen from FIG. 1, and with said probes being applied to known locations on a solid support and with said probes being capable of hybridizing to the polynucleic acids of the sample under the same hybridization and wash conditions, or with said probes hybridizing specifically with a sequence complementary to any of said target sequences, or a sequence wherein T of said target sequence is replaced by U; and detecting the hybrids formed; and inferring the HBV genotype and/or mutants present in said sample from the differential hybridization signal(s) obtained. The invention further relates to sets of nucleotide probes and possibly primers useful in said methods as well as to their use in a method for typing and/or detecting HBV and to assay kits using the same.
Description




The present invention relates to the field of Hepatitis B virus (HBV) diagnosis. More particularly, the present invention relates to the field of HBV genotyping and/or determination of the presence of HBV mutants in test samples.




The present invention relates particularly to a method for the rapid and reliable detection of HBV mutants and/or genotypes occuring in a test sample using specific sets of probes optimized to function together in a reverse-hybridisation assay.




Hepatitis B virus is a small enveloped DNA virus of approximately 3200 bp long. Historically it has been characterized on the basis of immunological reaction of the HBsAg with sets of monoclonal antibodies. Isolates were described as a, indicating the common determinant for all different subtypes, followed by subtype-specific combinations: dw, dr, yw, or yr. The latter are mutually exlusive pairs of determinants, covering the HBsAg amino acids 122 (d=lys, y=arg) and 160 (w=lys, r=arg). Several subdeterminants for w exist and can be ascribed to the appeareance of certain amino acid variants at codon 127. More recently, a genetic classification has been proposed, based on molecular analysis of the virus. This kind of analysis showed that in total six different genotypes exist, indicated from A to F, with a maximum genetic divergence of 8% when comparing complete genomes (reviewed by Magnius and Norder, 1995).




The genetic variability of HBV might be clinically important. Indeed, the genome variability might include some mechanisms by which HBV avoids immune clearance, and hence induces chronic infection. An important protein marker in inducing immune tolerance, virus elimination, and chronic infection, is HBeAg. The expression of this protein is strictly controled both at the transcriptional and translational level (Li et al., 1993; Okamoto et al., 1990; Yuan et al., 1995; Sato et al., 1995). Therefore, in the natural course of HBV infection, a well characterized stage of the disease is indicated as HBe-negative chronic hepatitis B (reviewed by Hadziyannis S. J., 1995). This phase is mostly due to the appeareance of preCore translational stop codon mutations. The overal genetic variability determines the frequency and physical location on the viral genome where these translational stop-codon mutations appear. The transcriptional regulation was proposed to be the mechanism for genotype A (and possibly also F), whereas the translational control was more likely to be found in the other genotypes (Li et al.; 1993; Sato et al., 1995). Contradictory to the translational regulation, it was shown that the transcriptional regulation was unable to block the HBeAg expression completely and was therefore proposed to categorize the phenotype of this mutant as HBe-suppressed, rather than as HBe-negative (Takahashi et al., 1995). In any case, these preCore mutants would lead to a destruction of the preexisting balance between HBeAg in circulation and the HBc-derived peptides presented by class I HLA molecules on the surface of infected hepatocytes, thereby diminishing the supressive effect of HBeAg on T cells, finally resulting in partial liberation of core-specific CTLs and leading to apoptosis of the infected hepatocytes. In general, after the emergence of the HBe-minus variants, the course of the viral infection is characterized by the progression of chronic hepatitis, which may lead to the development of cirrhosis and hepatocellular carcinoma (Hadziyannis, 1995).




Another issue for which the genetic variability or genotyping of the virus might be of relevance is in the development of vaccines where the response may be mediated by the virus type. Protection against HBV infection of all subtypes is conferred by antibodies to the common ‘a’ determinant of the HB surface antigen (HBsAg). It has been shown that this ‘a’ determinant presents a number of epitopes, and that its tertiary structure is most important for its antigenicity. The most important region lies between amino acid 124 and 147, but can be extended from amino acid 114 to 150. An adequate anti-HBs response, built up after vaccination, is in principle fully protective infection with a HBV strain harboring mutations in the ‘a’ determinant region might result in vaccine failure, because the vaccine-induced humoral immune response does not recognize the mutant HBsAg. The most common vaccine-associated escape mutants are the substitutions of a glycine at position 145 to an arginine (G145R), K141E, and T126N. But a 2-aa insertion between aa position 122 and 123, and 8-aa insertion between aa 123 and 124 have also been found (Carman et al., 1990, 1995; Crawford, 1990; Waters et al., 1992).




Lamivudine is a (−) enantiomer of 3′ thiacytidine, a 2′3′-dideoxynucleoside analogue, and is known to be a potent inhibitor of HBV replication through inhibition of the reverse transcriptase (RT) activity of the HBV polymerase. Lamivudine treatment can result in histological improvements in chronic hepatitis patients, and when given pre- and post-liver transplantation, it can prevent graft reinfection (Honkoop et al., 1995; Naoumov et al., 1995). However, after treatment, a hepatitis flare-up can be observed in most patients, with ALT elevations and HBV DNA that becomes detectable again. This HBV DNA rebound is associated with a new quasi species equilibrium. In a few cases, virus breakthrough during therapy was observed, due to the selection of lamivudine resistent HBV strains. The exact nature of this breakthrough has been ascribed to the accumulation of mutations in the RT part of the Polymerase. A similar mechanism in the HIV RT polymerase has been found, where upon lamivudine treatment, mutations accumulate in the YMDD motif (Gao et al., 1993). This YMDD motif is also present in the RT part of the HBV polymerase, and lamivudine-selected mutations in HBV have been found in this region (Tipples et al., 1996), as well as in other regions of the RT part of the polymerase (Ling et al., 1996). Penciclovir is another drug that has been shown to inhibit the reverse transcriptase activity of the HBV polymerase (Shaw et al., 1996), and mutations in the HBV polymerase may also be detected upon treatment with this drug.




From all this it can be concluded that the information on the following issues is essential for proper in vitro diagnosis, monitoring and follow-up of HBV infections:




genotype;




preCore mutations;




vaccine escape mutations;




RT gene mutations selected by treatment with drugs such as lamivudune and penciclovir.




To obtain all this information using existing technologies is compilcated, time-consuming, and requires highly-skilled and experienced personel.




It is thus an aim of the present invention to develop a rapid and reliable detection method for determination of the presence or absence of one or more HBV genotypes possibly present in a biological sample.




More particularly, it is an aim of the present invention to develop a rapid and reliable detection method for determination of the presence or absence of one or more variations in the HBV preS1 region and/or in the HBsAg region representing one or more HBV genotypes possibly present in a biological sample in one single experiment.




More particularly, it is an aim of the present invention to develop a rapid and reliable detection method for determination of the presence or absence of one or more HBV mutants possibly present in a biological sample in one single experiment.




More particularly, it is an aim of the present invention to develop a rapid and reliable detection method for determination of one or more mutations in the preCore region of HBV possibly present in a biological sample in one single experiment.




More particularly, it is an aim of the present invention to develop a rapid and reliable detection method for determination of one or more mutations in the HBsAg region of HBV possibly present in a biological sample in one single experiment.




More particularly, it is an aim of the present invention to develop a rapid and reliable detection method for determination of one or more mutations in the polymerase (pol) gene region of HBV possibly present in a biological sample in one single experiment.




More particularly, it is an aim of the present invention to develop a rapid and reliable detection method for the simultaneous determination of one Dr several HBV Genotypes in combination with one or several HBV mutants possibly present in a biological sample in one single experiment.




It is also an aim of the present invention to provide a genotyping assay or method which allows to infer the nucleotide sequence at codons of interest and/or the HBV mutants of interest, and/or infer the HBV genotype possibly present in a biological sample.




Even more particularly it is also an aim of the present invention to provide a genotyping assay allowing the detection of the different HBV mutants and genotypes in one single experimental setup.




It is another aim of the present invention to select particular probes able to discriminate one or more HBV mutations in one of the above mentioned regions of the HBV genome and/or able to discriminate one or more HBV genotypes.




It is more particularly an aim of the present invention to select particular probes able to discriminate wild-type HBV from mutant HBV sequences.




It is also an aim of the present invention to select particular probes able to discriminate wild-type and polymorphic variants of HBV from mutant HBV sequences.




It is also an aim of the present invention to select particular probes able to discriminate HBV genotype sequences.




It is moreover an aim of the present invention to combine a set of selected probes able to genotype HBV and/or discriminate different HBV mutants possibly present in a biological sample, whereby all probes can be used under the same hybridisation and wash conditions.




It is also an aim of the present invention to select primers enabling the amplification of the gene fragment(s) determining the HBV genomic mutations or variations of interest as discussed above.




The present invention also aims at diagnostic kits comprising said probes useful for developing such a genotyping assay and/or assays for detecting, monitoring or following-up HBV infection and/or assays for detecting HBV mutations.




All the aims of the present invention have been met by the following specific embodiments.




As a solution to the above-mentioned problem that it is essential for proper diagnosis, monitoring and follow-up of HBV infection to have information on the genotype of HBV present, the present invention provides an elegant way to tackle problems of such complexity which involves residing to a reverse hybridization approach (particularly on Line Probe Assays strips, as described by Stuyver et al., 1993). Using this technology it is possible to conveniently obtain all essential data in one test run. To achieve this goal, a set of probes needs to be designed and assembled which can detect all relevant polymorphisms in the HBV gene regions of interest.




The present invention thus particularly relates to a method for determining the presence or absence of one or more HBV genotypes in a biological sample, comprising:




(i) if need be releasing, isolating or concentrating the polynucleic acids present in the sample;




(ii) if need be amplifying the relevant part of a suitable HBV gene present in said sample with at least one suitable primer pair;




(iii) hybridizing the polynucleic acids of step (i) or (ii) with at least two nucleotide probes hybridizing specifically to a HBV genotype specific target sequence chosen from

FIG. 1

; with said probes being applied to known locations on a solid support and with said probes being capable of hybridizing to polynucleic acids of step (i) or (ii) under the same hybridization and wash conditions or with said probes hybridizing specifically with a sequence complementary to any of said target sequences, or a sequence wherein T of said target sequence is replaced by U;




(iv) detecting the hybrids formed in step (iii);




(v) inferring the HBV genotype present in said sample from the differential hybridization signal(s) obtained in step (iv).




The genotype specific target sequences can be any nucieotide variation appearing upon alignment of the different HBV genomes that permits classification of a certain HBV isolate as a certain genotype (see FIG.


1


).




The expression “relevant part of a suitable HBV gene” refers to the part of the HBV gene encompassing the HBV genotype specific target sequence chosen from

FIG. 1

to be detected.




According to a preferred embodiment of the present invention, step (iii) is performed using a set of at least 2, preferably at least 3, more preferably at least 4 and most preferably at least 5 probes all meticulously designed such that they show the desired hybridization results, when used in a reverse hybridisation assay format, more particularly under the same hybridization and wash conditions implying that each of said probes is able to form a complex upon hybridisation with its target sequence present in the polynucleic acids of the sample as obtained after step (i) or (ii).




The numbering of the HBV gene encoded amino acids and nucleotides is as generally accepted in literature.




More particularly, the present invention relates to a set of at least 2 probes allowing the detection of a genotype specific variation, possibly also including one or more probes allowing the detection of a wild-type sequence, a polymorphic or a mutated sequence at any one of the nucleotide positions showing a sequence diversity upon alignment of all known or yet to be discovered HBV sequences as represented in

FIG. 1

for all complete HBV genomes found in the EMBL/NCBI/DDBJ/Genbank.




The sets of probes according to the present invention have as a common characteristic that all the probes in said set are designed so that they can be used together in a reverse-hybridization assay, more particularly under similar or identical hybridization and wash conditions as indicated above and below.




Selected sets of probes according to the present invention include probes which allow to differentiate any of the HBV genotype specific nucleotide changes as represented in

FIG. 1

, preferably in the preS1 or HBsAg region of HBV. Said probes being characterized in that they can function in a method as set out above.




In order to solve the above-mentioned problem of obtaining information or, the possible presence of HBV mutants in a given sample, the present invention provides an elegant way to tackle this problem which involves residing to a reverse hybridisation approach (particularly on Line Probe Assays strips, as described by Stuyver et al., 1993). Using this technology it is possible to conveniently obtain all essential data in one test run. To achieve this goal, a set of probes needs to be designed and assembled which can detect all relevant mutations and possibly also wild-type sequences or polymorphisms in the HBV gene regions of interest.




Another particularly preferred embodiment of the present invention thus is a method for determining the presence or absence of one or more HBV mutants in a biological sample, comprising:




(i) if need be releasing, isolating or concentrating the polynucleic acids present in the sample;




(ii) if need be amplifying the relevant part of a suitable HBV gene present in said sample with at least one suitable primer pair;




(iii) hybridizing the polynucleic acids of step (i) or (ii) with at least two nucleotide probes hybridizing specifically to a HBV mutant target sequence chosen from

FIG. 1

, with said probes being applied to known locations on a solid support and with said probes being capable of hybridizing to the polynucleic acids of step (i) or (ii) under the same hybridization and wash conditions, or with said probes hybridizing specifically with a sequence complementary to any of said target sequences, or a sequence wherein T of said target sequence is replaced by U and with said set or probes possibly also comprising one or more wild-type HBV probes corresponding with the respective mutated HBV target sequence;




(iv) detecting the hybrids formed in step (iii);




(v) inferring the HBV mutant(s) present in said sample from the differential hybridization signal(s) obtained in step (iv).




It is to be understood that the term “mutant target sequence” not only covers the sequence containing a mutation, but also the corresponding wild-type sequence. The HBV mutant target sequence according to the present invention can be any sequence including a HBV mutated codon known in the art or yet to be discovered. Particularly preferred HBV mutant target regions are set out below.




In order to solve the problem as referred to above of obtaining information on the essential issues for proper diagnosis of HBV (namely genotype and different mutations particularly mutations in the preCore region, vaccine escape mutations and RT gene mutations selected by treatment with drugs such as lamivudine and penciclovir), the present invention provides a particularly elegant way to obtain such complex information.




Moreover, careful analysis of the data obtained by the present inventors clearly revealed that combining the information concerning the preCore and escape mutants with data on the genotype is essential to allow adequate interpretation of the results. Hence it is highly advantageous to be able to produce all relevant data simultaneously.




In this method for diagnosing HBV mutants, preferably in combination with HBV genotyping, a set of probes selected as defined above may be used, wherein said set of probes is characterized as being chosen such that for a given HBV mutation, the following probes are included in said set.




at least one probe for detecting the presence of the mutated nucleotide(s) at said position;




at least one probe for detecting the presence of the wild-type nucleotide(s) at said position;




possibly also (an) additional probe(s) for detecting wild-type polymorphisms at positions surrounding the mutation position.




Inclusion of the latter two types of probes greatly contributes to increasing the sensitivity of said assays as demonstrated in the examples section.




Selected sets of probes according to the present invention include at least one probe, preferably at least two probes, characterizing the presence of a HBV mutation at nucleotide positions chosen from the preCore region of HBV, more particularly from the following list of codons susceptible to mutations in the HBV preCore region, such as codon 15 in genotype A, and for all genotypes: codon 28, codon 29, and codon 28 and 29, or in the preCore promoter region (see FIG.


1


).




Said probes being characterized in that they can function in a method as set out above.




An additional embodiment of the present invention includes at least one probe, preferably at least two probes, characterizing the presence of a vaccine escape mutation in codon positions chosen from the HBsAg region of HBV, more particularly from the list of codons susceptible to mutations in the HBV HBsAg region, such as at codons 122, 126, 141, 143, 144 or 145 (see FIG.


1


).




An additional embodiment of the present invention includes at least one probe, preferably at least two probes, characterizing the presence of a mutation in the RT pol gene region of HBV, that gives rise to resistance to drugs such as lamivudine and penciclovir, for instance mutation of M to V or to I at position 552 (in the YMDD motif), mutation of V to I at position 555, mutation of F to L at position 514, mutation of V to L at position 521, mutation of P to L at position 525 and mutation of L to M at position 528 (see FIG.


1


).




In a selected embodiment, a combination of at least two oligonucleotide probes is used and said combination of probes hybridizes specifically to at least two of the following groups of target sequences:




a mutant target sequence chosen from the HBV RT pol gene region,




a mutant target sequence chosen from the HBV preCore region,




a mutant target sequence chosen from the HBsAg region of HBV,




a HBV genotype-specific target sequence.




For instance, an embodiment involves hybridizing with at least one nucleotide probe hybridizing specifically to a genotype specific target sequence chosen from FIG.


1


and at least one nucleotide probe hybridizing specifically to a HBV mutant target sequence chosen from FIG.


1


.




Another selected embodiment involves, for instance, hybridizing with at least one nucleotide probe hybridizing specifically to a genotype specific target sequence chosen from FIG.


1


and at least one nucleotide probe hybridizing specifically to a HBV mutant target sequence chosen from the RT pol gene region as represented in FIG.


1


.




Another selected embodiment involves, for instance, hybridizing with at least one nucleotide probe hybridizing specifically to a genotype specific target sequence chosen from FIG.


1


and at least one nucieotide probe hybridizing specifically to a HBV mutant target sequence chosen from the preCore region as represented in FIG.


1


.




Another selected embodiment involves, for instance, hybridizing with at least one nucieotide probe hybridizing specifically to a genotype specific target sequence chosen from FIG.


1


and at least one nucleotide probe hybridizing specifically to a HBV vaccine escape mutant target sequence within the HBsAg region as represented in FIG.


1


.




In a selected embodiment, a combination of at least three oligonucleotide probes is used and said combination of probes hybridizes specifically to at least three of the following groups of target sequences:




a mutant target sequence chosen from the HBV RT pol gene region,




a mutant target sequence chosen from the HBV preCore region,




a mutant target sequence chosen from the HBsAg region of HBV,




a HBV genotype-specific target sequence.




For instance, an embodiment involves hybridizing with at least one nucleotide probe hybridizing specifically to a genotype specific target sequence chosen from

FIG. 1

, and at least one nucleotide probe hybridizing specifically to a HBV mutant target sequence chosen from the preCore region as represented in

FIG. 1

, and at least one nucleotide probe hybridizing specifically to a HBV vaccine escape mutant target sequence chosen from the HBsAg region as represented in FIG.


1


.




For instance, another embodiment involves hybridizing with at least one probe hybridizing specifically to a mutant target sequence from the HBV RT pol gene region of HBV, and at least one probe hybridizing specifically to a mutant target sequence from the HBsAg region of HBV, and at least one probe hybridizing specifically to a genotype-specific target sequence from the HBsAg region of HBV. According to this embodiment, the relevant part of the HBV genome can be amplified by use of one primer pair, for instance HBPr 75 and HBPr 94.




In a selected embodiment, a combination of at least four oligonucleotide probes is used and said combination of probes hybridizes specifically to all of the following groups of target sequences:




a mutant target sequence chosen from the HBV RT pol gene region,




a mutant target sequence chosen from the HBV preCore region,




a mutant target sequence chosen from the HBsAg region of HBV,




a HBV genotype-specific target sequence.




Particularly preferred embodiments of the invention thus include a set of probes as set out above comprising at least one, preferably at least two, at least three, at least four or more probe(s) for targeting one, preferably two, three or more nucieotide changes appearing in the alignment of HBV genomes as represented in FIG.


1


.




Even more preferred selected sets of probes according to the present invention include probes derived from two of the same or different regions of HBV bearing HBV mutated nucleotides, or in addition also a third (set of) probe(s) characterizing the presence of a third HBV mutation at any of the positions shown in

FIG. 1

, or particular combinations thereof.




Particularly preferred is also a set of probes which allows simultaneous detection of HBV mutations at codons 15, 28 and 29 in the preCore region, possibly in combination with mutations in the preCore promoter regions, in combination with mutations at codons 122, 126, 141, 143, 144, 145 in the HBsAg region, possibly also in combination with mutations in the HBV pol gene at codons 514, 521, 525, 528, 552 or 555.




In the instances where the alignment of HBV genomes of

FIG. 1

is referred to in this invention, it should be construed as referring to an alignment of all existing and future HBV genomes. The existing HBV genome sequences can be deduced from any database, such as the EMBL/NCBI/DDBJ/GENBANK database.




A preferred set of preCore, preS1, HBsAg and RT pol gene probes of this invention are the probes with SEQ ID NO 1 to 278 of Table 1 (see also FIG.


1


).




Particularly preferred sets of probes in this respect are shown in FIG.


2


and in FIG.


4


. The probes in FIG.


2


and in

FIG. 4

were withheld after a first selection for preCore, preS1, HBsAg and RT pol probes.




The probes of the invention are designed for obtaining optimal performance under the same hybridization conditions so that they can be used in sets of at least 2 probes for simultaneous hybridization. This highly increases the usefulness of these Probes and results in a significant gain in time and labour. Evidently, when other hybridization conditions would be preferred, all probes should be adapted accordingly by adding or deleting a number of nucleotides at their extremities. It should be understood that these concomitant adaptations should give rise to essentially the same result, namely that the respective probes still hybridize specifically with the defined target. Such adaptations might also be necessary if the amplified material should be RNA in nature and not DNA as in the case for the NASBA system.




The selection of the preferred probes of the present invention is based on a reverse hybridization assay format using immobilized oligonucleotide probes present at distinct locations on a solid support. More particularly the selection of preferred probes of the present invention is based on the use of the Line Probe Assay (LiPA) principle which is a reverse hybridization assay using oligonucleotide probes immobilized as parallel lines on a solid support strip (Stuyver et al. 1993; international application WO 94/12670). This approach is particularly advantageous since it is fast and simple to perform. The reverse hybridization format and more particularly the LiPA approach has many practical advantages as compared to other DNA techniques or hybridization formats, especially when the use of a combination of probes is preferable or unavoidable to obtain the relevant information sought.




It is to be understood, however, that any other type of hybridization assay or format using any of the selected probes as described further in the invention, is also covered by the present invention.




The reverse hybridization approach implies that the probes are immobilized to certain locations on a solid support and that the target DNA is labelled in order to enable the detection of the hybrids formed.




The following definitions serve to illustrate the terms and expressions used in the present invention.




The term “genetic analysis” refers to the study of the nucleotide_sequence of the genome of HBV by any appropriate technique.




The term “HBV mutant” refers to any HBV strain harbouring genomic variations with serological, genetical or clinical consequences.




The term “vaccine escape mutant” is reviewed in the introduction section and in example 7. The most important region lies between amino acid 124 and 147 of the HBsAg region, but can be extended from amino acid 114 to 150.




The term “mutant resistant to drugs such as lamivudine and penciclovir” is reviewed in the introduction section and in Example 8.




The term “HBV genotype” refers to HBV strains with an intergenotype variation of 8% or more based on a comparison of complete genomes.




The target material in the samples to be analyzed may either be DNA or RNA, e.g. genomic DNA, messenger RNA, viral RNA or amplified versions thereof. These molecules are also termed polynucleic acids.




It is possible to use genomic DNA or RNA molecules from samples susceptible of containing HBV in the methods according to the present invention.




Well-known extraction and purification procedures are available for the isolation of RNA or DNA from a sample (f.i. in Maniatis et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbour Laboratory Press (1989)).




The term “probe” refers to single stranded sequence-specific oligonucleotides which have a sequence which is complementary to the target sequence to be detected.




The term “target sequence” as referred to in the present invention describes the nucieotide sequence of a part of wild-type, polymorphic or mutant HBV gene sequence to be specifically detected by a probe according to the present invention. The polymorphic sequence may encompass one or more polymorphic nucleotides; the mutant sequence may encompass one or more nucleotides that are different from the wild-type sequence. It is to be understood that the term “mutant target sequence” not only covers the sequence containing a mutation, but also the corresponding wild-type sequence. Target sequences may generally refer to single nucleotide positions, codon positions, nucleotides encoding amino acids or to sequences spanning any of the foregoing positions. In the present invention said target sequence often includes one, two or more variable nucleotide positions. In the present invention polynucleic acids detected by the probes of the invention will comprise the target sequence against which the probe is detected.




It is to be understood that the complement of said target sequence is also a suitable target sequence in some cases. The target sequences as defined in the present invention provide sequences which should at least be complementary to the central part of the probe which is designed to hybridize specifically to said target region. In most cases the target sequence is completely complementary to the sequence of the probe.




The term “complementary” as used herein means that the sequence of the single stranded probe is exactly the (inverse) complement of the sequence of the single stranded target, with the target being further defined as the sequence where the mutation to be detected is located.




Since the current application requires the detection of single basepair mismatches, stringent conditions for hybridization are required, allowing in principle only hybridization of exactly complementary sequences. However, variations are possible in the length of the probes (see below). It should also be noted that, since the central part of the probe is essential for its hybridization characteristics, possible deviations of the probe sequence versus the target sequence may be allowable towards head and tail of the probe when longer probe sequences are used. These variations, which may be conceived from the common knowledge in the art, should however always be evaluated experimentally, in order to check if they result in equivalent hybridization characteristics as the exactly complementary probes.




Preferably, the probes of the invention are about 5 to 50 nucleotides long, more preferably from about 10 to 25 nucleotides. Particularly preferred lengths of probes include 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25 nucleotides. The nucleotides as used in the present invention may be ribonucleotides, deoxyribonucleotides and modified nucleotides such as inosine or nucleotides containing modified groups which do not essentially alter their hybridisation characteristics.




Probe sequences are represented throughout the specification as single stranded DNA oligonucleotides from the 5′ to the 3′ end. It is obvious to the man skilled in the art that any of the below-specified probes can be used as such, or in their complementary form, or in their RNA form (wherein T is replaced by U).




The probes according to the invention can be prepared by cloning of recombinant plasmids containing inserts including the corresponding nucleotide sequences, if need be by cleaving the latter out from the cloned plasmids upon using the adequate nucleases and recovering them, e.g. by fractionation according to molecular weight. The probes according to the present invention can also be synthesized chemically, for instance by the conventional phospho-triester method.




The term “solid support” can refer to any substrate to which an oligonucleotide probe can be coupled, provided that it retains its hybridization characteristics and provided that the background level of hybridization remains low. Usually the solid substrate will be a microtiter plate, a membrane (e.g. nylon or nitrocellulose) or a microsphere (bead) or a chip. Prior to application to the membrane or fixation it may be convenient to modify the nucleic acid probe in order to facilitate fixation or improve the hybridization efficiency. Such modifications may encompass homopolymer tailing, coupling with different reactive groups such as aliphatic groups, NH


2


groups, SH groups, carboxylic groups, or coupling with biotin, haptens or proteins.




The term “labelled” refers to the use of labelled nucleic acids. Labelling may be carried out by the use of labelled nucleotides incorporated during the polymerase step of the amplification such as illustrated by Saiki et al. (1988) or Bej et al. (1990) or labelled primers, or by any other method known to the person skilled in the art. The nature of the label may be isotopic (


32


P,


35


S, etc.) or non-isotopic (biotin, digoxigenin, etc.).




The term “primer” refers to a single stranded oligonucleotide sequence capable of acting as a point of initiation for synthesis of a primer extension product which is complementary to the nucleic acid strand to be copied. The length and the sequence of the primer must be such that they allow to prime the synthesis of the extension products. Preferably the primer is about 5-50 nucleotides long. Specific length and sequence will depend on the complexity of the required DNA or RNA targets, as well as on the conditions of primer use such as temperature and ionic strength.




The expression “suitable primer pair” in this invention refers to a pair of primers allowing the amplification of part or all of the HBV gene for which probes are immobilized.




The fact that amplification primers do not have to match exactly with the corresponding template sequence to warrant proper amplification is amply documented in the literature (Kwok et al., 1990).




The amplification method used can be either polymerase chain reaction (PCR; Saiki et al., 1988), ligase chain reaction (LCR; Landgren et al., 1988; Wu & Wallace, 1989; Barany, 1991), nucleic acid sequence-based amplification (NASBA; Guatelli et al., 1990; Compton, 1991), transcription-based amplification system (TAS; Kwoh et al., 1989), strand displacement amplification (SDA; Duck, 1990; Walker et al., 1992) or amplification by means of Qβ replicase (Lizardi et al. 1988; Lomeli et al., 1989) or any other suitable method to amplify nucleic acid molecules known in the art.




The oligonucleotides used as primers or probes may also comprise nucleotide analogues such as phosphorothiates (Matsukura et al., 1987), alkylphosphorothiates (Miller et al., 1979) or peptide nucleic acids (Nielsen et al., 1991; Nielsen et al., 1993) or may contain intercalating agents (Asseline et al., 1984).




As most other variations or modifications introduced into the original DNA sequences of the invention these variations will necessitate adaptions with respect to the conditions under which the oligonucleotide should be used to obtain the required specificity and sensitivity. However the eventual results of hybridisation will be essentially the same as those obtained with the unmodified oligonucleotides.




The introduction of these modifications may be advantageous in order to positively influence characteristics such as hybridization kinetics, reversibility of the hybrid-formation, biological stability of the oligonucleotide molecules, etc.




The “sample” may be any biological material taken either directly from the infected human being (or animal), or after culturing (enrichment). Biological material may be e.g. expectorations of any kind, broncheolavages, blood, skin tissue, biopsies, sperm, lymphocyte blood culture material, colonies, liquid cultures, faecal samples, urine etc.




The sets of probes of the present invention will include at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more probes. Said probes may be applied in two or more (possibly as many as there are probes) distinct and known positions on a solid substrate. Often it is preferable to apply two or more probes together in one and the same position of said solid support.




For designing probes with desired characteristics, the following useful guidelines known to the person skilled in the art can be applied.




Because the extent and specificity of hybridization reactions such as those described herein are affected by a number of factors, manipulation of one or more of those factors will determine the exact sensitivity and specificity of a particular probe, whether perfectly complementary to its target or not. The importance and effect of various assay conditions, explained further herein, are known to those skilled in the art.




The stability of the [probe: target] nucleic acid hybrid should be chosen to be compatible with the assay conditions. This may be accomplished by avoiding long AT-rich sequences, by terminating the hybrids with G:C base pairs, and by designing the probe with an appropriate Tm. The beginning and end points of the probe should be chosen so that the length and % GC result in a Tm about 2-10° C. higher than the temperature at which the final assay will be performed. The base composition of the probe is significant because G-C base pairs exhibit greater thermal stability as compared to A-T base pairs due to additional hydrogen bonding. Thus, hybridization involving complementary nucleic acids of higher G-C content will be stable at higher temperatures.




Conditions such as ionic strength and incubation temperature under which a probe will be used should also be taken into account when designing a probe. It is known that hybridization will increase as the ionic strength of the reaction mixture increases, and that the thermal stability of the hybrids will increase with increasing ionic strength. On the other hand, chemical reagents, such as formamide, urea, DMSO and alcohols, which disrupt hydrogen bonds, will increase the stringency of hybridization. Destabilization of the hydrogen bonds by such reagents can greatly reduce the Tm. In general, optimal hybridization for synthetic oligonucleotide probes of about 10-50 bases in length occurs approximately 5° C. below the melting temperature for a given duplex. Incubation at temperatures below the optimum may allow mismatched base sequences to hybridize and can therefore result in reduced specificity.




It is desirable to have probes which hybridize only under conditions of high stringency. Under high stringency conditions only highly complementary nucleic acid hybrids will form; hybrids without a sufficient degree of complementarity will not form. Accordingly, the stringency of the assay conditions determines the amount of complementarity needed between two nucleic acid strands forming a hybrid. The degree of stringency is chosen such as to maximize the difference in stability between the hybrid formed with the target and the nontarget nucleic acid. In the present case, single base pair changes need to be detected, which requires conditions of very high stringency.




The length of the target nucleic acid sequence and, accordingly, the length of the probe sequence can also be important. In some cases, there may be several sequences from a particular region, varying in location and length, which will yield probes with the desired hybridization characteristics. In other cases, one sequence may be significantly better than another which differs merely by a single base. While it is possible for nucleic acids that are not perfectly complementary to hybridize, the longest stretch of perfectly complementary base sequence will normally primarily determine hybrid stability. While oligonucleotide probes of different lengths and base composition may be used, preferred oligonucleotide probes of this invention are between about 5 to 50 (more particularly 10-25) bases in length and have a sufficient stretch in the sequence which is perfectly complementary to the target nucleic acid sequence.




Regions in the target DNA or RNA which are known to form strong internal structures inhibitory to hybridization are less preferred. Likewise, probes with extensive self-complementarity should be avoided. As explained above, hybridization is the association of two single strands of complementary nucleic acids to form a hydrogen bonded double strand. It is implicit that if one of the two strands is wholly or partially involved in a hybrid that it will be less able to participate in formation of a new hybrid. There can be intramolecular and intermolecular hybrids formed within the molecules of one type of probe if there is sufficient self complementarity. Such structures can be avoided through careful probe design. By designing a probe so that a substantial portion of the sequence of interest is single stranded, the rate and extent of hybridization may be greatly increased. Computer programs are available to search for this type of interaction. However, in certain instances, it may not be possible to avoid this type of interaction.




Standard hybridization and wash conditions are disclosed in the Materials & Methods section of the Examples. Other conditions are for instance 3×SSC (Sodium Saline Citrate), 20% deionized FA (Formamide) at 50° C.




Other solutions (SSPE (Sodium saline phosphate EDTA), TMACI (Tetramethyl ammonium Chloride), etc.) and temperatures can also be used provided that the specificity and sensitivity of the probes is maintained. If need be, slight modifications of the probes in length or in sequence have to be carried out to maintain the specificity and sensitivity required under the given circumstances.




In a more preferential embodiment, the above-mentioned polynucleic acids from step (i) or (ii) are hybridized with at least two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, or more of the above-mentioned target region specific probes, preferably with 5 or 6 probes, which, taken together, cover the “mutation region” of the relevant HBV gene.




The term “mutation region” means the region in the relevant HBV gene sequence where at least one mutation encoding a HBV mutant is located in a preferred parts of this mutation region is represented in FIG.


1


.




Apart from mutation regions as defined above the HBV wild-type or mutant genomes may also show polymorphic nucleotide variations at positions other than those referred to as genotype specific or mutant specific variated positions as shown in FIG.


1


.




Since some mutations may be more frequently occurring than others, e.g. in certain geographic areas or in specific circumstances (e.g. rather closed communities) it may be appropriate to screen only for specific mutations, using a selected set of probes as indicated above. This would result in a more simple test, which would cover the needs under certain circumstances.




In order to detect HBV genotypes and/or HBV mutants with the selected set of oligonucleotide probes, any hybridization method known in the art can be used (conventional dot-blot, Southern blot, sandwich, etc.).




However, in order to obtain fast and easy results if a multitude of probes are involved, a reverse hybridization format may be most convenient.




In a preferred embodiment the selected set of probes are immobilized to a solid support in known distinct locations (dots, lines or other figures). In another preferred embodiment the selected set of probes are immobilized to a membrane strip in a line fashion. Said probes may be immobilized individually or as mixtures to delineated locations on the solid support.




A specific and very user-friendly embodiment of the above-mentioned preferential method is the LiPA method, where the above-mentioned set of probes is immobilized in parallel lines on a membrane, as further described in the examples.




The invention also provides for a set of primers allowing amplification of the region of the respective HBV gene to be detected by means of probes. Examples of such primers of the invention are given in Table 1 and FIG.


1


.




Primers may be labelled with a label of choice (e.g. biotine). Different primer-based target amplification systems may be used, and preferably PCR-amplification, as set out in the examples. Single-round or nested PCR may be used.




The invention also provides a kit for detection and/or genetic analysis of HBV genotypes and/or HBV mutants present in a biological sample comprising the following components:




(i) when appropriate, a means for releasing, isolating or concentrating the polynucleic acids present in said sample;




(ii) when appropriate, at least one suitable primer pair;




(iii) at least two of the probes as defined above, possibly fixed to a solid support;




(iv) a hybridization buffer, or components necessary for producing said buffer;




(v) a wash solution, or components necessary for producing said solution;




(vi) when appropriate, a means for detecting the hybrids resulting from the preceding hybridization.




(vii) when appropriate, a means for attaching said probe to a known location on solid support.




The term “hybridization buffer” means a buffer enabling a hybridization reaction to occur between the probes and the polynucleic acids present in the sample, or the amplified products, under the appropriate stringency conditions.




The term “wash solution” means a solution enabling washing of the hybrids formed under the appropriate stringency conditions.




As illustrated in the Examples section, a line probe assay (LiPA) was designed for screening for HBV genotypes and/or HBV mutants. The principle of the assay is based on reverse hybridization of an amplified polynucleic acid fragment such as a biotinylated PCR fragment of the HBV gene onto short oligonucleotides. The latter hybrid can then, via a biotine-streptavidine coupling, be detected with a non-radioactive colour developing system.











The following examples only serve to illustrate the present invention. These examples are in no way intended to limit the scope of the present invention.




FIGURE AND TABLE LEGENDS




FIG.


1


: Alignment of 35 complete HBV genomes. Isolates belonging to genotype A are: HBVXCPS, HBVADW, HVHEPB, S50225, HPBADWZCG; genotype B: HPBADW3, HPBADWZ, HPBADW1, HPBADW2; genotype C: HPBCGADR, HBVADRM, HPBADRA, HPBCG, HEHBVAYR, HBVADR, HBVADR4, HPBADR1C, HPBADRC, HBVPREX, HPBETNC, HHVBC, HHVCCHA; genotype D: HBVAYWMCG, HBVAYWC, HBVAYWCI, HBVAYWE, HBVDNA, HPBHBVAA, XXHEPAV, HBVORFS; genotype E: HHVBE4, HHVBBAS; and genotype F: HHBF, HHVBFFOU, HBVADW4A. To preserve alignment, several gaps were created in the alignment and are indicated with/. Positions of start and end of the different HBV encoded genes is indicated: HBsAg: hepatitis B surface antigen (small surface antigen); HBx: hepatitis B X protein; HB Pol: hepatits B polymerase protein, encoding a terminal protein, a spacer, a RT/DNA polymerase region, and an RNAse H activity; HBcAg: hepatitis B Core antigen; HBpreS1Ag: hepatitis B preS1 antigen (large surface antigen); HBpreS2Ag: hepatitis B preS2 antigen (middle surface antigen). The position of the PCR primers is indicated with a large box over all 35 sequences. The polarity of the PCR primer can be deduced from the position of the name above these boxes: left=antisense primer; right=sense primer. LiPA probes are indicated with small boxes, the numbers of the probes are indicated next to the probes or to the right of the alignment, and correspond to the probe numbers in Table 1.




FIG.


2


: LiPA HBV design. The content of a HBV LiPA strip is detailed. For each line number, the region on the viral genome is indicated, Together with the genotype that is detected, the probe number that corresponds with the boxes from the alignment in

FIG. 1

, and the sequence of the probe.




FIG.


3


: Combined result of genotype determination in the preS1 region and preCore scanning on 24 samples. The interpretation of each sample is given under each strip. Probe reactivities on lines 3 to 14 are obtained from the preS1 PCR fragment, probe reactivities on lines 15 to 27 are due to the preCore PCR fragment. Genotypes are indicated from A to F. The interpretation for the preCore region is as follows: W=wild type; M=mutant; I=indeterminate, meaning that no reactivity is observed, which is due to mutations that could not yet be detected with the selected probes; mix=mixture of wild type and mutant; interpretation of codon 15 is only relevant for genotype A, the absence of reactivity on HBPr 45 for genotypes B to F is of no use as is indicated with—(not applicable). Since the presence or absence of preCore mutations has effect on the serological HBeAg status, this is also indicated.




FIG.


4


: Probes used in HBV LiPA. Probes were designed for genotyping in the HBsAg region and for detection of drug resistance mutations in the YMDD motif (see also FIG.


5


), as well as for detection of mutations in the pre Core region (see also FIG.


6


).




FIG.


5


: Example of a LiPA assay combining HBV genotyping in the HBsAg region and detection of drug resistance mutations in the YMDD motif. Genotypes are indicated from A to F. The design of the strip is shown to the right, with the numbers of the probes corresponding to the numbers in Table 1 and in FIG.


4


. The genotypes and mutant motifs to which each probe hybridizes are written to the outer right. The combination of reactive probes allows the determination of a unique genotype.




FIG.


6


: Example of the determination of preCore mutations by the LiPA technique. The design of the strip is shown to the right, with the numbers of the probes corresponding to the numbers in Table 1. The mutant target sequences to which the probes hybridize are indicated to the outer right. Motif M2 corresponds to a mutation in codon 28, M4 corresponds to a mutation in codon 29. M2/M4 has mutations in both 28 and 29.




FIG.


7


: Detection of a mutation in the YMDD motif of HBV pol upon treatment with lamivudune. The graph shows a time course of the viral load during lamivudine treatment. To the right LiPA strips are shown, corresponding to assays at the beginning of the treatment (5/95), 10 months of treatment (2/96) and 14 months of treatment (6/96). The assay shows that during treatment the YMDD motif mutates to YVDD.




Table 1: Overview of all primers and probes referred to in the Figures with an indication of their respective SEQ ID NO and the region of the HBV genome they are designed for. Primers from the PreS1 region include 1, 106, 2 (sense primers) and 4, 107 and 3 (antisense primers). Primers from the HBsAg region include 75 and 104 (sense primers) and 76, 94 and 105 (antisense primers). Primers from the PreCore region include 5, 6, 69, 70, 84, 86, 87 and108 (sense primers) and 7, 8, 85 and 109 (antisense primers). The remaining oligonucleotides are probes from the PreCore, PreS1, HBsAg and RT pol gene regions of HBV as indicated. The YMDDV motif and its mutants consist of amino acids 551 to 555 of the RT pol protein; the sequence MGVGL and its mutant consist of amino acids 519 to 523 of the RT pol protein; the sequence SPFLL and its mutants and genotypic variants consist of amino acids 524 to 528 of the RT pol protein.












TABLE 1











HBV probe and primer design














Name




Sequence




SEQ ID NO




Region

















HBPr1




GGGTCACCATATTCTTGGG




1




preS1 primer sense






HBPr2




GAACAAGAGCTACAGCATGGG




2




preS1 primer sense






HBPr3




CCACTGCATGGCCTGAGGATG




3




preS1 primer anti-sense






HBPr4




GTTCCT/GGAACTGGAGCCACCAG




4




preS1 primer anti-sense






HBPr5




TCTTTGTATTAGGAGGCTGTAG




5




preCore primer sense






HBPr6




GCTGTAGGCATAAATTGGTCTG




6




preCore primer sense






HBPr7




CTCCACAGT/AAGCTCCAAATTC




7




preCore primer anti-sense






HBPr8




GAAGGAAAGAAGTCAGAAGGC




8




preCore primer anti-sense






HBPr9




TGGCTTTGGGGCATGG




9




preCore






HBPr10




TGGCTTTAGGGCATGG




10




preCore






HBPr11




TGGCTTTAGGACATGG




11




preCore






HBPr12




AAGTTGCATGGTGCTG




12




preCore






HBPr13




CACCTCTGCCTAATCAT




13




preCore






HBPr14




TGGGGTGGAGCCCTCAG




14




preS1






HBPr15




GCCAGCAGCCAACCAG




15




preS1






HBPr16




CCCATGGGGGACTGT




16




preS1






HBPr17




AACCCCAACAAGGATG




17




preS1






HBPr18




TCCACCAGCAATCCT




18




preS1






HBPr19




TGGGGGAAGAATATTT




19




preS1






HBPr20




AAATTCCAGCAGTCCC




20




preS1






HBPr21




GTTCCCAACCCTCTGG




21




preS1






HBPr22




AACCTCGCAAAGGCAT




22




preS1






HBPr23




TGCATTCAAAGCCAAC




23




preS1






HBPr24




TACTCACAACTGTGCC




24




preS1






HBPr25




ACCCTGCGTTCGGAGC




25




preS1






HBPr26




CAGGAAGACAGCCTAC




26




preS1






HBPr27




GATCCAGCCTTCAGAG




27




preS1






HBPr28




ATGCTCCAGCTCCTAC




28




preS1






HBPr29




GCTTTCTTGGACGGTC




29




preS1






HBPr30




CTACCCCAATCACTCC




30




preS1






HBPr31




AGCACCTCTCTCAACG




31




preS1






HBPr32




CCAATGGCAAACAAGG




32




preS1






HBPr33




CTGAGGGCTCCACCCCA




33




preS1






HBPr34




ATGCAACTTTTTCACC




34




preCore






HBPr35




ATCTCTTGTACATGTC




35




preCore






HBPr36




ATCTCATGTTCATGTC




36




preCore






HBPr37




CAGTGGGACATGTACA




37




preCore






HBPr38




CAGTAGGACATGAACA




38




preCore






HBPr39




CTGTTCAAGCCTCCAA




39




preCore






HBPr40




AGCCTCCAAGCTGTGC




40




preCore






HBPr41




AAAGCCACCCAAGGCA




41




preCore






HBPr42




TGGCTTTAGGACATGGA




42




preCore






HBPr43




GACATGTACAAGAGATGA




43




preCore






HBPr44




GACATGAACATGAGATGA




44




preCore






HBPr45




TGTACATGTCCCACTGTT




45




preCore






HBPr46




TGTTCATGTCCTACTGTT




46




preCore






HBPr47




ACTGTTCAAGCCTCCAAG




47




preCore






HBPr48




GGCACAGGCTTGGAGGCTT




48




preCore






HBPr49




AAAGCCACCCAAGGCACA




49




preCore






HBPr50




CCCAGAGGGTTGGGAAC




50




preS1






HBPr51




CAGCATGGGGCAGAATCT




51




preS1






HBPr52




TCCACCAGCAATCCTCTG




52




preS1






HBPr53




GGATCCAGCCTTCAGAGC




53




preS1






HBPr54




TCAGGAAGACAGCCTAC




54




preS1






HBPr55




TTCAACCCCAACAAGGATC




55




preS1






HBPr56




AATGCTCCAGCTCCTAC




56




preS1






HBPr57




CTGCATTCAAAGCCAACT




57




preS1






HBPr58




CCCCATGGGGGACTGTTG




58




preS1






HBPr59




CATACTCACAACTGTGCCA




59




preS1






HBPr60




GGGCTTTCTTGGACGGTCC




60




preS1






HBPr61




CTCTCGAATGGGGGAAGA




61




preS1






HBPr62




CCTACCCCAATCACTCCA




62




preS1






HBPr63




AGCACCTCTCTCAACGACA




63




preS1






HBPr64




GCAAATTCCAGCAGTCCCG




64




preS1






HBPr65




GCCAATGGCAAACAAGGTA




65




preS1






HBPr66




GACATGAACATGAGATG




66




preCore






HBPr67




GGACATGAACAAGAGAT




67




preCore






HBPr68




GACATGTACAAGAGATG




68




preCore






HBPr69




ACATAAGAGGACTCTTGGAC




69




preCore primer sense






HBPr70




TACTTCAAAGACTGTGTGTTTA




70




preCore primer sense






HBPr71




ACAAAGACCTTTAAC/TCT




71




preCore promoter






HBPr72




ACAAAGATCATTAAC/TCT




72




preCore promoter






HBPr73




TTCCACCAGCAATCCTC




73




preS1






HBPr74




GATCCAGCCTTCAGAGC




74




preS1






HBPr75




CAAGGTATGTTGCCCGTTTGTCC




75




HBsAg primer sense






HBPr76




CCAAACAGTGGGGGAAAGCCC




76




HBsAg primer anti-sense






HBPr77




CTACGGATGGAAATTGC




77




HBsAg codon 145 wild type






HBPr78




TACGGACGGAAACTGC




78




HBsAg codon 145 wild type






HBPr79




TTCGGACGGAAACTGC




79




HBsAg codon 145 wild type






HBPr80




CTTCGGACGGAAATTGC




80




HBsAg codon 145 wild type






HBPr81




CTACGGATAGAAATTGC




81




HBsAg codon 145 mutant






HBPr82




CTTCGGACAGAAATTGC




82




HBsAg codon 145 mutant






HBPr83




CTATGGGAGTGGGCCTCAGT/CC




83




HB Pol






HBPr84




GCTGTAGGCATAAATTGGTCTG




84




preCore primer sense






HBPr85




CTCCACAGT/AAGCTCCAAATTC




85




preCore primer anti-sense






HBPr86




ACATAAGAGGACTCTTGGAC




86




preCore primer sense






HBPr87




TACTTCAAAGACTGTGTGTTTA




87




preCore primer sense






HBPr88




TAGGTTAAAGGTCTTTGT




88




preCore promoter






HBPr89




TAGGTTAATGATCTTTGT




89




preCore promoter






HBPr90




CATGTCCCACTGTTCAA




90




preCore






HBPr91




CATGTCCTACTGTTCAA




91




preCore






HBPr92




TTCTGCCCCATGCTGTA




92




preS1






HBPr93




TTCTGCCCCATGCTGTAG




93




preS1






HBPr94




GGTAA/TAAAGGGACTCAC/AGATG




94




HBsAg primer anti-sense






HBPr95




TCAGCTATATGGATGAT




95




HB Pol






HBPr96




CAGCTATATGGATGAT




96




HB Pol






HBPr97




TTCAGCTATATGGATG




97




HB Pol






HBPr98




TCAGTTATATGGATGAT




98




HB Pol






HBPr99




TTTCAGTTATATGGATG




99




HB Pol






HBPr100




TTTAGTTATATGGATGA




100




HB Pol






HBPr101




TCAGCTATGTGGATGAT




101




HB Pol






HBPr102




TCAGTTATGTGGATGAT




102




HB Pol






HBPr103




TTTCAGCTATGTGGATG




103




HB Pol






HBPr104




CAAGGTATGTTGCCCGTTTGTCC




104




HBsAg primer sense






HBPr105




GGT/CAA/TAAAGGGACTCAC/AGATG




105




HBsAg primer anti-sense






HBPr106




GGGTCACCATATTCTTGGG




106




preS1 primer sense






HBPr107




GTTCCT/GGAACTGGAGCCACCAG




107




preS1 primer anti-sense






HBPr108




CCGGAAAGCTTGAGCTCTTCTTTTTCACCTCTGCCTAATC




108




preCore primer sense






HBPr109




CCGGAAAGCTTGAGCTCTTCAAAAAGTTGCATGGTGCTGG




109




preCore primer anti-sense






HBPr110




CCTCTGCCGATCCATACTGCGGAAC




110




preX primer sense






HBPr111




CTGCGAGGCGAGGGAGTTCTTCTTC




111




HB Core primer anti-sense






HBPr112




TGCCATTTGTTCAGTGGTTCGTAGGGC




112




HBsAg primer sense






HBPr113




CCGGCAGATGAGAAGGCACAGACGG




113




HBX primer antisense






HBPr114




TTCAGCTATATGGATGAT




114




YMDD motif






HBPr115




TCAGCTATATGGATGATG




115




YMDD motif






HBPr116




TTCAGCTATGTGGATGAT




116




YMDD motif






HBPr117




TCAGCTATGTGGATGATG




117




YMDD motif






HBPr118




GGCTTTGGGGCATGG




118




preCore codon 28 wild type






HBPr119




TGGCTTTGGGGCATG




119




preCore codon 28 wild type






HBPr120




GTGGCTTTGGGGCATG




120




preCore codon 28 wild type






HBPr121




GGCTTTGGGGCATGGA




121




preCore codon 28 wild type






HBPr122




TGGCTTTGGGACATGG




122




preCore codon 28 wild type, codon 29 mutant






HBPr123




GGCTTTGGGACATGG




123




preCore codon 28 wild type, codon 29 mutant






HBPr124




TGGCTTTGGGACATG




124




preCore codon 28 wild type, codon 29 mutant






HBPr125




GTGGCTTTGGGACATG




125




preCore codon 28 wild type, codon 29 mutant






HBPr126




GGCTTTGGGACATGGA




126




preCore codon 28 wild type, codon 29 mutant






HBPr127




TCAGTTATATGGATGATG




127




YMDD genotype D, wild type






HBPr128




TTCAGTTATATGGATGAT




128




YMDD genotype D, wild type






HBPr129




TTTCAGTTATATGGATGAT




129




YMDD genotype D, wild type






HBPr130




TCAGTTATGTGGATGATG




130




YMDD genotype D, mutant






HBPr131




TTCAGTTATGTGGATGAT




131




YMDD genotype D, mutant






HBPr132




TTTCAGTTATGTGGATGAT




132




YMDD genotype D, mutant






HBPr133




TTTCAGTTATGTGGATGA




133




YMDD genotype D, mutant






HBPr134




TGCTGCTATGCCTCATCTTC




134




outer HBsAg primer sense






HBPr135




CA(G/A)AGACAAAAGAAAATTGG




135




outer HBsAg primer anti-sense






HBPr136




CTATGGATGGAAATTGC




136




HBsAg mutant codon 143






HBPr137




CCTATGGATGGAAATTG




137




HBsAg mutant codon 143






HBPR138




ACCTATGGATGGAAATT




138




HBsAg mutant codon 143






HBPr139




CT CAA GGC AAC TCT ATG TGG




139




HBsAg, genotype A






HBPr140




CT CAA GGC AAC TCT ATG GG




140




HBsAg, genotype A






HBPr141




T CAA GGC AAC TCT ATG TTG




141




HBsAg, genotype A






HBPr142




ATC CCA TCA TCT TGG G




142




HBsAg, genotype B






HBPr143




ATC CCA TCA TCT TGG GCG G




143




HBsAg, genotype B






HBPr144




TC CCA TCA TCT TGG GCG G




144




HBsAg, genotype B






HBPr145




C CCA TCA TCT TGG GCT GG




145




HBsAg, genotype B






HBPr146




TTC GCA AAA TAC CTA TGG




146




HBsAg, genotype B






HBPr147




T TTC GCA AAA TAC CTA TG




147




HBsAg, genotype B






HBPr148




CT TTC GCA AAA TAC CTA TG




148




HBsAg, genotype B






HBPr149




TC GCA AAA TAC CTA TGG G




149




HBsAg, genotype B






HBPr150




T CTA CTT CCA GGA ACA T




150




HBsAg, genotype C






HBPr151




T CTA CTT CCA GGA ACA TC




151




HBsAg, genotype C






HBPr152




CT CTA CTT CCA GGA ACA T




152




HBsAg, genotype C






HBPr153




CT CTA CTT CCA GGA ACA G




153




HBsAg, genotype C






HBPr154




C TGC ACG ATT CCT GCT




154




HBsAg, genotype C






HBPr155




TGC ACG ATT CCT GCT CA




155




HBsAg, genotype C






HBPr156




C TGC ACG ATT CCT GCT C




156




HBsAg, genotype C






HBPr157




TGC ACG ATT CCT GCT CAA




157




HBsAg, genotype C






HBPr158




TTC GCA AGA TTC CTA TG




158




HBsAg, genotype C






HBPr159




CT TTC GCA AGA TTC CTA T




159




HBsAg, genotype C






HBPr160




CT TTC GCA AGA TTC CTA




160




HBsAg, genotype C






HBPr161




CT TTC GCA AGA TTC CTA TG




161




HBsAg, genotype C






HBPr162




C TCT ATG TAT CCC TCC T




162




HBsAg, genotype D






HBPr163




TCT ATG TAT CCC TCC TG




163




HBsAg, genotype D






HBPr164




C TCT ATG TAT CCC TCC TGG




164




HBsAg, genotype D






HBPr165




CC TCT ATG TAT CCC TCC T




165




HBsAg, genotype D






HBPr166




C TGT ACC AAA CCT TCG G




166




HBsAg, genotype D






HBPr167




C TGT ACC AAA CCT TCG




167




HBsAg, genotype D






HBPr168




GC TGT ACC AAA CCT TCG G




168




HBsAg, genotype D






HBPr169




TGT ACC AAA CCT TCG GAG




169




HBsAg, genotype D






HBPr170




GGA CCC TGC CGA ACC T




170




HBsAg, genotype E






HBPr171




GGA CCC TGC CGA ACC G




171




HBsAg, genotype E






HBPr172




G GGA CCC TGC CGA AC




172




HBsAg, genotype E






HBPr173




GGA CCC TGC CGA AC




173




HBsAg, genotype E






HBPr174




GT TGC TGT TCA AAA CCT T




174




HBsAg, genotype E






HBPr175




GT TGC TGT TCA AAA CCT G




175




HBsAg, genotype E






HBPr176




TGT TGC TGT TCA AAA CCT G




176




HBsAg, genotype E






HBPr177




A TGT TGC TGT TCA AAA CCT G




177




HBsAg, genotype E






HBPr178




GA TCC ACG ACC ACC A




178




HBsAg, genotype F






HBPr179




GGA TCC ACG ACC ACC A




179




HBsAg, genotype F






HBPr180




GGA TCC ACG ACC ACC




180




HBsAg, genotype F






HBPr181




GA TCC ACG ACC ACC AGG




181




HBsAg, genotype F






HBPr182




TGT TCC AAA CCC TCG G




182




HBsAg, genotype F






HBPr183




C TGT TCC AAA CCC TCG




183




HBsAg, genotype F






HBPr184




C TGT TCC AAA CCC TCG G




184




HBsAg, genotype F






HBPr185




GT TCC AAA CCC TCG GAT




185




HBsAg, genotype F






HBPr186




G CCA AAT CTG TGC AGC




186




HBsAg, genotype F






HBPr187




CCA AAT CTG TGC AGC AT




187




HBsAg, genotype F






HBPr188




G CCA AAT CTG TGC AGC AG




188




HBsAg, genotype F






HBPr189




GG CCA AAT CTG TGC AGC




189




HBsAg, genotype F






HBPr190




A TCA ACA ACA ACC AGT A




190




HBsAg, genotype A






HBPr191




GA TCA ACA ACA ACC AGT




191




HBsAg, genotype A






HBPr192




GA TCA ACA ACA ACC AGT A




192




HBsAg, genotype A






HBPr193




GGA TCA ACA ACA ACC AGT




193




HBsAg, genotype A






HBPr194




T CAA GGC AAC TCT ATG TGG




194




HBsAg, genotype A






HBPr195




AGG TTA AAG GTC TTT GT




195




promoter genotype A wild type






HBPr196




T AGG TTA AAG GTC TTT GG




196




promoter genotype A wild type






HBPr197




TT AGG TTA AAG GTC TTT




197




promoter genotype A wild type






HBPr198




GG TTA AAG GTC TTT GTA GG




198




promoter genotype A wild type






HBPr199




AGG TTA ATG ATC TTT GT




199




promoter genotype A mutant






HBPr200




T AGG TTA ATG ATC TTT GG




200




promoter genotype A mutant






HBPr201




CT TTC GCA AGA TTC CTA TGG




201




HBsAg genotype C codon 160






HBPr202




GCT TTC GCA AGA TTC CTA TG




202




HBsAg genotype C codon 160






HBPr203




GCT TTC GCA AGA TTC CTA TGG




203




HBsAg genotype C codon 160






HBPr204




CT TTC GCA AGA TTC CTA TGG G




204




HBsAg genotype C codon 160






HBPr205




GC TGT ACC AAA CCT TCG GAG




205




HBsAg genotype D codon 140






HBPr206




TGC TGT ACC AAA CCT TCG G




206




HBsAg genotype D codon 140






HBPr207




TGC TGT ACC AAA CCT TCG GAG




207




HBsAg genotype D codon 140






HBPr208




GC TGT ACC AAA CCT TCG GAT




208




HBsAg genotype D codon 140






HBPr209




TGG TTC GCC GGG CTT T




209




HBsAg genotype E codon 184






HBPr210




G TGG TTC GCC GGG CTT G




210




HBsAg genotype E codon 184






HBPr211




GG TTC GCC GGG CTT TC




211




HBsAg genotype E codon 184






HBPr212




TGG TTC GCC GGG CTT TC




212




HBsAg genotype E codon 184






HBPr213




AG TGG TTC GCC GGG CTG G




213




HBsAg genotype E codon 184






HBPr214




A GGA TCC ACG ACC ACC AGG




214




HBsAg genotype F






HBPr215




A GGA TCC ACG ACC ACC AGT




215




HBsAg genotype F






HBPr216




CA GGA TCC ACG ACC ACC AGG




216




HBsAg genotype F






HBPr217




C TGT TCC AAA CCC TCG GAG




217




HBsAg genotype F






HBPr218




C TGT TCC AAA CCC TCG GAT




218




HBsAg genotype F






HBPr219




GC TGT TCC AAA CCC TCG GAG




219




HBsAg genotype F






HBPr220




CTGAACCTTTACCCCGTTGC




220




enhancer primer






HBPr221




CTCGCCAACTTACAAGGCCTTTC




221




enhancer primer






HBPr222




AGAATGGCTTGCCTGAGTGC




222




Core primer anti-sense






HBPr223




GCT TTC GCA AGA TTC CTA TGG G




223




HBsAg genotype C codon 160






HBPr224




G GCT TTC GCA AGA TTC CTA TGG




224




HBsAg genotype C codon 160






HBPr225




G GCT TTC GCA AGA TTC CTA TGG G




225




HBsAg genotype C codon 160






HBPr226




G GCT TTC GCA AGA TTC CTA TGG GA




226




HBsAg genotype C codon 160






HBPr227




C AGC TAT ATG GAT GAT GTG




227




YMDDV motif






HBPr228




AGC TAT ATG GAT GAT GTG GG




228




YMDDV motif






HBPr229




GC TAT ATG GAT GAT GTG GT




229




YMDDV motif






HBPr230




AGC TAT ATG GAT GAT GTG GT




230




YMDDV motif






HBPr231




C AGC TAT ATG GAT GAT ATA




231




YMDDI motif






HBPr232




AGC TAT ATG GAT GAT ATA GG




232




YMDDI motif






HBPr233




GC TAT ATG GAT GAT ATA GT




233




YMDDI motif






HBPr234




AGC TAT ATG GAT GAT ATA GT




234




YMDDI motif






HBPr235




CCA TCA TCT TGG GCT TG




235




HBSAg GENOTYPE B CODON 155






HBPr236




CA TCA TCT TGG GCT TT




236




HBSAg GENOTYPE B CODON 155






HBPr237




CCA TCA TCT TGG GCT TT




237




HBSAg GENOTYPE B CODON 155






HBPr238




CCA TCA TCT TGG GCT TTC




238




HBSAg GENOTYPE B CODON 155






HBPr239




CCC ACT GTC TGG CTT TC




239




HBSAg GENOTYPE B CODON 190






HBPr240




CC ACT GTC TGG CTT TC




240




HBSAg GENOTYPE B CODON 190






HBPr241




CC ACT GTC TGG CTT T




241




HBSAg GENOTYPE B CODON 190






HBPr242




CCC ACT GTC TGG CTT G




242




HBSAg GENOTYPE B CODON 190






HBPr243




TAT ATG GAT GAT GTG GTA




243




YMDDV MOTIF






HBPr244




TAT GTG GAT GAT GTG GTA




244




YVDDV MOTIF






HBPr245




TAT ATA GAT GAT GTG GTA




245




YIDDV MOTIF






HBPr246




TAT ATT GAT GAT GTG GTA




246




YIDDV MOTIF






HBPr247




TAT GTA GAT GAT GTG GTA




247




YIDDV MOTIF






HBPr248




TAT GTT GAT GAT GTG GTA




248




YVDDV MOTIF






HBPr249




TAT ATG GAT GAT ATA GTA




249




YMDDI MOTIF






HBPr250




TAT ATG GAT GAT ATC GTA




250




YMDDI MOTIF






HBPr251




TAT GTG GAT GAT ATA GTA




251




YVDDI MOTIF






HBPr252




TAT GTG GAT GAT ATC GTA




252




YVDDI MOTIF






HBPr253




TAT ATA GAT GAT ATA GTA




253




YIDDI MOTIF






HBPr254




TAT ATA GAT GAT ATC GTA




254




YIDDI MOTIF






HBPr255




TAT ATT GAT GAT ATA GTA




255




YIDDI MOTIF






HBPr256




TAT ATT GAT GAT ATC GTA




256




YIDDI MOTIF






HBPr257




TAT GTA GAT GAT ATA GTA




257




YVDDI MOTIF






HBPr258




TAT GTA GAT GAT ATC GTA




258




YVDDI MOTIF






HBPr259




TAT GTT GAT GAT ATA GTA




259




YVDDI MOTIF






HBPr260




TAT GTT GAT GAT ATC GTA




260




YVDDI MOTIF






HBPr261




TAT ATG GAT GAT CTG GTA




261




YMDDL MOTIF






HBPr262




TAT GTG GAT GAT CTG GTA




262




YVDDL MOTIF






HBPr263




TAT ATA GAT GAT CTG GTA




263




YIDDL MOTIF






HBPr264




TAT ATT GAT GAT CTG GTA




264




YIDDL MOTIF






HBPr265




TAT GTA GAT GAT CTG GTA




265




YVDDL MOTIF






HBPr266




TAT GTT GAT GAT CTG GTA




266




YVDDL MOTIF






HBPr267




T ATG GGA GTG GGC CTC AG




267




MGVGL






HBPr268




T ATG GGA TTG GGC CTC AG




268




MGLGL






HBPr269




C AGT CCG TTT CTC TTG GC




269




SPFLL





















EXAMPLES




Example 1




HBV DNA Preparation and PCR Amplification




Serum samples were collected from HBsAg-positive individuals and stored at minus 20° C. until use in 0.5 ml aliquots. To prepare the viral genome, 18 μl serum was mixed with 2 μl 1 N NaOH and incubated at 37° C. for 60 minutes. The denaturation was stopped and neutralized by adding 20 μl of 0.1N HCI. After a 15 minutes centrifugation step, the supernatant was collected and the pellet discarded. PCR was carried out on this lysate as follows: 32 μl H


2


O was mixed with 5 μl of 10×PCR buffer, 1 μl 10 mM dXTPs, 1 μl of each biotinylated primer (10 pmol/μl), 10 μl of serum lysate, and 2 U Taq enzyme. The amplification scheme contained 40 cycles of 95° C. 1 min, annealing at 45° C. for 1 min, and extension at 72° C. for 1 min. Amplification products were visualized on 3% agarose gel.




The outer primer set for preS1 has the following sequence:




outer sense: HBPr 1: 5′-bio-GGGTCACCATATTCTTGGG-3′ (SEQ ID NO:1)




outer antisense HBPr 4: 5′-bio-GTTCC(T/G)GAACTGGAGCCACCAG-3′ (SEQ ID NO:4)




The outer primer set for preCore has the following sequence:




outer sense: HBPr 69: 5′-bio-ACATAAGGACTCTTGGAC-3′ (SEQ ID NO:69)




outer antisense: HBPr 8: 5′-bio-GAAGGAAAGAAGTCAGAAGGC-3′ (SEQ ID NO:8)




The outer primer set for HBsAg has the following sequence:




outer sense: HBPr 134: 5′-bio-TGCTGCTATGCCTCATCTTC-3′ (SEQ ID NO:134)




outer antisense: HBPr 135: 5′-bio-CA(G/A)AGACAAAAGAAAATTGG-3′.(SEQ ID NO:135)




Samples that were negative in the first round PCR were retested in a nested reaction composed of the following: μl H


2


O, 5 μl 10×Taq buffer, 1 μl 10 mM dXTPs, 1 μl of each nested primer (10 pmol/μl), 1 μl of the first round PCR product, and 2 U Taq polymerase. The amplification scheme was identical as for the first round PCR. The sequence of the nested primers were as follows, for the preS1 region:




nested sense HBPr 2: 5′-bio-GAACAAGAGCTACAGCATGGG-3′ (SEQ ID NO:2)




nested antisense HBPr 3: 5′-bio-CCACTGCATGGCCTGAGGATG-3′ (SEQ ID NO:3)




and for the preCore region:




nested sense HBPr 70: 5′-bio-TACTTCAAAGACTGTGTGTTTA-3′ (SEQ ID NO:70)




nested antisense HBPr 7: 5′-bio-CTCCACAG(T/A)AGCTCCAAATTC-3′ (SEQ ID NO:7)




In a second reaction the HBsAg region can be amplified in a similar protocol by using the following primers: HBPr 75: 5′-bio-CAAGGTATGTTGCCCGTTTGTCC-3′ (SEQ ID NO:75) in combination with either HBPr 76: 5′-bio-CCAAACAGTGGGGGAAAGCCC-3′ (SEQ ID NO:76); or with HBPr 94: 5′-bio-GGTA(A/T)AAAGGGACTCA(C/A)GATG-3′ (SEQ ID NO:94).




Example 2




Preparation of the Line Probe Assays




Probes were designed to cover the universal, genotypic and mutant motifs. In principle only probes that discriminate between one single nucleotide variation were retained. However, for certain polymorphisms at the extreme ends of the probe, cross-reactivity was tolerated. Specificity was reached experimentally for each probe individually after considering the % (G+C), the probe length, the final concentration, and hybridization temperature. Optimized probes were provided enzymatically with a poly-T-tail using the TdT (Pharmacia) in a standard reaction condition. Briefly, 400 pmol probe was incubated at 37° C. in a 30 μl reaction mix containing 5.3 mM dTTP, 25 mM Tris.HCL pH 7.5, 0.1 M sodium cacodylate, 1 mM CoCl


2


, 0.1 M DTT and 170 U terminal deoxynucleotidyl transferase (Pharmacia). After one hour incubation, the reaction was stopped and the tailed probes were precipitated and washed with ice-cold ethanol. Probes were dissolved in 6×SSC at their respectively specific concentrations and applied as horizontal lines on membrane strips in concentrations between 0.2 and 2.5 pM/ml. Biotinylated DNA was applied alongside as positive control (LiPA line 1). The oligonucleotides were fixed to the membrane by baking at 80° C. for 12 hours. The membrane was than sliced into 4 mm strips. The design of this strip is indicated in FIG.


2


.




Example 3




LiPA Test Performance




Equal volumes (10 μl each) of the biotinylated PCR fragment and of the denaturation solution (DS; 400 mM NaOH/10 mM EDTA) were mixed in test troughs and incubated at room temperature for 5 minutes. Then, 2 ml of the 37° C. prewarmed hybridization solution (HS, 3×SSC/0.1% SDS) was added, followed by the addition of one strip per test trough. Hybridisation occured for 1 hour at 50±0.5° C. in a closed shaking water bath. The strips were washed twice with 2 ml of stringent wash solution (3×SSC/0.1% SDS) at room temperature for 20 seconds, and once at 50° C. for 30 minutes. Following this stringent wash, strips were rinsed two times with 2 ml of the Innogenetics standard Rinse Solution (RS). Strips were incubated on a rotating platform with the alkaline phosphatase-labelled streptavidin conjugate, diluted in standard Conjugate Solution for 30 minutes at room temperature (20 to 25° C.). Strips were than washed twice with 2 ml of RS and once with standard Substrate Buffer (SB), and the colour reaction was started by adding BCIP and NBT to the SB. After maximum 30 minutes at room temperature, the colour reaction was stopped by replacing the colour compounds by distilled water. Immediately after drying, the strips were interpreted. Reactivities were considered positive whenever the reactivity was stronger than the reaction on the negative control. Strips can be stored on a dry dark place. The complete procedure described above can also be replaced by the standardized Inno-LiPA automation device (auto-LiPA).




Example 4




Selection of Reference Material.




PCR fragments were prepared, derived from members of the different genotypes, the different preCore wild type and mutant sequences, drug resistant motifs and vaccine escape mutants. The PCR fragments were amplified with primers lacking the biotine group at their 5′-end and cloned into the pretreated EcoRV site of the pGEMT vector (Promega). Recombinant clones were selected after α-complementation and restriction fragment length analysis, and sequenced with plasmid primers. Other biotinylated fragments were directly sequenced with a dye-terminator protocol (Applied Biosystems) using the amplification primers. Alternatively, nested PCR was carried out with analogs of the primers, in which the biotine group was replaced with the T7- and SP6-primer sequence, respectively. These amplicons were than sequenced with an SP6- and T7-dye-primer procedure. By doing so, a reference panel of recombinant clones was prepared, which is necessary for optimizing LiPA probes.




Example 5




Genotyping HBV-infected Serum Samples.




Only after creating a sequence alignment as shown in

FIG. 1

, it became clear which regions could be useful for HBV genotyping. The preS1 region seems to be suitable because of the high degree of variability. Probes were therefore designed to cover most of these variable regions as shown in Table 1. Only a limited selection of probes was retained because of their specific reaction with the reference panel. The most important ones are indicated as boxed regions in FIG.


1


. These selected probes were then applied in a LiPA format indicated in

FIG. 2

, as line number 2 to 14. Some of the probes could be applied together in one line, because of their universal character, while others need to be applied separately. With the selection of probes thus obtained, serum samples collected in different parts of the world (Europe, South-America, Africa, Middle-East) were tested. The upper part of

FIG. 3

shows the reactivity of a selection of samples on these probes. Genotyping of these samples is straightforward, with samples 2 to 8 belonging to genotype A, samples 9 and 10 belonging to genotype B, samples 11 and 12 belonging To genotype C, samples 3 to 19 belonging to genotype D, samples 20 to 23 belonging to genotype E, and sample 24 belonging to genotype F.




Genotyping can also be performed in the HBsAg region. Again, probes were designed to cover most of the variable regions shown in FIG.


1


. Only a limited selection of probes were retained. These probes are boxed in FIG.


1


and are listed in

FIG. 4. A

LiPA strip was prepared carrying these probes and samples belonging to the different genotypes were characterized, as shown in FIG.


5


.




Example 6




Scanning The PreCore Region for Mutations.




HBeAg expression can be regulated at the transcriptional and translational level. It is postulated that a transcriptional regulation exists due to the presence of a dinucleotide variation in the promoter region of the preCore mRNA. Probes covering the wild type (e.g. probe HBPr 88) and the mutant (e.g. HBPr 89) motif were selected and their positions are indicated in the alignment shown in

FIG. 1

, and applied on the LiPA strip as line 15 and 16 (FIG.


2


).




At the translational level, much more mutations might arise, all possibly resulting in abrogation of the HBeAg expression: any mutations at codon 1 (ATG) destroying translation initiation, codon 2 (CAA to TAA), codon 7 (TGC to TGA), codon 12 (TGT to TGA), codon 13 in genotype B, C, D, E, F (TCA to TGA or TAA), codon 14 (TGT to TGA), codon 18 (CAA to TAA), codon 21 (AAG to TAG), codon 23 (TGC to TGA), codon 26 (TGG to TAG or TGA), codon 28 (TGG to TAG or TGA). However, due to secondary contrain of the encapsidation signal, most of the mutations occur at codon 28 (TGG to TAG). Along with the mutation at codon 28, a second mutation at codon 29 (GGC to GAC) is often observed. In the case of genotype A and again as a consequence of the secondary constrain, stop codon mutations at codon 28 are only likely to occur after selection of a codon 15 mutation (CCC to CCT). Hence, correct interpretation of preCore mutations is genotype dependent. In addition to the above mentioned stop codons, a huge amount of different deletion- or insertion-mutations in the preCore open reading frame might give essentially the same result.




In order to develop a sensitive assay to detect the relevant mutations and the hypothetical mutations, a probe scanning procedure was developed. Partially overlapping probes were designed and applied in a LiPA format (

FIG. 2

, line 17 To 27). In this assay format, wild type sequences over the complete preCore region, together with the codon 15 variation for genotype A versus non-A genotypes, and the most common mutations at codon 28 (TAG), at codon 29 (GAC) and the combination of codon 28 and 29 (TAGGAC) are positively recognized. Absence of reactivity at one of the other probes is always indicative for the presence of a variation. The exact nature of this variation can then be revealed by sequence analysis or with further designed LiPA probes.





FIG. 3

shows the reactivity of the selected genotyped samples on the probes for the preCore region. Samples were previously tested for the presence of HBeAg or for anti-HBe. The interpretation of the reactivity on the LiPA probes for each sample is indicated below each strip. This approach allowed for the simultaneous screening of a sample for preCore mutations and the characterization of the viral genotype.





FIG. 6

also shows a panel of samples with mutations in the preCore region, as well as wild type samples. The probes used in this assay are listed in FIG.


4


. This assay includes a codon 29 mutant (M4 motif), which was not present in the experiment in FIG.


3


.




Example 7




Detection of Mutants in the HBsAg Region.




Vaccine escape mutants have been described. The most commonly found mutant is the variation at codon 145 of HBsAg (G145R or GGA to AGA). LiPA probes are designed to detect wild type and mutant probes. Genotypic variations are present in the vicinity of codon 145. Therefore, genotype A is covered by probe 77, genotype B by probe 78, genotype C by probe 79, and genotype D/E by probe 80. Hence, in principle, it is possible to genotype and detect the wild type strains of the virus in one single experiment. Mutant target sequences are covered by probe 81 and 82 for genotype A and D, respectively. Probe 83 can be used as a positive control in these experiments. Further detection of mutants in the a determinant region is possible by means of a probe scanning approach. Herefore, probes are designed to cover the wild type sequence of the different genotypes over the HBsAg epitope region and applied in a LiPA format. Again here, absence of staining at one of these probes is indicative for the presence of a mutant strain. The exact nature of, this variant is then determined by sequencing analysis.




Example 8




Detection of HBV Strains Resistant to Lamivudine.




Through analogy with HIV and the resistance against the anti-viral compound 3TC (lamivudine or (−)-β-1-2′,3′-dideoxy-3′-thiacytidine), it was predicted that upon treatment of HBV-infected patients with 3TC, viral strains would be selected showing resistance at the YMDD motif in the HB pol gene. The YMDD motif is physically located in the HBsAg region, but is encoded in another reading frame. Hence, this part of the HBV pol region is amplified with the primer combination HBPr 74-HBr 94, but not with the combination HBPr 74-HBr 76. Probes covering the wild type YMDD motif and YVDD mutant motif are indicated in

FIG. 1

, respectively probes 95 to 100 and 101 to 103, as well as probes 115, 116, 127 and 132, the latter probes yielding the best results in the LiPA assay. Such an assay was used to determine the presence of mutations in the YMDD motif in serum of a HBV-infected patient during treatment with lamivudine.

FIG. 7

shows that in the first phase of the treatment (May 1995) no mutations were detected. During the treatment, the viral load decreased, reaching a level of approximately 10


4


during November and December 1995, whereafter a breakthrough was 10 observed, resulting in a level as high as during the first months of the treatment by June 1996. Interestingly, a LiPA assay performed in February 1996 indicated that the majority of virus present, possessed a mutation in the YMDD motif, which had changed to YVDD. In June 1996, no more wild type motif, but only mutant YVDD could be detected. With this assay, resistant HBV strains can thus easily be detected. Furthermore, the combined detection of the YMDD motif and preCore mutants might be clinically important in prediction and prognosis of further treatment.




REFERENCES.




Asseline U, Delarue M, Lancelot G, Toulme F, Thuong N (1984) Nucleic acid-binding molecules with high affinity and base sequence specificity: intercalating agents covalently linked to oligodeoxynucleotides. Proc. Natl. Acad. Sci. USA 81(11):3297-301.




Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc Natl Acad Sci USA 1991; 88: 189-193.




Bej A, Mahbubani M, Miller R, Di Cesare J, Haff L, Atlas R. Mutiplex PCR amplification and immobilized capture probes for detection of bacterial pathogens and indicators in water. Mol Cell Probes 1990; 4:353-365.




Boom R., Sol C. J. A., Salimans M. M. M., et al. Rapid and simple method for purification of nucleic acids. J Clin Microbiol 1990; 28: 495-503.




Carman W, Zanetti A, Karayiannis P, Waters J, Manzillo G, Tanzi E, Zuckerman A, and Thomas H. Vaccine induced escape mutants. Lancet 1990; 336:325-329.




Carman W, Koruia J, Wallace L, MacPhee R, Mimms L, and Decker R. Fulminant reactivation of hepatitis B due to envelope protein mutant that escaped detection by monoclonal HBsAG ELISA. Lancet 1995; 345: 1406-1407.




Compton J. Nucleic acid sequence-based amplification. Nature 1991; 350: 91-92.




Crawford D. Hepatitis B virus ‘escape’ mutants: Arare event which causes vaccinationfailare. British Med. J. 1990; 301: 1058-1059.




Duck P. Probe amplifier system based on chimeric cycling oligonucleotides. Biotechniques 1990; 9: 142-147.




Gao Q, Gu Z, Parniak M, Cameron I, Cammack N, Boucher C, and Wainberg M. The same mutation that encodes low-level human immunodeficiency virus type-1 resistance to 2′,3′-dideoxyinosine and 2′,3′-dideoxycytidine confers high level resistance to the (−) enantiomer of 2′,3′-dideoxy-3′-thiacytidine. Antimicrob. Agents Chemother. 1993; 37: 1390-1392.




Guatelli J, Whitfield K, Kwoh D, Barringer K, Richman D, Gengeras T. Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci USA 1990; 87: 1874-1878.




Hadziyannis S. Hepaptis B e antigen negative chronic hepatitis B: from clinical recognitionto pathogenesis and treatment. Viral Hepatitis 1995; 1: 7-36.




Honkoop P, de Man R, Zondervan P, Niesters H, and Schalm S. Histological improvement in patients with chronic hepatitis B virus infection treated with lavimudine is associated with a decrease in HBV-DNA by PCR. Hepatol. 1995; 22: abstract 887.




Kwoh D, Davis G, Whitfield K, Chappelle H, Dimichele L, Gingeras T. Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format. Proc Natl Acad Sci USA 1989; 86: 1173-1177.




Kwok S, Kellogg D, McKinney N, Spasic D, Gode L, Levenson C, Sinisky J. Effects of primer-template mismatches on the polymerase chain reaction: Human immunodeficiency views type 1 model studies. Nucl. Acids Res. 1990; 18: 999.




Landgren U, Kaiser R, Sanders J, Hood L. A ligase-mediated gene detection technique. Science 1988; 241:1077-1080.




Li J-S, Tong S-P, Wen Y-M, Vivitski L, Zhang Q, and Trépo C. Hepatitis B virus genotype A rarely circulates as an Hbe-minus mutant: possible contribution of a single nucieotide in the preCore region. J. Virol. 1993; 67: 5402-5410.




Ling, R., Mutimer, D., Ahmed, M., Boxall, E. H., Elias, E., Dusheiko, G. M. and Harrison, T. J. Selection of mutations in the Hepatitis B Virus polymerase during therapy of transplant recipients with lamivudune. Hepatology 1996; 24: 711-713.




Lok A, Akarca U, and Greene S. Mutations in the precore region of hepatitis B virus serve to enhance of the secondary structure of the pre-genome encapsidation signal. Proc. Natl. Acad. Sci. USA 1994; 91: 4077-4081.




Lomeli H, Tyagi S, Printchard C, Lisardi P, Kramer F. Quantitative assays based on the use of replicatable hybridization probes. Clin Chem 1989; 35: 1826-1831.




Magnius L, and Norder H. Subtypes, genotypes and molecular epidemiology of the hepatitis B virus as reflected by sequence variability of the S-gene. Intervirology 1995; 38: 24-34.




Matsukura M, Shinozuka K, Zon G, Mitsuya H, Reitz M, Cohen J, Broder S (1987) Phosphorothioate analogs of oligodeoxynucleotides: inhibitors of replication and cytopathic effects of human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 84(21):7706-10.




Miller P, Yano J, Yano E, Carroll C, Jayaram K, Ts'o P (1979) Nonionic nucleic acid analogues. Synthesis and characterization of dideoxyribonucleoside methylphosphonates. Biochemistry 18(23):5134-43.




Naoumov N, Perllio R, Chokshi S, Dienstag J, Vicary C, Brown N, and Williams R. Reduction in hepatitis B virus quasispecies during lamivudine treatment is associated with enhanced virus repilication and hepatocytolisis. Hepatol. 1995; 22: abstract 885.




Nielsen P, Egholm M, Berg R, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254(5037):1497-500.




Nielsen P, Egholm M, Berg R, Buchardt O (1993) Sequence specific inhibition of DNA restriction enzyme cleavage by PNA. Nucleic-Acids-Res. 21(2):197-200.




Okamoto H, Yotsumoto S, Akahane Y, Yamanaka T, Miyazaki Y, Sugai Y, Tsuda F, Tanaka T, Miyakawa Y, and Mayumi M. Hepatitis B virus with precore region defects prevail in persistently infected hosts along with seroconversion to the antibody against e antigen. J. Virol. 1990; 64: 1298-1303.




Saiki R, Walsh P, Levenson C, Erlich H. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes Proc Natl Acad Sci USA 1989; 86:6230-6234.




Sato S, Suzuki K, Akahane Y, Akamatsu K, Akiyama K, Yunomura K, Tsuda F, Tanaka T, Okamoto H, Miyakawa Y, Mayumi M. Hepatitis B virus strains with mutations in the core promoter in patients with fulminant hepatitis. Ann. Intern. Medicine 1995; 122: 241-248.




Shaw, T., Mok, S. S., Locarnini, S. A. Inhibition of hepatitis B virus DNA polymerase by enantiomers of penciclovir triphosphate and metabolic basis for selective inhibition of HBV replication by penciclovir. Hepatology 1996; 24: 996-1002.




Stuyver L, Rossau R, Wyseur A, et al. Typing of hepatitis C virus isolates and characterization of new subtypes using a line probe assay. J. Gen. Virol. 1993; 74: 1093-1102.




Takahashi K, Aoyama K, Onhno N, Iwata K, Akahane Y, Baba K, Yoshizawa H, and Mishiro S. The precore/core promoter mutant (T1762A1764) of hepatitis B virus: clinical significance and an easy method for detection. J. Gen. Virol. 1995; 76: 3159-3164.




Tipples, G. A., Ma, M. M., Fischer, K. P., Bain, V. G., Kneteman, N. M. and Tyrell, D. L. J. Mutation in HBV RNA-dependent DNA polymerase confers resistance to lamivudine in vivo. Hepatology 1996; 24: 714-717.




Waters J, Kennedy M, Voet P, Hauser P., Petre J, Carman W, and Thomas H. Loss of the common ‘a’ determinant of hepatitis B surface antigen by vaccine-induced escape mutants. J. Clin. Invest. 1992; 90: 2543-2547.




Wu D, Wallace B. The ligation amplification reaction (LAR)—amplification of specific DNA sequences using sequential rounds of template-dependent ligation. Genomics 1989; 4:560-569.




Yuan T, Faruqi A, Shih J, and Shih C. The mechanism of natural occurrence of two closely linked HBV precore predominant mutations. Virol. 1995; 211: 144-156.




Zhang X, Zoulim F, Habersetzer F, Xiong S, and Trépo C. Analysis of hepatitis B virus genotypes and preCore region variability during interferon treatment of Hbe antigen negative chronic hepatitis B. J. Med. Virol. 1996; xxx—xxx.







313





19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


1
GGGTCACCAT ATTCTTGGG 19






21 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


2
GAACAAGAGC TACAGCATGG G 21






21 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


3
CCACTGCATG GCCTGAGGAT G 21






22 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


4
GTTCCKGAAC TGGAGCCACC AG 22






22 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


5
TCTTTGTATT AGGAGGCTGT AG 22






22 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


6
GCTGTAGGCA TAAATTGGTC TG 22






21 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


7
CTCCACAGWA GCTCCAAATT C 21






21 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


8
GAAGGAAAGA AGTCAGAAGG C 21






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


9
TGGCTTTGGG GCATGG 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


10
TGGCTTTAGG GCATGG 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


11
TGGCTTTAGG ACATGG 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


12
AAGTTGCATG GTGCTG 16






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


13
CACCTCTGCC TAATCAT 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


14
TGGGGTGGAG CCCTCAG 17






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


15
GCCAGCAGCC AACCAG 16






15 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


16
CCCATGGGGG ACTGT 15






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


17
AACCCCAACA AGGATG 16






15 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


18
TCCACCAGCA ATCCT 15






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


19
TGGGGGAAGA ATATTT 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


20
AAATTCCAGC AGTCCC 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


21
GTTCCCAACC CTCTGG 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


22
AACCTCGCAA AGGCAT 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


23
TGCATTCAAA GCCAAC 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


24
TACTCACAAC TGTGCC 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


25
ACCCTGCGTT CGGAGC 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


26
CAGGAAGACA GCCTAC 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


27
GATCCAGCCT TCAGAG 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


28
ATGCTCCAGC TCCTAC 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


29
GCTTTCTTGG ACGGTC 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


30
CTACCCCAAT CACTCC 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


31
AGCACCTCTC TCAACG 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


32
CCAATGGCAA ACAAGG 16






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


33
CTGAGGGCTC CACCCCA 17






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


34
ATCTCTTGTA CATGTC 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


35
ATCTCTTGTA CATGTC 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


36
ATCTCATGTT CATGTC 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


37
CAGTGGGACA TGTACA 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


38
CAGTAGGACA TGAACA 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


39
CTGTTCAAGC CTCCAA 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


40
AGCCTCCAAG CTGTGC 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


41
AAAGCCACCC AAGGCA 16






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


42
TGGCTTTAGG ACATGGA 17






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


43
GACATGTACA AGAGATGA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


44
GACATGAACA TGAGATGA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


45
TGTACATGTC CCACTGTT 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


46
TGTTCATGTC CTACTGTT 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


47
ACTGTTCAAG CCTCCAAG 18






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


48
GGCACAGGCT TGGAGGCTT 19






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


49
AAAGCCACCC AAGGCACA 18






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


50
CCCAGAGGGT TGGGAAC 17






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


51
CAGCATGGGG CAGAATCT 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


52
TCCACCAGCA ATCCTCTG 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


53
GGATCCAGCC TTCAGAGC 18






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


54
TCAGGAAGAC AGCCTAC 17






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


55
TTCAACCCCA ACAAGGATC 19






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


56
AATGCTCCAG CTCCTAC 17






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


57
CTGCATTCAA AGCCAACT 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


58
CCCCATGGGG GACTGTTG 18






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


59
CATACTCACA ACTGTGCCA 19






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


60
GGGCTTTCTT GGACGGTCC 19






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


61
CTCTCGAATG GGGGAAGA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


62
CCTACCCCAA TCACTCCA 18






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


63
AGCACCTCTC TCAACGACA 19






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


64
GCAAATTCCA GCAGTCCCG 19






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


65
GCCAATGGCA AACAAGGTA 19






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


66
GACATGAACA TGAGATG 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


67
GGACATGAAC AAGAGAT 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


68
GACATGTACA AGAGATG 17






20 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


69
ACATAAGAGG ACTCTTGGAC 20






22 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


70
TACTTCAAAG ACTGTGTGTT TA 22






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


71
ACAAAGACCT TTAAYCT 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


72
ACAAAGATCA TTAAYCT 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


73
TTCCACCAGC AATCCTC 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


74
GATCCAGCCT TCAGAGC 17






23 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


75
CAAGGTATGT TGCCCGTTTG TCC 23






21 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


76
CCAAACAGTG GGGGAAAGCC C 21






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


77
CTACGGATGG AAATTGC 17






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


78
TACGGACGGA AACTGC 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


79
TTCGGACGGA AACTGC 16






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


80
CTTCGGACGG AAATTGC 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


81
CTACGGATAG AAATTGC 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


82
CTTCGGACAG AAATTGC 17






21 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


83
CTATGGGAGT GGGCCTCAGY C 21






22 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


84
GCTGTAGGCA TAAATTGGTC TG 22






21 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


85
CTCCACAGWA GCTCCAAATT C 21






20 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


86
ACATAAGAGG ACTCTTGGAC 20






22 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


87
TACTTCAAAG ACTGTGTGTT TA 22






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


88
TAGGTTAAAG GTCTTTGT 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


89
TAGGTTAATG ATCTTTGT 18






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


90
CATGTCCCAC TGTTCAA 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


91
CATGTCCTAC TGTTCAA 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


92
TTCTGCCCCA TGCTGTA 17






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


93
TTCTGCCCCA TGCTGTAG 18






21 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


94
GGTAWAAAGG GACTCAMGAT G 21






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


95
TCAGCTATAT GGATGAT 17






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


96
CAGCTATATG GATGAT 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


97
TTCAGCTATA TGGATG 16






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


98
TCAGTTATAT GGATGAT 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


99
TTTCAGTTAT ATGGATG 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


100
TTTAGTTATA TGGATGA 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


101
TCAGCTATGT GGATGAT 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


102
TCAGTTATGT GGATGAT 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


103
TTTCAGCTAT GTGGATG 17






23 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


104
CAAGGTATGT TGCCCGTTTG TCC 23






21 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


105
GGYAWAAAGG GACTCAMGAT G 21






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


106
GGGTCACCAT ATTCTTGGG 19






22 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


107
GTTCCKGAAC TGGAGCCACC AG 22






40 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


108
CCGGAAAGCT TGAGCTCTTC TTTTTCACCT CTGCCTAATC 40






40 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


109
CCGGAAAGCT TGAGCTCTTC AAAAAGTTGC ATGGTGCTGG 40






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


110
GTGGTTCGCC GGGCTTG 17






25 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


111
CTGCGAGGCG AGGGAGTTCT TCTTC 25






27 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


112
TGCCATTTGT TCAGTGGTTC GTAGGGC 27






25 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


113
CCGGCAGATG AGAAGGCACA GACGG 25






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


114
TTCAGCTATA TGGATGAT 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


115
TCAGCTATAT GGATGATG 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


116
TTCAGCTATG TGGATGAT 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


117
TCAGCTATGT GGATGATG 18






15 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


118
GGCTTTGGGG CATGG 15






15 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


119
TGGCTTTGGG GCATG 15






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


120
GTGGCTTTGG GGCATG 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


121
GGCTTTGGGG CATGGA 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


122
TGGCTTTGGG ACATGG 16






15 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


123
GGCTTTGGGA CATGG 15






15 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


124
TGGCTTTGGG ACATG 15






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


125
GTGGCTTTGG GACATG 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


126
GGCTTTGGGA CATGGA 16






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


127
TCAGTTATAT GGATGATG 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


128
TTCAGTTATA TGGATGAT 18






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


129
TTTCAGTTAT ATGGATGAT 19






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


130
TCAGTTATGT GGATGATG 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


131
TTCAGTTATG TGGATGAT 18






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


132
TTTCAGTTAT GTGGATGAT 19






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


133
TTTCAGTTAT GTGGATGA 18






20 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


134
TGCTGCTATG CCTCATCTTC 20






20 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


135
CARAGACAAA AGAAAATTGG 20






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


136
CTATGGATGG AAATTGC 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


137
CCTATGGATG GAAATTG 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


138
ACCTATGGAT GGAAATT 17






20 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


139
CTCAAGGCAA CTCTATGTGG 20






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


140
CTCAAGGCAA CTCTATGGG 19






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


141
TCAAGGCAAC TCTATGTTG 19






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


142
ATCCCATCAT CTTGGG 16






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


143
ATCCCATCAT CTTGGGCGG 19






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


144
TCCCATCATC TTGGGCGG 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


145
CCCATCATCT TGGGCTGG 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


146
TTCGCAAAAT ACCTATGG 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


147
TTTCGCAAAA TACCTATG 18






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


148
CTTTCGCAAA ATACCTATG 19






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


149
TCGCAAAATA CCTATGGG 18






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


150
TCTACTTCCA GGAACAT 17






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


151
TCTACTTCCA GGAACATC 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


152
CTCTACTTCC AGGAACAT 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


153
CTCTACTTCC AGGAACAG 18






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


154
CTGCACGATT CCTGCT 16






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


155
TGCACGATTC CTGCTCA 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


156
CTGCACGATT CCTGCTC 17






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


157
TGCACGATTC CTGCTCAA 18






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


158
TTCGCAAGAT TCCTATG 17






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


159
CTTTCGCAAG ATTCCTAT 18






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


160
CTTTCGCAAG ATTCCTA 17






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


161
CTTTCGCAAG ATTCCTATG 19






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


162
CTCTATGTAT CCCTCCT 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


163
TCTATGTATC CCTCCTG 17






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


164
CTCTATGTAT CCCTCCTGG 19






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


165
CCTCTATGTA TCCCTCCT 18






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


166
CTGTACCAAA CCTTCGG 17






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


167
CTGTACCAAA CCTTCG 16






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


168
GCTGTACCAA ACCTTCGG 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


169
TGTACCAAAC CTTCGGAG 18






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


170
GGACCCTGCC GAACCT 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


171
GGACCCTGCC GAACCG 16






15 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


172
GGGACCCTGC CGAAC 15






14 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


173
GGACCCTGCC GAAC 14






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


174
GTTGCTGTTC AAAACCTT 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


175
GTTGCTGTTC AAAACCTG 18






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


176
TGTTGCTGTT CAAAACCTG 19






20 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


177
ATGTTGCTGT TCAAAACCTG 20






15 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


178
GATCCACGAC CACCA 15






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


179
GGATCCACGA CCACCA 16






15 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


180
GGATCCACGA CCACC 15






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


181
GATCCACGAC CACCAGG 17






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


182
TGTTCCAAAC CCTCGG 16






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


183
CTGTTCCAAA CCCTCG 16






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


184
CTGTTCCAAA CCCTCGG 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


185
GTTCCAAACC CTCGGAT 17






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


186
GCCAAATCTG TGCAGC 16






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


187
CCAAATCTGT GCAGCAT 17






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


188
GCCAAATCTG TGCAGCAG 18






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


189
GGCCAAATCT GTGCAGC 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


190
ATCAACAACA ACCAGTA 17






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


191
GATCAACAAC AACCAGT 17






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


192
GATCAACAAC AACCAGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


193
GGATCAACAA CAACCAGT 18






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


194
TCAAGGCAAC TCTATGTGG 19






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


195
AGGTTAAAGG TCTTTGT 17






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


196
TAGGTTAAAG GTCTTTGG 18






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


197
TTAGGTTAAA GGTCTTT 17






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


198
GGTTAAAGGT CTTTGTAGG 19






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


199
AGGTTAATGA TCTTTGT 17






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


200
TAGGTTAATG ATCTTTGG 18






20 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


201
CTTTCGCAAG ATTCCTATGG 20






20 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


202
GCTTTCGCAA GATTCCTATG 20






21 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


203
GCTTTCGCAA GATTCCTATG G 21






21 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


204
CTTTCGCAAG ATTCCTATGG G 21






20 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


205
GCTGTACCAA ACCTTCGGAG 20






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


206
TGCTGTACCA AACCTTCGG 19






21 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


207
TGCTGTACCA AACCTTCGGA G 21






20 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


208
GCTGTACCAA ACCTTCGGAT 20






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


209
TGGTTCGCCG GGCTTT 16






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


210
GTGGTTCGCC GGGCTTG 17






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


211
GGTTCGCCGG GCTTTC 16






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


212
TGGTTCGCCG GGCTTTC 17






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


213
AGTGGTTCGC CGGGCTGG 18






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


214
AGGATCCACG ACCACCAGG 19






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


215
AGGATCCACG ACCACCAGT 19






20 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


216
CAGGATCCAC GACCACCAGG 20






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


217
CTGTTCCAAA CCCTCGGAG 19






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


218
CTGTTCCAAA CCCTCGGAT 19






20 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


219
GCTGTTCCAA ACCCTCGGAG 20






20 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


220
CTGAACCTTT ACCCCGTTGC 20






23 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


221
CTCGCCAACT TACAAGGCCT TTC 23






20 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


222
AGAATGGCTT GCCTGAGTGC 20






22 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


223
GCTTTCGCAA GATTCCTATG GG 22






22 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


224
GGCTTTCGCA AGATTCCTAT GG 22






23 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


225
GGCTTTCGCA AGATTCCTAT GGG 23






24 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


226
GGCTTTCGCA AGATTCCTAT GGGA 24






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


227
CAGCTATATG GATGATGTG 19






20 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


228
AGCTATATGG ATGATGTGGG 20






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


229
GCTATATGGA TGATGTGGT 19






20 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


230
AGCTATATGG ATGATGTGGT 20






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


231
CAGCTATATG GATGATATA 19






20 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


232
AGCTATATGG ATGATATAGG 20






19 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


233
GCTATATGGA TGATATAGT 19






20 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


234
AGCTATATGG ATGATATAGT 20






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


235
CCATCATCTT GGGCTTG 17






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


236
CATCATCTTG GGCTTT 16






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


237
CCATCATCTT GGGCTTT 17






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


238
CCATCATCTT GGGCTTTC 18






17 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


239
CCCACTGTCT GGCTTTC 17






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


240
CCACTGTCTG GCTTTC 16






15 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


241
CCACTGTCTG GCTTT 15






16 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


242
CCCACTGTCT GGCTTG 16






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


243
TATATGGATG ATGTGGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


244
TATGTGGATG ATGTGGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


245
TATATAGATG ATGTGGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


246
TATATTGATG ATGTGGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


247
TATGTAGATG ATGTGGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


248
TATGTTGATG ATGTGGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


249
TATATGGATG ATATAGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


250
TATATGGATG ATATCGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


251
TATGTGGATG ATATAGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


252
TATGTGGATG ATATCGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


253
TATATAGATG ATATAGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


254
TATATAGATG ATATCGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


255
TATATTGATG ATATAGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


256
TATATTGATG ATATCGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


257
TATGTAGATG ATATAGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


258
TATGTAGATG ATATCGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


259
TATGTTGATG ATATAGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


260
TATGTTGATG ATATCGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


261
TATATGGATG ATCTGGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


262
TATGTGGATG ATCTGGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


263
TATATAGATG ATCTGGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


264
TATATTGATG ATCTGGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


265
TATGTAGATG ATCTGGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


266
TATGTTGATG ATCTGGTA 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


267
TATGGGAGTG GGCCTCAG 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


268
TATGGGATTG GGCCTCAG 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


269
CAGTCCGTTT CTCTTGGC 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


270
CAGTCTGTTT CTCTTGGC 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


271
CAGTCCGTTT CTCATGGC 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


272
CAGTCTGTTT CTCATGGC 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


273
CAGTCCGTTT CTCCTGGC 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


274
CAGTCTGTTT CTCCTGGC 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


275
CAGCCCGTTT CTCCTGGC 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


276
CAGCCTGTTT CTCCTGGC 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


277
CAGCCCGTTT CTCATGGC 18






18 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


278
CAGCCTGTTT CTCATGGC 18






3221 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


279
AATTCCACTG CCTTCCACCA AGCTCTGCAG GATCCCAAAG TCAGGGGTCT GTATCTTCCT 60
GCTGGTGGCT CCAGTTCAGG AACAGTAAAC CCTGCTCCGA ATATTGCCTC TCACATCTCG 120
TCAATCTCCG CGAGGACTGG GGACCCTGTG ACGAACATGG AGAACATCAC ATCAGGATTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATA 240
CCGCAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGGTC ACCCGTGTGT 300
CTTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCCTG TCCTCCAATT 360
TGTCCTGGTT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TATTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GATTATCAAG GTATGTTGCC CGTTTGTCCT 480
CTAATTCCAG GATCAACAAC AACCAGTACG GGACCATGCA AAACCTGCAC GACTCCTGCT 540
CAAGGCAACT CTATGTTTCC CTCATGTTGC TGTACAAAAC CTACGGATGG AAATTGCACC 600
TGTATTCCCA TCCCATCGTC CTGGGCTTTC GCAAAATACC TATGGGAGTG GGCCTCAGTC 660
CGTTTCTCTT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGC TTTCAGCTAT ATGGATGATG TGGTATTGGG GGCCAAGACT GTACAGCATC 780
GTGAGTCCCT TTATACCGCT GTTACCAATT TTCTTTTGTC TCTGGGTATA CATTTAAACC 840
CTAACAAAAC AAAAAGATGG GGTTATTCCC TAAACTTCAT GGTCTACATA ATTGGAAGTT 900
GGGGAACATT GCCACAGGAT CATATTGTAC AAAAGATCAA ACACTGTTTT AGAAAACTTC 960
CTGTTAACAG GCCTATTGAT TGGAAAGTAT GTCAAAGAAT TGTGGGTCTT TTGGGCTTTG 1020
CTGCTCCATT TACTCAATGT GGATATCCTG CCTTAATGCC TTTGTATGCA TGTATACAAG 1080
CTAAACAGGC TTTCACTTTC TCGCCAACTT ACAAGGCCTT TCTAAGTAAA CAGTACATGA 1140
ACCTTTACCC CGTTGCTCGG CAACGGCCTG GTCTGTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGCTG GGGCTTGGCC ATAGGCCATC AGCGCATGCG TGGAACCTTT GTGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCCG CTTGTTTTGC TCGCAGCCGG TCTGGAGCAA 1320
AGCTCATCGG AACTGACAAT TCTGTCGTCC TCTCGCGGAA ATATACATCG TTTCCATGGC 1380
TGCTAGGCTG TACTGCCAAC TGGATCCTTC GCGGGACGTC CTTTGTTTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCCTCTCGGG GCCGCTTGGG AGTCTCTCGT CCCCTTCTCC 1500
GTCTGCCGTT CCAGCCGACC ACGGGGCGCA CCTCTCTTTA CGCGGTCTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGTCCGT GTGCACTTCG CTTCACCTCT GCACGTTGCA TGGAGACCAC 1620
CGTGAACGCC CATCAGATCC TGCCCAAGGT CTTACATAAG AGGACTCTTG GACTCTCAGC 1680
AATGTCAACG ACCGACCTTG AGGCCTACTT CAAAGACTGT GTGTTTAAGG ACTGGGAGGA 1740
GCTGGGGGAG GAGATTAGGT TAAAGGTCTT TGTATTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGCGCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCTTG TACATGTCCC 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCTTAT 1920
AAAGAATTTG GAGCTACTGT GGAGTTACTC TCGTTTTTGC CTTCTGACTT CTTTCCTTCC 1980
GTCAGAGATC TCCTAGACAC CGCCTCAGCT CTGTATCGAG AAGCCTTAGA GTCTCCTGAG 2040
CATTGCTCAC CTCACCATAC TGCACTCAGG CAAGCCATTC TCTGCTGGGT GGAATTGATG 2100
ACTCTAGCTA CCTGGGTGGG TAATAATTTG GAAGATCCAG CATCCAGGGA TCTAGTAGTC 2160
AATTATGTTA ATACTAACAT GGGTTTAAAG ATCAGGCAAC TATTGTGGTT TCATATATCT 2220
TGCCTTACTT TTGGAAGAGA GACTGTGCTT GAATATTTGG TCTCTTTCGG AGTGTGGATT 2280
CGCACTCCTC CAGCCTATAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAAACT 2340
ACTGTTGTTA GACGACGGGA CCGAGGCAGG TCCCCTAGAA GAAGAACTCC CTCGCCTCGC 2400
AGACGCAGAT CTCAATCGCC GCGTCGCAGA AGATCTCAAT CTCGGGAATC TCAATGTTAG 2460
TATTCCTTGG ACTCATAAGG TGGGAAACTT TACTGGGCTT TATTCCTCTA CAGTACCTAT 2520
CTTTAATCCT GAATGGCAAA CTCCTTCCTT TCCTAAGATT CATTTACAAG AGGACATTAT 2580
TAATAGGTGT CAACAATTTG TGGGCCCTCT CACTGTAAAT GAAAAGAGAA GATTGAAATT 2640
AATTATGCCT GCCAGATTCT ATCCTACCCA CACTAAATAT TTGCCCTTAG ACAAAGGAAT 2700
TAAACCTTAT TATCCAGATC AGGTAGTTAA TCATTACTTC CAAACCAGAC ATTATTTACA 2760
TACTCTTTGG AAGGCTGGTA TTCTATATAA GAGGGAAACC ACACGTAGCG CATCATTTTG 2820
CGGGTCACCA TATTCTTGGG AACAAGAGCT ACAGCATGGG AGGTTGGTCA TCAAAACCTC 2880
GCAAAGGCAT GGGGACGAAT CTTTCTGTTC CCAACCCTCT GGGATTCTTT CCCGATCATC 2940
AGTTGGACCC TGCATTCGGA GCCAACTCAA ACAATCCAGA TTGGGACTTC AACCCCATCA 3000
AGGACCACTG GCCAGCAGCC AACCAGGTAG GAGTGGGAGC ATTCGGGCCA AGGCTCACCC 3060
CTCCACACGG CGGTATTTTG GGGTGGAGCC CTCAGGCTCA GGGCATATTG ACCACAGTGT 3120
CAACAATTCC TCCTCCTGCC TCCACCAATC GGCAGTCAGG AAGGCAGCCT ACTCCCATCT 3180
CTCCACCTCT AAGAGACAGT CATCCTCAGG CCATGCAGTG G 3221






3200 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


280
AATTCCACTG CCTTGCACCA AGCTCTGCAG GATCCCAGAG TCAGGGGTCT GTATCTTCCT 60
GCTGGTGGCT CCAGTTCAGG AACAGTAAAC CCTGCTCCGA ATATTGCCTC TCACATCTCC 120
TCAATCTCCG CGAGGACTGG GGACCCTGTG ACGATCATGG AGAACATCAC ATCAGGATTA 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATT 240
CCGCAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGATC ACCCGTGTGT 300
CTTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCCTG TCCTCCAATT 360
TGTCCTGGTT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TATTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTATT GGTTCTTCTG GATTATCAAG GTATGTTGCC CGTTTGTCCT 480
CTAATTCCAG GATCAACAAC AACCAGTACG GGACCATGCA AAACCTGCAC GACTCCTGCT 540
CAAGGCAACT CTAAGTTTCC CTCATGTTGC TGTACAAAAC CTACGGATGG AAATTGCACC 600
TGTATTCCCA TCCCATCGTC CTGGGCTTTC GCAAAATACC TATGGGAGTG GGCCTCAGTC 660
CGTTTCTCTT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGC TTTCAGCTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAGCATC 780
GTGAGTCCCT TTATACCGCT GTTACCAATT TTCTTTTGTC TCTGGGTATA CATTTAAACC 840
CTAACAAAAC AAAAAGATGG GGTTATTCCC TAAACTTCAT GGGCTACATA ATTGGAAGTT 900
GGGGAACTTT GCCACAGGAT CATATTGTAC AAAAGATCAA ACACTGTTTT AGAAAACTTC 960
CTGTTAACAG GCCTATTGAT TGGAAAGTAT GTCAAAGAAT TGTGGGTCTT TTGGGCTTTG 1020
CTGCTCCATT TACACAATGT GGATATCCTG CCTTAATGCC TTTGTATGCA TGTATACAAG 1080
CTAAACAGGC TTTCACTTTC TCGCCAACTT ACAAGGCCTT TCTAAGTAAA CAGTACATGA 1140
ACCTTTACCC CGTTGCTCGG CAACGGCCTG GTCTGTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGCTG GGGCTTAGCC ATAGGCCATC AGCGCATGCG TGGAACCTTT GTGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCCG CTTGTTTTGC TCGCAGCCGG TCTGGAGCAA 1320
AGCTCATCGG AACTGACAAT TCTGTCGTCC TCTCGCGGAA ATATACATCA TTTCCATGGC 1380
TGCTAGGCTG TACTGCCAAC TGGATCCTTC GCGGGACGTC CTTTGTTTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCCTCTCGGG GCCGCTTGGG ACTCTCTCGT CCCCTTCTCC 1500
GTCTGCCGTT CCAGCCGACC ACGGGGCGCA CCTCTCTTTA CGCGGTCTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGTCCGT GTGCACTTCG CTTCACCTCT GCACGTTGCA TGGCGACCAC 1620
CGTGAACGCC CATCAGATCC TGCCCAAGGT CTTACATAAG AGGACTCTTG GACTCCCAGC 1680
AATGTCAACG ACCGACCTTG AGGCCTACTT CAAAGACTGT GTGTTTAAGG ACTGGGAGGA 1740
GTTGGGGGAG GAGATTAGGT TAATGATCTT TGTATTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGCGCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCTTG TACATGTCCC 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCTTAT 1920
AAAGAATTTG GAGCTACTGT GGAGTTACTC TCGTTTTTGC CTTCTGACTT CTTTCCTTCC 1980
GTACGAGATC TCCTAGACAC CGCCTCAGCT CTGTATCGAG AAGCCTTAGA GTCTCCTGAG 2040
CATTGCTCAC CTCACCATAC TGCACTCAGG CAAGCCATTC TCTGCTGGGG GGAATTGATG 2100
ACTCTAGCTA CCTGGGTGGG TAATAATTTG CAAGATCCAG CATCCAGAGA TCTAGTAGTG 2160
AATTATGTTA ATACTAACAT GGGTTTAAAG ATCAGGCAAC TATTGTGGTT TCATATATCT 2220
TGCCTTACTT TTGGAAGAGA GACTGTACTT GAATATTTGG TCTCTTTCGG AGTGTGGATT 2280
CGCACTCCTC CAGCCTATAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAAACT 2340
ACTGTTGTTA GACGACGGGA CCGAGGCAGG TCCCCTAGAA GAAGAACTCC CTCGCCTCGC 2400
AGACGCAGAT CTCAATCGCC GCGTCGCAGA AGATCTCAAT CTCGGGAATC TCAATGTTAG 2460
TATTCCTTGG ACTCATAAGG TCGGAAACTT TACGGGGCTT TATTCCTCTA CAGTACCTAT 2520
CTTTAATCCT GAATGGCAAA CTCCTTCCTT TCCTAAGATT CATTTACAAG AGGACATTAT 2580
TAATAGGTGT CAACAATTTG TGGGCCCTCT CACTGTAAAT GAAAAGAGAA GATTGAAATT 2640
AATTATGCCT GCTAGATTCT ATCCTACCCA CACTAAATAT TTGCCCTTAG ACAAAGGAAT 2700
TAAACCTTAT TATCCAGATC AGGTAGTTAA TCATTACTTC CAAACCAGAC ATTATTTACA 2760
TACTCTTTGG AAGGCTGGTA TTCTATATAA GAGGGAAACC ACACGTAGCG CATCATTTTG 2820
CGGGTCACCA TATTCTTGGG AACAAGAGCT ACAGCATTCG CAAAGGCATG GGGACGAATC 2880
TTTCTGTTCC CAACCCTCTG GGATTCCTTC CCGATCATCA GTTGGACCCT GCATTCGGAG 2940
CCAACTCAAC AAATCCAGAT TGGGACTTCA ACCCCATCAA GGACCACTGG CCAGCAGCCA 3000
ACCAGGTAGG AGTGGGAGCA TTCGGGCCAG GGCTCACCCC TCCACACGGC GGTATTTTGG 3060
GGTGGAGCCC TCAGGCTCAG GGCATATTGA CCACAGTGTC AACAATTCCT CCTCCTGCCT 3120
CCACCAATCG GCAGTCAGGA AGGCAGCCTA CTCCCATCTC TCCACCTCTA AGAGACAGTC 3180
ATCCTCAGGC CATGCAGTGG 3200






3221 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


281
AATTCCACTG CCTTCCACCA AGCTCTGCAA GACCCCAGAG TCAGGGGTCT GTATTTTCCT 60
GCTGGTGGCT CCAGTTCAGG AACAGTAAAC CCTGCTCCGA ATATTGCCTC TCACATCTCG 120
TCAATCTCCG CGAGGACCGG GGACCCTGTG ACGAACATGG AGAACATCAC ATCAGGATTC 180
CTAGGACCCC TGCCCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATA 240
CCGCAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGATC ACCCGTGTGT 300
CTTGGCCAAA ATTCGCGATC CCCAACCTCC AATCACTCAC CAACCTCCTG TCCTCCAATT 360
TGTCCTGGTT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TATTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTATT GGTTCTTCTG GATTATCAAG GTATGTTGCC CGTTTGTCCT 480
CTAATTCTAG GATCAACAAC AACCAGTACG GGACCATGCA AAACCTGCAC GACTCCTGCT 540
CAAGGCAACT CTATGTTTCC CTCATGTTGC TGTACAAAAC CTACGGATGG AAATTGCACC 600
TGTATTCCCA TCCCATCGTC TTGGGCTTTC GCAAAATACC TATGGGAGTG GGCCTCAGTC 660
CGTTTCTCTT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGC TTTCAGCTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAGCATC 780
GTGAGTTCCT TTATACCGCT GTTACCAATT TTCTTTTGTC TCTGGGTATA CATTTAAACC 840
CTAACAAAAC AAAAAGATGG GGTTATTCCC TAAACTTCAT GGGTTATGTA ATTGGAAGTT 900
GGGGAACATT GCCACAGGAT CATATTGTAC AAAAAATCAA ACACTGTTTT AGAAAACTTC 960
CTGTTAACAG GCCTATTGAT TGGAAAGTAT GTCAAAGAAT TGTGGGTCTT TTGGGCTTTG 1020
CTGCTCCTTT TACACAATGT GGATATCCTG CCTTAATGCC CTTGTATGCA TGTATACAAG 1080
CTAAACAGGC TTTCACTTTC TCGCCAACTT ACAAGGCCTT TCTAAGTAAA CAGTACATGA 1140
ACCTTTACCC CGTTGCTCGG CAACGGCCTG GTCTGTGCCA AGTATTTGCT GATGCAACCC 1200
CCACTGGCTG GGGCTTGGCC ATAGGCCATC AGCGCATGCG CGGAACCTTT GTGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCCG CTTGTTTTGC TCGCAGCCGG TCTGGAGCGA 1320
AACTCATCGG AACTGACAAT TCTGTCGTCC TCTCGCGGAA ATATACCTCG TTTCCATGGC 1380
TACTAGGCTG TGCTGCCAAC TGGATCCTTC GCGGGACGTC CTTTGTTTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCCTCTCGGG GCCGCTTGGG ACTCTCTCGT CCCCTTCTCC 1500
GTCTGCCGTT CCAGCCGACC ACGGGGCGCA CCTCTCTTTA CGCGGTCTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGTCCGT GTGCACTTCG CTTCACCTCT GCACGTTGCA TGGAGACCAC 1620
CGTGAACGCC CATCAGATCC TGCCCAAGGT CTTACATAAG AGGACTCTTG GACTCCCAGC 1680
AATGTCAACG ACCGACCTTG AGGCCTACTT CAAAGACTGT GTGTTTAAGG ACTGGGAGGA 1740
GCTGGGGGAG GAGATTAGGT TAAAGGTCTT TGTATTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGCGCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCTTG TACATGTCCC 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCTTAT 1920
AAAGAATTTG GAGCTACTGT GGAGTTACTC TCGTTTTTGC CTTCTGACTT CTTTCCTTCC 1980
GTCAGAGATC TCCTAGACAC CGCCTCGGCT CTGTATCGGG AAGCCTTAGA GTCTCCTGAG 2040
CATTGCTCAC CTCACCATAC CGCACTCAGG CAAGCCATTC TCTGCTGGGG GGAATTGATG 2100
ACTCTAGCTA CCTGGGTGGG TAATAATTTG GAAGATCCAG CATCCAGGGA TCTAGTAGTC 2160
AATTATGTTA ATACTAACAT GGGATTAAAG ATCAGGCAAC TCTTGTGGTT TCATATCTCT 2220
TGCCTTACTT TTGGAAGAGA AACTGTACTT GAATATTTGG TCTCTTTCGG AGTGTGGATT 2280
CGCACTCCTC CAGCCTATAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAAACT 2340
ACTGTTGTTA GACGACGGGA CCGAGGCAGG TCCCCTAGAA GAAGAACTCC CTCGCCTCGC 2400
AGACGCAGAT CTCAATCGCC GCGTCGCAGA AGATCTCAAT CTCGGGAATC TCAATGTTAG 2460
TATTCCTTGG ACTCATAAGG TGGGAAACTT CACTGGGCTT TATTCCTCTA CAGCACCTAT 2520
CTTTAATCCT GAATGGCAAA CTCCTTCCTT TCCTAAAATT CATTTACAAG AGGACATTAT 2580
TAATAGGTGT CAACAATTTG TGGGCCCTCT CACTGTAAAT GAAAAGAGAA GATTGAAATT 2640
AATTATGCCT GCTAGATTCT ATCCTACCCA CACTAAATAT TTGCCCTTAG ACAAAGGAAT 2700
TAAACCTTAT TATCCAGATC AGGTAGTTAA TCATTACTTC CAAACCAGAC ATTATTTACA 2760
TACTCTTTGG AAGGCGGGTA TTCTATATAA GAGAGAAACC ACACGTAGCG CATCATTTTG 2820
CGGGTCACCA TATTCTTGGG AACAAGAGCT ACAGCATGGG AGGTTGGTCA TCAAAACCTC 2880
GCAAAGGCAT GGGGACGAAT CTTTCTGTTC CCAACCCTCT GGGATTCTTT CCCGATCACA 2940
AGTTGGACCC TGTATTCGGA GCCAACTCAA ACAATCCAGA TTGGGACTTC AACCCCATCA 3000
AGGACCACTG GCCAGCAGCC AACCAGGTAG GAGTGGGAGC ATTCGGGCCA GGGTTCACCC 3060
CTCCACACGG CGGTGTTTTG GGGTGGAGCC CTCAGGCTCA GGGCATGTTG ACCCCAGTGT 3120
CAACAATTCC TCCTCCTGCC TCCGCCAATC GGCAGTCAGG AAGGCAGCCT ACTCCCATCT 3180
CTCCACCTCT AAGAGACAGT CATCCTCAGG CCATGCAGTG G 3221






3221 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


282
AATTCCACTG CCTTCCACCA AGCTCTGCAG GATCCCAGAG TCAGGGGTCT GTATCTTCCT 60
GCTGGTGGCT CCAGTTCAGG AACAGTAAAC CCTGCTCCGA ATATTGCCTC TCACATCTCG 120
TCAATCTCCG CGAGGACTGG GGACCCTGTG ACGAACATGG AGAACATCAC ATCAGGATTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTCCTTGT TGACAAGAAT CCTCACAATA 240
CCGCAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGGTC ACCCGTGTGC 300
CTTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCCTG TCCTCCAATT 360
TGTCCTGGTT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TATTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTATT GGTTCTTCTG GATTATCAAG GTATGTTGCC CGTTTGTCCT 480
ATAATTCCAG GATCAACAAC AACCAGTACG GGACCATGCA AAACCTGCAC GACTCCTGCT 540
CAAGGCAACT CTTTGTTTCC CTCATGTTGC TGTACAAAAC CTACGGATGG AAATTGCACC 600
TGTATTCCCA TCCCATCGTC CTGGGCTTTC GCAAAATACC TATGGGAGCG GGCCTCAGTC 660
CGTTTCTCTT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGC TTTTAGCTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAGCATC 780
GTGAGGCCCT TTATACCGCT GTTACCAATT TTCTTTTGTC TCTGGGTATA CATTTAAACC 840
CTAACAAAAC AAAAAGATGG GGTTATTCCC TAAACTTCAT GGGTTACAGA ATTGGAAGTT 900
GGGGAACATT GCCACAGGAT CACATTGTAC AAAAGATCAA ACACTGTTTT AGAAAACTTC 960
CTGTTAACAG GCCTATTGAT TGGAAGGTAT GTCAAAGAAT TGTGGGTCTT TTGGGCTTTG 1020
CTGCTCCTTT TACACAATGT GGATATCCTG CCTTAATGCC TTTGTATGCA TGTATACAAG 1080
CTAAACAGGC TTTCTCTTTC TCGCCAACTT ACAAGGCCTT TCTAAGTAAA CAGTACCTGA 1140
ACCTTTACCC CGTTGCTCGG CAACGGCCTG GTCTGTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGCTG GGGCTTAGCC ATAGGCCATC AGCGCATGCG TGGAACCTTT GTGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCCG CTTGTTTTGC TCGCAGCCGG TCTGGAGCAA 1320
AGCTCATCGG AACTGACAAT TCTGTCGTCC TCTCGCGGAA ATATACATCG TTTCCATGGC 1380
TGCTAGGCTG TGCTGCCAAC TGGATCCTTC GCGGGACGTC CTTTGTTTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCCTCTCGGG GCCGCTTGGG ACTCTATCGT CCCCTTCTCC 1500
GTCTGCCGTT CCAGCCGACC ACGGGGCGCA CCTCTCTTTA CGCGGTCTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGTCCGT GTGCACTTCG CTTCACCTCT GCACGTTGCA TGGAGACCAC 1620
CGTGAACGCC CATCAGAGCC TGCCCAAGGT CTTACATAAG AGAACTCTTG GACTCCCAGC 1680
AATGTCAACG ACCGACCTTG AGGCCTACTT CAAAGACTGT GTGTTTAAGG ACTGGGAGGA 1740
GCTGGGGGAG GAGATTAGGT TAATGATCTT TGTATTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGCGCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCTTG TTCATGTCTC 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGAG GCATGGACAT TGACCCTTAT 1920
AAAGAATTTG GAGCTAGTGT GGAGTTACTC TCGTTTTTGC CTCATGACTT CTTTCCTTCC 1980
GTCAGAGATC TCCTAGACAC CGCCTCAGCT CTGTATCGAG AAGCCTTAGA GTCTCCTGAG 2040
CATTGCTCAC CTCACCATAC TGCACTCAGG CAAGCCGTTC TCTGCTGGGG GGAATTAATG 2100
ACTCTAGCTA CCTGGGTGGG TAATAATTTG CAAGATCCAG CATCCAGGGA TCAAGTAGTC 2160
AATTATGTTA ATACTAACAT GGGTTTAAAG ATCAGGCAAC TATTGTGGTT TCATATATCT 2220
TGTCTTATGT TTGGAAGAGA CACTGTACTT GAATATTTGG TCTCTTTCGG AGTGTGGATT 2280
CGCACTCCTC CAGCCTATAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAAACT 2340
ACTGTTGTTA GATGTCGGGA CCGACGCAGG TCCCCTAGAA GAAGAACTCC CTCGCCTCGC 2400
AGACGCAGAT CTCAATCGCC GCGTCGCAGA AGATCTCAAT CTCGGGAATC TCAATGTTAG 2460
TATTCCTTGG ACTCATAAGG TGGGAAACTT TACTGGGCTT TATTCCTCTA CAGTACCTAT 2520
CTTTAATCCT GAATGGCAAA CTCCTTCCTT TCCTAAGATT CATTTACAAG AGGACATTAT 2580
TAATAGGTGT CAACAATTTG TGGGCCCTCT TACTGTAAAT GAAAAGAGAA GATTGAAATT 2640
AATTATGCCT GCTAGATTCT ATCCTACCCA CACAAAATAT TTGCCCTTAG ACAAAGGAAT 2700
TAAACCTTAT TATCCAGATC AGGTAGTTAA TCATTACTTC CAAACCAGAC ACTATTTACA 2760
TACTCTTTGG AAGGCTGGTA TTCTATATAA GAGGGAACCC ACACGTAGCG CATCATTTTC 2820
CCGGTCACCA TATTCTTGGG AACAAGAGCT ACAGCATGGG AGGTGGGACA TCAAAACCTC 2880
GCAAAGGCAT GGGGACGAAT CTTTCTGTTC CCAACCCTCT GGGATTCTTT CCCGATCATC 2940
AGTTGGACCC TGCATTCGGA GCCAACTCAA ACAATCCAGA TTGGGACTTC AACCCCATCA 3000
AGGACCACTG GCCAGCAGCC AACCAGGTGG GAGTGGGAGC ATTCGGGCCA GGGCTCACCC 3060
CTCCACACGG CGGTATTTTG GGGTGGAGCC CTCAGGCTCA AGGCATATTG ACCACAGTGT 3120
CAACAATTCC TCCTCCTGCC TCCACCAATC GGCAGTCAGG AAGGCAGCCT ACTCCCATCT 3180
CTCCACCTCT GAGAGAAAGT CATCCTCAGG CCATGCAGTG G 3221






3221 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


283
AATTCCACAG CTTTCCACCA AGCTCTGCAA GATCCCAGAG TCAGGGGCCT GTATTTTCCT 60
GCTGGTGGCT CCAGTTCAGG AACACTCAAC CCTGTTCCAA CTATTGCCTC TCACATCTCG 120
TCAATCTCCT CGAGGATTGG GGACCCTGCA CCGAACATGG AGAACATCAC ATCAGGATTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATA 240
CCGCAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAGC ACCCGTGTGT 300
CTTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCCTG TCCTCCAATT 360
TGTCCTGGTT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TATTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTATT GGTTCTTCTG GATTATCAAG GTATGTTGCC CGTTTGTCCT 480
CTAATTCCAG GATCAACAAC AACCAGCACG GGACCCTGCA AAACCTGCAC GACTCCTGCT 540
CAAGGCAACT CTATGTTTCC CTCATGTTGC TGTACAAAAC CTACGGATGG AAATTGCACC 600
TGTATTCCCA TCCCATCATC TTGGGCTTTC GCAAAATACC TATGGGAGTG GGCCTCAGTC 660
CGTTTCTCTT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGC TTTCAGCTAT ATGGATGATG TGGTACTGGG GGCCAAGTCT GTACAACATC 780
TTGAGTCCCT TTATACCGCT GTTACCAATT TTCTTTTGTC TTTGGGTATA CATTTAAACC 840
CTAACAAAAC AAAGAGATGG GGTTATTCCC TGAATTTCAT GGGTTATGTA ATTGGAAGTT 900
GGGGTACATT GCCACAGGAT CATATTGTAC AAAAAATCAA ACACTGTTTT AGAAAACTTC 960
CTGTTAATCG ACCTATTGAT TGGAAAGTAT GTCAGAGACT TGTAGGTCTT TTAGGCTTTG 1020
CCGCTCCATT TACACAATGT GGTTACCCTG CATTAATGCC TTTGTATGCA TGTATACAAG 1080
CGAAACAGGC TTTTACTTTC TCGCCAACTT ACAAGGCCTT TCTAAGTAAA CAGTATATGA 1140
ACCTTTACCC CGTTGCCCGG CAACGGCCTG GTCTGTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGCTG GGGCTTGGCC ATCGGCCATC AGCGCATGCG TGAAACCTTT GTGGCTCCTC 1260
TGCCGATCCA TACTGCAGAA CTCCTAGCCG CTTGTTTTGC TCGCAGCCGG TCTGGAGCAA 1320
AACTCATCGG GACTGACAAT TCTGTCGTCC TTTCTCAGAA ATATACATCC TTTCCATAGC 1380
TGCTAGGTTG TACTGCCAAC TAGATTCTTC GCGGGACGTC CTTTGTCTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCCTCGCGAG GCCGCTTGGG ACTGTATCGT CCCCTTCTCC 1500
GTCTGCCGTA CCGTCCGACC ACGGGGCGCA CCTCTCTTTA CGCGGTCTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGTCCGT GTGCACTTCG CTTCACCTCT GCACGTTGCA TGGAGACCAC 1620
CGTGAACGCC CATCAGGTCC TGCCCAAGGT CTTACATAAG AGGACTCTTG GACTCTCAGC 1680
AATGTCAACG ACCGACCTTG AGGCCTACTT CAAAGACTGT GTGTTTAAAG ACTGGGAGGA 1740
GTTGGGGGAG GAGATTAGGT TAAAGGTCTT TGTATTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGCGCACCA TTATCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCTTG TACATGTCCC 1860
ACTTTTCAAG CCTCCAAGCT GTGCCTTGGA TGGCTTTGGG GCATGGACAT TGACCCTTCG 1920
AAAGAATTTG AGCTACTGTG GAGTTACTCT CATTTTTGCC TTCTGACTTC TTTCCTTCCG 1980
TCCGGGATCT ACTAGAATAC AGCCTCAGCT CTATATCGGG AAGCCTTAGA GTCTCCTGAG 2040
CATTGCTCAC CTCACCATAC AGCACTCAGG CAAGCCATTC TCTGCTGGGG GAAATTAATG 2100
ACTCTAGCTA CCTGGGTGGG TAATAATTTG GAAGATCCAG CATCCAGGGA TCTAGTAGTC 2160
AATTATGTTA ATACTAACAT GGGCCTAAAG ATCAGGCAAT TATTGTGGTT TCATATTTCT 2220
TGCCTTACTT TTGGAAGAGA AACTGTCCTT GAGTATTTGG TCTCTTTCGG AGTGTGGATT 2280
CGCACTCCTC CAGCCTATAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAAACT 2340
ACTGTTGTTA GACGACGAGA CCGAGGCAGG TCCCCTAGAA GAAGAACTCC CTCGCCTCGC 2400
AGACGCAGAT CTCAATCGCC GCGTCGCAGA AGATCTCAAT CTCGGGAATC TCAATGTTAG 2460
TATTCCTTGG ACTCATAAGG TGGGAAATTT TACTGGGCTT TATTCTTCTA CTGTCCCTAT 2520
CTTTAATCCT GAATGGCAAA CACCTTCTTT TCCTAAAATT CATTTACATG AAGACATTGC 2580
TAATAGGTGT CAGCAATTTG TAGGCCCTCT CACTGTAAAT GAAAAAAGAA GACTGAAATT 2640
AATTATGCCT GCTAGGTTTT ATCCTAACAG CACAAAATAT TTGCCCTTAG ACAAAGGGAG 2700
TAAAACTTAT TATCCTGATC ATGTAGTTAA TCATTACTTT CAAACCCGAC ATTATTTACA 2760
TACTCTTTGG AAGGCTGGGA TTCTATATAA GAGGGAAACT ACACGTAGCG CCTCATTTTG 2820
CGGGTCACCA TATTCTTGGG AACAAGAGCT ACATCATGGG AGGTTGGTCA TCAAAACCTC 2880
GCAAAGGCAT GGGGACGAAC CTTTCTGTTC CCAACCCTCT GGGATTCTTT CCCGATCATC 2940
AGTTGGACCC TGCATTCGGA GCCAATTCAA ACAATCCAGA TTGGGACTTC AACCCCATCA 3000
AGGACCACTG GCCACAAGCC AACCAGGTAG GAGTGGGAGC ATTTGGGCCA GGGTTCACTC 3060
CCCCACACGG AGGTGTTTTG GGGTGGAGCC CTCAGGCTCA GGGCATATTG GCCACCGTGC 3120
CAGCGATGCC TCCTCCTGCC TCCACCAATC GGCAGTCAGG AAGGCAGCCT ACTCCCATCT 3180
CTCCACCTCT AAGAGACAGT CATCCTCAGG CCATGCAGTG G 3221






3215 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


284
AACTCCACCA CGTTCCACCA AACTCTTCAA GATCCCAGAG TCAGGGCTCT GTACTTTCCT 60
GCTGGTGGCT CCAGTTCAGG AACAGTAAAC CCTGTTCAGA ACACTGCCTC TTCCATATCG 120
TCAATCTTAT CGACGACTGG GGACCCTGTG CCGAACATGG AGAACATCGC ATCAGGACTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTCGT TGACAAAAAT CCTCACAATA 240
CCTCTGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGAAAC ACCCGTGTGT 300
CTTGGCCAAA ATTCGCAGTC CCAAATCTCC AGTCACTCAC CAACTTGTTG TCCTCCGATT 360
TGTCCTGGTT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TCTTCCTCTG CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTATCAAG GTATGTTGCC CGTTTGTCCT 480
CTAATTCCAG GATCATCAAC CACCAGCACA GGACCATGCA AAACCTGCAC GACTCCTGCT 540
CAAGGAACCT CTATGTTTCC CTCATGTTGC TGTACAAAAC CTACGGACGG AAACTGCACC 600
TGTATTCCCA TCCCATCATC TTGGGCTTTC GCAAAATACC TATGGGAGTG GGCCTCAGTC 660
CGTTTCTCTT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTCTGGC TTTCAGTTAT ATGGATGATG TGGTTTTGGG GGCCAAGTCT GTACAACATC 780
TTGAGTCCCT TTATGCCGCT GTTACCAATT TTCTTTTGTC TTTGGGTATA CATTTAAACC 840
CTCAGAAAAC AAAAAGATGG GGCTACTCCC TTAACTTCAT GGGGTATGTA ATTGGAAGTT 900
GGGGGACCTT ACCCCAAGAA CATATTGTGT TGAAAATCAA ACAATGTTTT AGGAAACTTC 960
CTGTAAACAG GCCTATTGAT TGGAAAGTAT GTCAACGAAT TGTGGGTCTT TTGGGATTTG 1020
CTGCTCCTTT CACACAATGT GGATATCCTG CTTTAATGCC TTTATATGCA TGTATACAAG 1080
CTAAACAGGC TTTTACTTTT TCGCCAACGT ATAAGGCCTT TCTAAACAAA CAATATCTGA 1140
ACCTTTACCC CGTTGCTCGG CAACGGCCAG GTCTGTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGCTG GGGCTTGGCC ATAGGCCATC AGCGCATGCG TGGGACCTTT GTGTCTCCTC 1260
TGCCGATCCA TACTGTGGAA CTCCTAGCAG CTTGTTTTGC TCGCAGCAGG TCTGGAGCAA 1320
AACTTATCGG GACTGACAAT TCTGTCGTCC TTTCCCGCAA ATATACATCG TTTCCATGGC 1380
TGCTAGGCTG TGCTGCCAAC TGGATCCTGC GCGGGACGTC CTTTGTCTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCCTCCCGGG GCCGCTTGGG GCTCTACCGC CCGCTTCTCC 1500
GCCTGCCGTA CCGTCCGACC ACGGGGCGCA CCTCTCTTTA CGCGGACTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGACCGT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAGACCAG 1620
CGTGAACGCC CATCGGAACC TGCCCAAGGT CTTGCATAAG AGGACTCTTG GACTTTCAGC 1680
AATGTCAACG ACCGACCTTG AGGCACACTT CAAAGACTGT GTGTTTACTG AGTGGGAGGA 1740
GTTGGGGGAG GAGATCAGGT TAAAGGTCTT TGTACTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGTTCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCATG TTCATGTCCT 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCGTAT 1920
AAAGAATTTG GAGCTTCTGT GGAGTTACTC TCTTTTTTGC CTTCTGACTT CTTTCCTTCT 1980
ATTCGAGATC TTCTCGACAC CGCCTCTGCT CTGTATCGGG AGGCCTTAGA GTCTCCGGAA 2040
CATTGTTCAC CTCACCATAC GGCACTCAGG CAAGCTATTC TGTGTTGGGG TGAGTTGATG 2100
AATCTAGCCA CCTGGGTGGG AAGTAATTTG GAAGACCCAG CCTCCCGGGA ATTAGTAGTC 2160
AGTTATGTCA ATGTTAATAT GGGCCTAAAA ATCAGACAAC TATTGTGGTT TCACATTTCC 2220
TGTCTTACGT TTGGAAGAGA AACTGTTCTT GAATATTTGG TGTCTTTTGG AGTGTGGATT 2280
CGCACACCTC CAGCATATAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAAACT 2340
ACTGTTGTTA GACGACGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCAGACGA 2400
AGGTCTCAAT CGCCGCGTCG CAGAAGATCT CAATCTCGGG AATCTCAATG TTAGTATTCC 2460
TTGGACTCAT AAGGTGGGAA ACTTTACGGG GCTTTATTCT TCTACGGTAC CTAGCTTTAA 2520
TCCTCAATGG CAAACTCCTT CATTTCCTGA CATTCATTTG CAGGAGGACA TCATTAATAA 2580
GTGTAAACAA TTTGTGGGAC CCCTTACAGT GAATGAAAAA AGGAGACTAA AATTGATTAT 2640
GCCTGCTAGG TTCTATCCCA ATGTTACTAA ATATTTGCCC TTAGATAAAG GAATTAAACC 2700
TTATTATCCA GAGCATGTAG TTAATCATTA CTTCCAGACG AGACATTATT TACATACTCT 2760
TTGGAAGGCG GGTATCTTAT ATAAAAGAGA GACAACACGT AGCGCCTCAT TTTGCGGGTC 2820
ACCATATTCT TGGGAACAAG AGCTACAGCA TGGGAGGTTG GTCCTCCAAA CCTCGACAAG 2880
GCATGGGGAC AAATCTTTCC GTCCCCAATC CTCTGGGATT CTTTCCCGAT CACCAGTTGG 2940
ACCCTGCATT CAAAGCCAAC TCCGACAATC CCGATTGGGA CCTCAACCCA CACAAGGACA 3000
ACTGGCCGGA CTCCAACAAG GTGGGAGTGG GAGCATTCGG GCCGGGATTC ACTCCACCCC 3060
ATGGGGGACT GTTGGGGTGG AGCCCTCAAG CTCAGGGCAT ACTCACAACT GTGCCAACAG 3120
CTCCTCCTCC TGCCTCCACC AATCGGCAGT TAGGAAGGAA GCCTACTCCC CTGTCTCCAC 3180
CTCTAAGAGA CACTCATCCT CAGGCAATGC AGTGG 3215






3215 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


285
AACTCCACCA CGTTCCACCA AACTCTTCAA GATCCCAGAG TCAGGGCTCT GTACTTTCCT 60
GCTGGTGGCT CCAGTTCAGG AACAGTAAAC CCTGTTCAGA ACACTGTCTC TTCCATATCG 120
TCAATCTTAT CGAAGACTGG GGACCCTGTG CCGAACATGG AGAACATCGC ATCAGGACTG 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAAAAT CCTCACAATC 240
CCACAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAAC ACCCGTGTGT 300
CTTGGCCAAA ATTCGCAGTC CCAAATCTCC AGTCACTCAC CAACTTGTTG TCCTCCGATT 360
TGTCCTGGTT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TCTTCCTCTG CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTATCAAG GTATGTTGCC CGTTTGTCCT 480
CTAATTCCAG GATCATCAAC CACCAGCACC GGACCATGCA AAACCTGCAC GACTCCTGCT 540
CAAGGAACCT CTATGTTTCC CTCATGTTGC TGTACAAAAC CTACGGACGG AAACTGCACC 600
TGTATTCCCA TCCCATCATC TTGGGCTTTC GCAAAATACC TATGGGAGTG GGCCTCAGTC 660
CGTTTCTCTT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTCTGGC TTTCAGTTAT ATGGATGATG TGGTTTTGGG GGCCAAGTCT GTACAACATC 780
TTGAGTCCCT TTATGCCGCT GTTACCAATT TTCTTTTGTC TTTGGGTATA CATTTAAACC 840
CTCAGAAAAC AAAAAGATGG GGCTACTCCC TCAACTTCAT GGGGTATGTA ATTGGAAGTT 900
GGGGCACCTT ACCCCAAGAA CATATTGTGT TGAAACTCAA ACAATGCTTT AGAAAACTTC 960
CTGTAAACAG ACCTATTGAT TGGAAGGTGT GTCAACGAAT TGTGGGTCTT TTGGGATTTG 1020
CTGCTCCTTT CACACAATGT GGTTATCCTG CTTTAATGCC TTTATATGCA TGTATACAAG 1080
CTAAACAGGC TTTTACTTTT TCGCCAACGT ATAAGGCCTT TCTAACCAAA CAATATCTGA 1140
ACCTTTACCC CGTTGCTCGG CAACGGCCAG GTCTGTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGCTG GGGCTTGGCC ATAGGCCATC AGCGCATGCG TGGAACCTTT GTGTCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCCG CTTGTTTTGC TCGCAGCAGG TCTGGAGCAA 1320
AACTTATCGG GACTGACAAT TCTGTTGTCC TTTCCCGCAA ATATACATCG TTTCCATGGC 1380
TGCTAGGCTG TGCTGCCAAC TGGATCCTGC GCGGGACGTC CTTTGTCTAC GTTCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCCTCCCGGG GCCGCTTGGG GCTCTACCGC CCGCTTCTCC 1500
GTCTGCCGTA CCGACCGACC ACGGGGCGCA CCTCTCTTTA CGCGGACTCC CCGTCTGTGC 1560
CTTCTCGTCT GCCGGACCGT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAGACCAC 1620
CGTGAACGCC CATCGGAACC TGCCCAAGGT CTTGCATAAG AGGACTCTTG GACTTTCAGC 1680
AATGTCACCG ACCGACCTTG AGGCATACTT CAAAGACTGT GTGTTTACTG AGTGGGAGGA 1740
GTTGGGGGAG GAGATCAGGT TAAAGGTCTT TGTACTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGTTCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCATG TTCATGTCCT 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCGTAT 1920
AAAGAATTTG GAGCTTCTGT GGAGTTACTC TCTTTTTTGC CTTCTGACTT CTTTCCTTCT 1980
ATTCGAGATC TTCTCGACAC CGCCTCTGCT CTGTATCGGG AGGCCTTAGA GTCTCCGGAA 2040
CATTGTTCAC CTCACCATAC GGCACTCAGG CAAGCTATTT TGTGTTGGGG TGAGTTGATG 2100
AATCTAGCCA CCTGGGTGGG AAGTAATTTG GAAGACCCAG CATCCCGGGA ATTAGTAGTC 2160
AGTTATGTCA ATGTTAATAT GGGCCTAAAA ATCAGACAAC TATTGTGGTT TCACATTTCC 2220
TGTCTTACTT TTGGAAGAGA AACTGTTCTT GAATATTTGG TGTCTTTTGG AGTGTGGATT 2280
CGCACACCTC CTGCATATAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAAACT 2340
ACTGTTGTTA GACGACGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCACC TCGCAGACGA 2400
AGGTCTCAAT CGCCCGGTCG CAGAAGATCT CAATCTCGGG AATCTCAATG TTAGTATCCC 2460
TTGGACTCAT AAGGTGGGAA ACTTTACGGG GCTTTATTCT TCTACGGTAC CTAGCTTTAA 2520
TCCTAAATGG CAAACTCCTT CCTTTCCTGA CATTCATTTG CAGGAGGATA TCATTAATAG 2580
GTGTGAACAA TTTGTGGGAC CCCTCACAGT GAATGAAAAC AGGAGACTAA AATTGATTAT 2640
GCCTGCTAGG TTCTATCCCA ATGTTACTAA ATATTTGCCC TTAGATAAAG GAATCAAACC 2700
TTATTATCCA GAGCATGTAG TTAATCATTA CTTCCAGACG AGACATTATT TACATACTCT 2760
TTGGAAGGCG GGTATCTTAT ATAAAAGAGA GACAACACGT AGCGCCTCAT TTTGCGGGTC 2820
ACCATATTCT TGGGAACAAG ATCTACAGCA TGGGAGGTTG GTCCTCCAAA CCTCGACAAG 2880
GCATGGGGAC AAATCTTTCC GTCCCCAATC CTCTGGGATT CTTTCCCGAT CACCAGTTGG 2940
ACCCTGCATT CAAAGCCAAC TCCGACAATC CCGATTGGGA CCTCAACCCA CACAAGGACA 3000
ACTGGCCGGA CTCCAACAAG GTGGGAGTGG GAGCATTCGG GCCGGGATTC ACTCCACCCC 3060
ATGGGGGACT GTTGGGGTGG AGCCCTCAAG CTCAGGGCAT ACTCACAACT GTGCCAACAG 3120
CTCCTCCTCC TGCCTCCACC AATCGGCAGT TAGGAAGGAA GCCTACTCCC CTGTCTCCAC 3180
CTCTAAGAGA CACTCATCCT CAGGCCATGC AGTGG 3215






3215 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


286
AACTCCACCA CTTTCCACCA AACTCTTCAA GATCCCAGAG TCAGGGCTCT GTACTTTCCT 60
GCTGGTGGCT CCAGTTCAGG AACAGTAAGC CCTGCTCAGA ATACTGTCTC AGCCATATCG 120
TCAATCTTAT CGAAGACTGG GGACCCTGTG CCGAACATGG AGAACATCGC ATCAGGACTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAAAAT CCTCACAATA 240
CCACAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAAC ACCCGTGTGT 300
CTTGGCCAAA ATTCGCAGTC CCAAATCTCC AGTCACTCAC CAACCTGTTG TCCTCCAATT 360
TGTCCTGGTT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TCTTCCTCTG CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTATCAAG GTATGTTGCC CGTTTGTCCT 480
CTAATTCCAG GATCATCAAC CACCAGCACG GGACCATGCA AGACCTGCAC AACTCCTGCT 540
CAAGGAACCT CTATGTTTCC CTCATGTTGC TGTACAAAAC CTATGGATGG AAACTGCACC 600
TGTATTCCCA TCCCATCATC TTGGGCTTTC GCAAAATACC TATGGGAGTG GGCCTCAGTC 660
CGTTTCTCTT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTCTGGC TTTCAGTTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAACATC 780
TTGAGTCCCT TTATGCCGCT GTTACCAATT TTCTTTTGTC TTTGGGTATA CATTTAAACC 840
CTAACAAAAC AAAAAGATGG GGATATTCCC TTAACTTCAT GGGATATGTA ATTGGGAGTT 900
GGGGCACATG GCCACAGGAT CATATTGTAC AAAACTTCAA ACTATGTTTT AGAAAACTTC 960
CTGTAAACAG GCCTATTGAT TGGAAAGTTT GTCAACGAAT TGTGGGTCTT TTGGGGTTTG 1020
CTGCCCCTTT TACGCAATGT GGATATCCTG CTTTAATGCC TTTATATGCA TGTATACAAG 1080
CAAAACAGGC TTTTACTTTC TCGCCAACTT ACAAGGCCTT TCTCAGTAAA CAGTATATGA 1140
CCCTTTACCC CGTTGCTCGG CAACGGCCTG GTCTGTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGTTG GGGCTTGGCC ATAGGCCATC AGCGCATGCG TGGAACCTTT GTGTCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCCG CTTGTTTTGC TCGCAGCAGG TCTGGAGCAA 1320
ACCTCATCGG GACCGACAAT TCTGTCGTAC TCTCCCGCAA GTATACATCG TTTCCATGGC 1380
TGCTAGGCTG TGCTGCCAAC TGGATCCTGC GCGGGACGTC CTTTGTTTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCCTCCCGGG GCCGCTTGGG GCTCTACCGC CCGCTTCTCC 1500
GTCTGCCGTA CCGTCCGACC ACGGGGCGCA CCTCTCTTTA CGCGGACTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGACCGT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAGACCAC 1620
CGTGAACGCC CACCGGAACC TGCCCAAGGT CTTGCATAAG AGGACTCTTG GACTTTCAGC 1680
AATGTCAACG ACCGACCTTG AGGCATACTT CAAAGACTGT GTGTTTAATG AGTGGGAGGA 1740
GCTGGGGGAG GAGATTAGGT TAAAGGTCTT TGTACTCGGA GGCTGTAGGC ATAAATTGGT 1800
CTGTTCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAG TCATCTCTTG TTCATGTCCT 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCCTAT 1920
AAAGAATTTG GAGCTACTGT GGAGTTACTC TCTTTTTTGC CTTCTGACTT CTTTCCGTCG 1980
GTGCGGGACC TCCTAGATAC CGTCTCTGCT CTGTATCGGG AAGCCTTAAA ATCTCCTGAG 2040
CATTGCTCAC CTCACCACAC AGCACTCAGG CAAGCTATTC TGTGCTGGGG GGAATTAATG 2100
ACTCTAGCTA CCTGGGTGGG TAATAATTTG GAAGATCCAG CATCCCGGGA TCTAGTAGTC 2160
AATTATGTTA ACACTAACAT GGGCCTAAAG ATCAGGCAAC TATGGTGGTT TCACATTTCC 2220
TGTCTTACTT TTGGAAGAGA AACTGTTCTG GAATATTTGG TATCTTTTGG AGTGTGGATT 2280
CGCACTCCTC CTGCCTACAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAAACT 2340
ACTGTTGTTA GACGACGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCAGACAA 2400
AGGTCTCAAT CACCGCGTCG CAGAAGATCT CAATCTCGGG AATCCCAATG TTAGTATCAG 2460
TTGGACTCAT AAGGTGGGAA ACTTTACGGG GCTTTATTCT TCTACAGTAC CTGTCTTTAT 2520
TCCTGAATGG CAAACTCCTT CTTTTCCAGA CATTCATTTA CAGGAGGACA TTGTTGATAG 2580
ATGTAAGCAA TTTGTGGGAC CCCTTACAGT AAATGAAAAC AGGAGACTAA AATTAATACC 2640
GCCTGCTAGA TTTTATCCCA ATGTTACCAA ATATTTGCCC TTAGATAAAG GTATCAAACC 2700
TTATTATCCA GAGCATGTAG TTAATCATTA CTTCCAGACT AGACATTATT TGCATACTCT 2760
TTGGAAGGCG GGTATCTTAT ATAAAAGAGA GTCAACACAT AGCGCCTCAT TTTGCGGGAG 2820
ACCTTATTCT TGGGAACAAG ATCTACAGCA TGGGAGGTTG GTCTTCCAAA CCTCGAAAAG 2880
GCATGGGGAC AAATCTTTCT GTCCCCAATC CCCTGGGATT CTTCCCCGAT CATCAGTTGG 2940
ACCCTGCATT CAAAGCCAAC TCAGAAAATC CAGATTGGGA CCTCAACCCA CACAAGGACA 3000
ACTGGCCGGA CGCCCACAAG GTGGGAGTGG GAGCATTCGG GCCAGGATTC ACCCCTCCCC 3060
ATGGGGGACT GTTGGGGTGG AGCCCTCAGG CTCAGGGCAT ACTCACATCT GTGCCAGCAG 3120
CTCCTCCTCC TGCCTCCACC AATCGGCAGT CAGGACGGCA GCCTACTCCC CTATCTCCAC 3180
CTCTAAGGGA CACTCATCCT CAGGCCATGC AGTGG 3215






3215 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


287
AACTCCACCA CTTTCCACCA AACTCTTCAA GATCCCGGAG TCAGGGCCCT GTACTTTCCT 60
GCTGGTGGCT CCAGTTCAGG AACAGTGAGC CCTGCTCAGA ATACTGTCTC TGCCATATCG 120
TCAATCTTAT CGAAGACTGG GGACCCTGTA CCGAACATGG AGAACATCGC ATCAGGACTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAAAAT CCTCACAATA 240
CCACAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAAC ACCCGTGTGT 300
CTTGGCCAAA ATTCGCAGTC CCAAATCTCC AGTCACTCAC CAACCTGTTG TCCTCCAATT 360
TGTCCTGGTT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TCTTCCTCTG CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTATCAAG GTATGTTGCC CGTTTGTCCT 480
CTAATTCCAG GATCATCAAC AACCAGCACC GGACCATGCA AAACCTGCAC AACTCCTGCT 540
CAAGGAACCT CTATGTTTCC CTCATGTTGC TGTACAAAAC CTACGGATGG AAACTGCACC 600
TGTATTCCCA TCCCATCATC TTGGGCTTTC GCAAAATACC TATGGGAGTG GGCCTCAGTC 660
CGTTTCTCTT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTCTGGC TTTCAGTTAT ATGGATGATA TGGTTTTGGG GGCCAAGTCT GTACAACATC 780
TTGAGTCCCT TTATGCCGCT GTTACCAATT TTCTTTTGTC TTTGGGTATA CATTTAAACC 840
CTCACAAAAC AAAAAGATGG GGATATTCCC TTAACTTCAT GGGATATGTA ATTGGGAGCT 900
GGGGCACATT GCCACAGGAA CATATTGTAC AAAAAATCAA AATGTGGTTT AGGAAACTTC 960
CTGTAAACAG GCCTATTGAT TGGAAAGTAT GTCAACGAAT TGTGGGTCTT TTGGGGTTTG 1020
CCGCCCCTTT CACGCAATGT GGATATCCTG CTTTAATGCC TTTATATGCA TGTATACAAG 1080
CAAAACAGGC TTTTACTTTC TCGCCAACTT ACAAGGCCTT TCTAACTAAA CAGTATCTGA 1140
ACCTTTACCC CGTTGCTCGG CAACGGCCAG GTCTGTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGTTG GGGCTTGGCC ATAGGCCATC AGCGCATGCG TGGAACCTTT GTGTCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCCG CTTGTTTTGC TCGCAGCCGG TCTGGGGCAA 1320
AACTCATCGG GACTGACAAT TCTGTCGTGC TCTCCCGCAA GTATACATCA TTTCCATGGC 1380
TGCTAGGCTG TGCTGCCAAC TGGATCCTGC GCGGGACGTC CTTTGTTTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCTTCCCGGG GCCGCTTGGG GCTCTACCGC CCGCTTCTCC 1500
GCCTGTTGTA CCGACCGACC ACGGGGCGCA CCTCTCTTTA CGCGGACTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGACCGT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAGACCGC 1620
CGTGAACGCC CACGGGAACC TGCCCAAGGT CTTGCATAAG AGGACTCTTG GACTTTCAGC 1680
AATGTCAACG ACCGACCTTG AGGCATACTT CAAAGACTGT GTGTTTAATG AGTGGGAGGA 1740
GTTGGGGGAG GAGGTTAGGT TAAAGGTCTT TGTACTAGGA GGCTGTAGGC ATAAATTGGT 1800
GTGTTCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCATG TTCATGTCCT 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCGTAT 1920
AAAGAATTTG GAGCTTCTGT GGAGTTACTC TCTTTTTTGC CTTCTGACTT CTTTCCGTCG 1980
GTGCGAGATC TCCTCGACAC CGCCTCTGCT TTGTATCGGG AGGCCTTAGA GTCTCCGGAA 2040
CATTGTTCAC CTCACCATAC GGCACTCAGG CAAGCTATTC TGTGTTGGGG TGAGTTAATG 2100
AATCTAGCCA CCTGGGTGGG AAGTAATTTG GAAGATCCGG CATCCAGGGA ATTAGTAGTC 2160
AGCTATGTCA ACGTTAATAT GGGCCTAAAA ATCAGACAAC TATTGTGGTT TCACATTTCC 2220
TGTCTTACTT TTGGGAGAGA AACTGTTCTT GAATATTTGG TGTCTTTTGG AGTGTGGATT 2280
CGCACTCCTC CTGCATATAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAAACT 2340
ACTGTTGTTA GACGAAGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCAGACGA 2400
AGGTCTCAAT CGCCGCGTCG CAGAAGATCT CAATCTCGGG AATCTCAATG TTAGTATTCC 2460
TTGGACACAT AAGGTGGGAA ACTTTACGGG GCTTTATTCT TCTACGGTAC CTTGCTTTAA 2520
TCCTAAATGG CAAACTCCTT CTTTTCCTGA CATTCATTTG CAGGAGGACA TTGTTGATAG 2580
ATGTAAGCAA TTTGTGGGGC CCCTTACAGT AAATGAAAAC AGGAGACTAA AATTAATTCC 2640
GCCCGCTAGG TTTTATCCCA ATGTTACTAA ATATTTGCCC TTAGATAAAG GGATCAAAAA 2700
GTATTATCCA GAGTATGTAG TTAATCATTA CTTCCAGACG CGACATTATT TACACACTCT 2760
TTGGAAGGCG GGGATCTTAT ATAAAAGAGA GTCCACACGT AGCGCCTCAT TTTGCGGGTC 2820
ACCATATTCT TGGGAACAAG ATCTACAGCA TGGGAGGTTG GTCTTCCAAA CCTCGAAAAG 2880
GCATGGGGAC AAATCTTTCT GTCCCCAATC CTCTGGGATT CTTCCCCGAT CATCAGTTGG 2940
ACCCTGCATT CAAAGCCAAC TCAGAAAATC CAGATTGGGA CCTCAACCCG AACAAGGACA 3000
ACTGGCCGGA CGCCAACAAG GTGGGAGTGG GAGCATTCGG GCCAGGGTTC ACCCCTCCCC 3060
ATGGGGGACT GTTGGGGTGG AGCCCTCAGG CTCAGGGCCT ACTCACAACT GTGCCAGCAG 3120
CTCCTCCTCC TGCCTCCACC AATCGGCAGT CAGGAAGGCA GCCTACTCCC TTATCCCCAC 3180
CTCTAAGGGA CACTCATCCT CAGGCCATGC AGTGG 3215






3213 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


288
AACTCCACCA CATTTCACCA AGTCCTGCTA GATCCCAGAG TGAGGGGCCT ATATTTTCCT 60
CCTGGTGGCT CCAGTTCCGG AACAGTAAAC CCTGTTGCGA CTACTGCCTC ACCCATATCT 120
TCAATCTCCT CGAGGACTGG GGACCCTGCA CCGAACATGG AGAGCACAAC ATCAGGATTG 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATC 240
CCACAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAGC ACCCACGTGA 300
CCTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCTTG TCCTCCAATT 360
TGTCCTGGCT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TATTCCTCTT CATCCTGCTT 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTACCAAG GTATGTTGCC CGTTTGTCCG 480
CTACTTCCAG GAACATCAAC CACCAGCACG GGACCATGCA AGACCTGCAC GATTCCTGCT 540
CAAGGAACCT CTATGTTTCC CTCTTGTTGC TGTACAAAAC CTTCGGACGG AAACTGCACT 600
TGTATTCCCA TCCCATCATC CTGGGCTTTC GCAAGATTCC TATGGGAGGG GGCCTCAGTC 660
CGTTTCTCCT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGC TTTCAGTTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAACATC 780
TTGAGTCCCT TTTTACCTCT ATTACCAATT TTCTTTTGTC TTTGGGTATA CATTTGAACC 840
CTAATAAAAC CAAACGTTGG GGCTACTCCC TTAACTTCAT GGGATATGTA ATTGGCAGTT 900
GGGGTACTTT ACCGCAAGAA CATATTGTAC TAAAAATCAA GCAATGTTTT CGGAAACTGC 960
CTGTAAATAG ACCTATTGAC TGGAAAGTAT GTCAAAGAAT TGTGGGTCTT TTGGGCTTTG 1020
CTGCCCCTTT TACACAATGT GGCTATCCTG CCTTAATGCC TTTATATGCA TGTATACAAT 1080
CTAAGCAGGC TTTCACTTTC TCGCCAACTT ACAAGGCCTT TCTGTGTAAA CAATATCTGC 1140
ACCTTTACCC CGTTGCCCGG CGAACGGCTC TCTGCCAAGT ATTTGCTGAC GCAACCCCCA 1200
CTGGATGGGG CTTGGCCATA GGCCATCGGC GCATGCGTGG AACCTTTGTG GCTCCTCTGC 1260
CGATCCATAC TGCGGAACTC CTAGCAGCTT GTTTTGCTCG CAGCCGGTCT GGAGCGAAAC 1320
TCATCGGGAC TGACAACTCG GTTGTTCTCT CTCGGAAATA CACCTCATTC CCATGGCTGC 1380
TCGGGTGTGC TGCCAACTGG ATCCTGCGCG GGACGTACTT TGTTTACGTC CCGTCGGCTC 1440
TGAATCCCGC GGACGACCCG TCTCGCGGCC GTTTGGGCCT CATCCGTCCC CTTCTTCATC 1500
TGCGGTTCCG GCCGACCACG GGGCGCACCT CTCTTTACGC GGTCTCCCCG TCTGTGCCTT 1560
CTCATCTGCC GGACCGTGTG CACTTCGCTT CACCTCTGCA CGTCGCATGG AGACCACCGT 1620
GAACGCCGAT CAGGTCTTGC CCAAGGTCTT ACATAAGAGG ACTCTTGGAC TCTCAGCAAT 1680
GTCAACGTCC GACCTTGAGG CATACTTCAA AGACTGCTTG TTTAAAGACT GGGAGGACTT 1740
GGGGGAGGAG ATTAGGTTAA TGATCTTTGT ACTAGGAGGC TGTAGGCATA AATTGGTCTG 1800
TTCACCAGCA CCATGCAACT TTTTTCACCT CTGCCTAATC ATCTCATGTT CATGTCCTAC 1860
TGTTCACGCC TCCAAGCTGT GCCTTGGGTG GCTTTGGGGC ATGGACATTG ACCCGTATAA 1920
AGAATTTGGA GCTTCTGTGG AGTTACTCTC TTTTTTGCCT TCTGATTTCT TTCCTTCCAT 1980
TCGAGATCTC CTCGACACCG CCTCTGCTCT GTATAGGGAG GCCTTAGAGT CTCCGGAACA 2040
TTGTTCACCT CATCATACAG CACTCAGGCA AGCTATTCTG TGTTGGGGTG AGTTGATGAA 2100
TCTGGCCACC TGGGTGGGAA GTAATTTGGA AGACCCAGCA TCCAGGGAAC TAGTAGTCAG 2160
CTATGTCAAT GTTAATATGG GCCTAAAAAT CAGACAACTA TTGTGGTTTC ACATTTCCTG 2220
CCTTACTTTT GGAAGAGAAA CTGTTTTGGA GTATTTGGTA TCTTTTGGAG TGTGGATTCG 2280
CACTCCTCCC GCTTACAGAC CACCAAATGC CCCTATCTTA TCAACACTTC CGGAAACTAC 2340
TGTTGTTAGA CGACGAGGCA GGTCCCCTAG AAGAAGAACT CCCTCGCCTC GCAGACGAAG 2400
ATCTGAATCG CCGCGTCGCA GAAGATCTCA ATCTCGGGAA TCTCAATGTT AGTATCCCTT 2460
GGACTCATAA GGTGGGAAAC TTTACTGGGC TTTATTCTTC TACTGTACCT GTCTTTAATC 2520
CTGAGTGGCA AACTCCCTCC TTTCCTCACA TTCATTTACA GGAGGACATT ATTAATAGAT 2580
GTCAACAATA TGTGGGCCCT CTTACAGTTA ATGAAAAAAG GAGATTAAAA TTAATTATGC 2640
CTGCTAGGTT TTATCCTAAA CTTACCAAAT ATTTGCCCTT GGATAAAGGC ATTAAACCTT 2700
ATTATCCTGA ACATGCAGTT AATCATTACT TCAAAACTAG GCATTATTTA CATACTCTGT 2760
GGAAGGCGGG CATTCTATAT AAGAGAGAAA CTACACGCAG CGCCTCATTT TGTGGGTCAC 2820
CATATTCTTG GGAACAAGAG CTACAGCATG GGAGGTTGGT CTTCCAAACC TCGACAAGGC 2880
ATGGGGACGA ATCTTTCTGT TCCCAATCCT CTGGGATTCT TTCCCGATCA CCAGTTGGAC 2940
CCTGCGTTCG GAGCCAACTC AAACAATCCA GATTGGGACT TCAACCCCAA CAAGGATCGT 3000
TGGCCAGAGG CAAATCAGGT AGGAGCGGGA GCATTCGGGC CAGGGTACCC CCCACCACAC 3060
GGCGGTCTTT TGGGGTGGAG CCCTCAGGCT CAGGGCATAT TGACAACCGT GCCAGCAGCA 3120
CCTCCTCCTG CCTCCACCAA TCGGCAGTCA GGAAGACAGC CTACTCCCAT CTCTCCACCT 3180
CTAAGAGACA GTCATCCTCA GGCCATGCAG TGG 3213






3213 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


289
AACTCCACCA CATTTCACCA AGTCCTGCTA GATCCCAGAG TGAGGGGCCT ATATTTTCCT 60
CCTGGTGGCT CCAGTTCCGG AACAGTAAAC CCTGTTCCGA CTACTGCCTC ACCCATATCG 120
TCAATCTCCT CGAGGACTGG GGACCCTGCA CCGAACATGG AGAGCACAAC ATCAGGATTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATA 240
CCACAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAGC ACCCACGTGT 300
CCTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCTTG TCCTCCAATT 360
TGTCCTGGCT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TATTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTACCAAG GTATGTTGCC CGTTTGTCCT 480
CTACTTCCAG GAACATCAAC CACCAGCACG GGACCATGCA AGACCTGCAC GATTCCTGCT 540
CAAGGAACCT CTATGTTTCC CTCTTGTTGC TGTACAAAAC CTTCGGACGG AAACTGCACT 600
TGTATTCCCA TCCCATCATC CTGGGCTTTC GCAAGATTCC TATGGGAGGG GGCCTCAGTC 660
CGTTTCTCCT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGC TTTCAGTTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAACATC 780
TTGAGTCCCT TTTTACCTCT ATTACCAATT TTCTTTTGTC TTTGGGTATA CATTTGAACC 840
CTAATAAAAC CAAACGTTGG GGCTACTCCC TTAACTTCAT GGGATATGTA ATTGGCAGTT 900
GGGGTACTTT ACCGCAAGAA CATATTGTAC TAAAAATCAA GCAATGTTTT CGGAAACTGC 960
CTGTAAATAG ACCTATTGAC TGGAAAGTAT GTCAAAGAAT TGTGGGTCTT TTGGGCTTTG 1020
CTGCCCCTTT TACACAATGT GGCTATCCTG CCTTAATGCC TTTATATGCA TGTATACAAT 1080
CTAAGCAGGC TTTCACTTTC TCGCCAACTT ACAAGGCCTT TCTGTGTAAA CAATATCTGC 1140
ACCTTTACCC CGTTGCCCGG CGAACGGCTC TCTGCCAAGT ATTTGCTGAC GCAACCCCCA 1200
CTGGATGGGG CTTGGCCATA GGCCATCGGC GCATGCGTGG AACCTTTGTG GCTCCTCTGC 1260
CGATCCATAC TGCGGAACTC CTAGCAGCTT GTTTTGCTCG CAGCCGGTCT GGAGCGAAAC 1320
TCATCGGGAC TGACAACTCG GTTGTTCTCT CTCGGAAATA CACCTCATTC CCATGGCTGC 1380
TCGGGTGTGC TGCCAACTGG ATCCTGCGCG GGACGTACTT TGTTTACGTC CCGTCGGCGC 1440
TGAATCCCGC GGACGACCCG TCTCGCGGCC GTTTGGGCCT CATCCGTCCC CTTCTTCATC 1500
TGCGGTTCCG GCCGACCACG GGGCGCACCT CTCTTTACGC GGTCTCCCCG TCTGTGCCTT 1560
CTCATCTGCC GGACCGTGTG CACTTCGCTT CACCTCTGCA CGTCGCATGG AGACCACCGT 1620
GAACGCCGAT CAGGTCTTGC CCAAGGTCTT ACATAAGAGG ACTCTTGGAC TCTCAGCAAT 1680
GTCAACGTCC GACCTTGAGG CATACTTCAA AGACTGCTTG TTTAAAGACT GGGAGGACTT 1740
GGGGGAGGAG ATTAGGTTAA TGATCTTTGT ACTAGGAGGC TGTAGGCATA AATTGGTCGT 1800
TTCACCAGCA CCATGCAACT TTTTTCACCT CTGCCTAATC ATCTCATGTT CATGTCCTAC 1860
TGTTCACGCC TCCAAGCTGT GCCTTGGGTG GCTTTGGGGC ATGGACATTG ACCCGTATAA 1920
AGAATTTGGA GCTTCTGTGG AGTTACTCTC TTTTTTGCCT TCTGATTTCT TTCCTTCCAT 1980
TCGAGATCTC CTCGACACCG CCTCTGCTCT GTATAGGGAG GCCTTAGAGT CTCCGGAACA 2040
TTGTTCACCT CATCATACAG CACTCAGGCA AGCTATTCTG TGTTGGGGTG AGTTGATGAA 2100
TCTGGCCACC TGGGTGGGAA GTAATTTGGA AGACCCAGCA TCCAGGGAAC TAGTAGTCAG 2160
CTATGTCAAT GTTAATATGG GCCTAAAAAT CAGACAACTA TTGTGGTTTC ACATTTCCTG 2220
CCTTACTTTT GGAAGAGAAA CTGTTTTGGA GTATTTGGTA TCTTTTGGAG TGTGGATTCG 2280
CACTCCTCCC GCTTACAGAC CACCAAATGC CCCTATCTTA TCAACACTTC CGGAAACTAC 2340
TGTTGTTAGA CGACGAGGCA GGTCCCCTAG AAGAAGAACT CCCTCGCCTC GCAGACGAAG 2400
ATCTGAATCG CCGCGTCGCA GAAGATCTCA ATCTCGGGAA TCTCAATGTT AGTATCCCTT 2460
GGACTCATAA GGTGGGAAAC TTTACTGGGC TTTATTCTTC TACTGTACCT GTCTTTAATC 2520
CTGAGTGGCA AACTCCCTCC TTTCCTCACA TTCATTTACA GGAGGACATT ATTAATAGAT 2580
GTCAACAATA TGTGGGCCCT CTTACAGTTA ATGAAAAAAG GAGATTAAAA TTAATTATGC 2640
CTGCTAGGTT TTATCCTAAA CTTACCAAAT ATTTGCCCTT GGATAAAGGC ATTAAACCTT 2700
ATTATCCTGA ACATGCAGTT AATCATTACT TCAAAACTAG GCATTATTTA CATACTCTGT 2760
GGAAGGCGGG CATTCTATAT AAGAGAGAAA CTACACGCAG CGCCTCATTT TGTGGGTCAC 2820
CATATTCTTG GGAACAAGAG CTACAGCATG GGAGGTTGGT CTTCCAAACC TCGACAAGCG 2880
ATGGGGACGA ATCTTTCTGT TCCCAATCCT CTGGGATTCT TTCCCGATCA CCAGTTGGGT 2940
CCTGCGTTCG GAGCCAACTC AAACAATCCA GATTGGGACT TCAACCCCAA CAAGGATCAC 3000
TGGCCAGAGG CAAATCAGGT AGGAGCGGGA GCATTCGGGC CAGGGTACCC CCCACCACAC 3060
GGCGGTCTTT TGGGGTGGAG CCCTCAGGCT CAGGGCATAT TGACAACCGT GCCAGCAGCA 3120
CCTCCTCCTG CCTCCACCAA TCGGCAGTCA GGAAGACAGC CTACTCCCAT CTCTCCACCT 3180
CTAAGAGACA GTCATCCTCA GGCCATGCAG TGG 3213






3215 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


290
AACTCCACAA CATTCCACCA AGCTCTGCTA GATCCCAGAG TGAGGGGCCT ATATTTTCCT 60
GCTGGTGGCT CCAGTTCCGG AACAGTAAAC CCTGTTCCGA CTACTGTCTC ACCCATATCG 120
TCAATCTTCT CGAGGACTGG GGACCCTGCA CCGAACATGG AGAGCACAAC ATCAGGATTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATA 240
CCACAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAGC ACCCACGTGT 300
CCTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCTTG TCCTCCAATT 360
TGTCCTGGTT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TATTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTACCAAG GTATGTTGCC CGTTTGTCCT 480
CTACTTCCAG GAACATCAAC TACCAGCACG GGACCATGCA AGACCTGCAC GATTCCTGCT 540
CAAGGAACCT CTATGTTTCC CTCTTGTTGC TGTACAAAAC CTTCGGACGG AAACTGCACT 600
TGTATTCCCA TCCCATCATC CTGGGCTTTC GCAAGATTCC TATGGGAGTG GGCCTCAGTC 660
CGTTTCTCCT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGCAGG GCTTTCCCCC 720
ACTGTTTGGC TTTCAGTTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAACATC 780
TTGAGTCCCT TTTTACCTCT ATTACCAATT TTCTTTTGTC TTTGGGTATA CATTTGAACC 840
CTAATAAAAC CAAACGTTGG GGCTACTCCC TTAACTTCAT GGGATATGTA ATTGGAAGTT 900
GGGGTACTTT ACCACAGGAA CATATTGTAT TAAAACTCAA GCAATGTTTT CGAAAACTGC 960
CTGTAAATAG ACCTATTGAT TGGAAAGTAT GTCAAAGAAT TGTGGGTCTT TTGGGCTTTG 1020
CTGCCCCTTT TACACAATGT GGCTATCCTG CCTTGATGCC TTTGTATGCA TGTATACAAT 1080
CTAAGCAGGC TTTCACTTTC TCGCCAACTT ATAAGGCCTT TCTGTGTCAA CAATACCTGC 1140
ACCTTTACCC CGTTGCCCGG CAACGGTCAG GTCTCTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGATG GGGCTTGGCC ATAGGCCATC GGCGCATGCG TGGAACCTTT GTGGTTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCAG CTTGTTTTGC TCGCGACCGG TCTGGAGCAA 1320
AACTTATCGG GACTGACAAC TCGGTTGTCC TCTCTCGGAA ATACACCTCC TTCCCATGGC 1380
TGCTCGGGTG TGCTGCCAAC TGGATCCTGC GCGGGACGTC CTTTGTCTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCGTCTCGGG GCCGTTTGGG CCTCTACCGT CCCTTGCTTT 1500
CTCTGCCGTT CCAGCCGACC ACGGGGCGCA CCTCTCTTTA CGCGGTCTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGACCGT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAGACCAC 1620
CGTGAACGGC CACCAGGTCT TGCCCAAGCT CTTACATAAG AGGACTCTTG GACTCTCAGC 1680
AATGTCAACA ACCGACCTTG AGGCATACTT CAAAGACTGT TTGTTTAAAG ACTGGGAGGA 1740
GTTGGGGGAG GAGATTAGGT TAAAGGTCTT TGTACTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGTTCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCATG TTCATGTCCT 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCGTAT 1920
AAAGAATTTG GAGCTTCTGT GGAGTTACTC TCTTTTTTGC CTTCTGACTT CTTTCCTTCT 1980
ATTCGAGATC TCCTCGACAC CGCCTCTGCT CTGTATCGGG AGGCCTTAGA GTCTCCGGAA 2040
CATTGTTCAC CTCACCATAC AGCACTCAGG CAAGCTATTC TGTGTTGGGG TGAGTTGATG 2100
AATTTGGCCA CCTGGGTGGG AAGTAATTTG GAAGACCCAG CATCCAGGGA ATTAGTAGTC 2160
AGCTATGTCA ATGTTAATAT GGGCCTAAAA ATCAGACAAC TATTGTGGTT TCATATTTCC 2220
TGTCTTACTT TTGGAAGAGA AACTGTTCTT GAGTATTTGG TGTCTTTTGG AGTGTGGATT 2280
CGCACTCCTC CCGCTTACAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAAACT 2340
ACTGTTGTTA GACGACGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCAGACGA 2400
AGGTCTCAAT CGCCGCGTCG CAGAAGATCT CAATCTCGGG AATCTCAATG TTAGTATCCC 2460
TTGGACTCAT AAGGTGGGAA ACTTTACTGG GCTTTATTCT TCTACTGTAC CTGTCCTTAA 2520
TCCTGAGTCC CAAACTCCCT CCTTTCCTAA CATTCATTTA CAGGAGGACA TTATTAATAG 2580
ATGTCAACAA TATGTGGGCC CTCTTACAGT TAATGAAAAA AGGAGATTAA AATTAATTAT 2640
GCCTGCTAGG TTCTATCCTA ACCTTACCAA ATATTTGCCC TTGGATAAAG GCATTAAACC 2700
TTATTATCCT GAACATGCAG TTAATCATTA CTTCAAAACT AGGCATTATT TACATACTCT 2760
GTGGAAGGCT GGCATTCTAT ATAAAAGAGA AACTACACGC AGCGCTTCAT TTTGTGGGTC 2820
ACCATATTCT TGGGAACAAG AGCTACGGCA TGGGAGGTTG GTCTTCCAAA CCTCGACAAG 2880
GCATGGGGAC GAATCTTTCT GTTCCCAATC CTCTGGGATT CTTTCCCGAT CACCAGTTGG 2940
ACCCTGCGTT CGGAGCCAAC TCAAACAATC CAGATTGGGA CTTCAACCCC AACAAGGATC 3000
ACTGGCCAGA GGCAATCAAG GTAGGAGCGG GAGACTTCGG GCCAGGGTTC ACCCCACCAC 3060
ACGGCGGTCT TTTGGGGTGG AGCCCTCAGG CTCAGGGCAT ATTGACAACA GTGCCAGCAG 3120
CGCCTCCTCC TGTTTCCACC AATCGGCAGT CAGGAAGACA GCCTACTCCC ATCTCTCCAG 3180
CTCTAAGAGA CAGTCATCCT CAGGCCATGC AGTGG 3215






3215 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


291
AACTCCACAA CATTCCACCA AGCTCTGCTA GATCCCAGAG TGAGGGGCCT ATATTTTCCT 60
GCTGGTGGCT CCAGTTCCGG AACAGTAAAC CCTGTTCCGA CTACTGCCTC ACCCATATCG 120
TCAATCTTCT CGAGGACTGG GGACCCTGCA CCGAACATGG AGAGCACAAC ATCAGGATTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATA 240
CCACAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAGC ACCCACGTGT 300
CCTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCTTG TCCTCCAATT 360
TGTCCTGGCT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TATTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTACCAAG GTATGTTGCC CGTTTGTCCT 480
CTACTTCCAG GAACATCAAC TACCAGCACG GGACCATGCA AGACCTGCAC GATTCCTGCT 540
CAAGGAACCT CTATGTTTCC CTCTTGTTGG TGTACAAAAC CTTCGGACGG AAACTGCACT 600
TGTATTCCCA TCCCATCATC CTGGGCTTTC GCAAGATTCC TATGGGAGTG GGCCTCAGTC 660
CGTTTCTCCT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGCAGG GCTTTCCCCC 720
ACTGTTTGGC TTTCAGTTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAACATC 780
TTGAGTCCCT TTTTACCTCT ATTACCAATT TTCTTTTGTC TTTGGGTATA CATTTGAACC 840
CTAATAAAAC CAAACGTTGG GGCTACTCCC TTAACTTCAT GGGATATGTA ATTGGAAGTT 900
GGGGTACTTT ACCACAGGAA CATATTGTAT TAAAACTCAA GCAATGTTTT CGGAAACTGC 960
CTGTAAATAG ACCTATTGAT TGGAAAGTAT GTCAAAGAAT TGTGGGTCTT TTGGGCTTTG 1020
CTGCCCCTTT TACACAATGT GGCTATCCTG CCTTGATGCC TTTATATGCA TGTATACAAT 1080
CTAAGCAGGC TTTCACTTTC TCGCCAACTT ATAAGGCCTT TCTGTGTCAA CAATACCTGC 1140
ACCTTTACCC CGTTGCCCGG CAACGGTCAG GTCTCTGCCA AGTGTTTGGT GACGCAACCC 1200
CCACTGGATG GGGCTTGGCC ATAGGCCATC GGCGCATGCG TGGAACCTTT GTGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCAG CTTGTTTTGC TCGCAGCCGG TCTGGAGCAA 1320
AACTTATCGG GACTGACAAC TCTGTTGTCC TCTCTCGGAA ATACACCTCC TTCCCATGGC 1380
TGCTCGGGTG TGCTGCCAAC TGGATCCTGC GCGGGACGTC CTTTGTCTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCGTCTCGGG GCCGTTTGGG CCTCTACCGT CCCCTTCTTC 1500
ATCTGCCGTT CCAGCCGACC ACGGGGCGCA CCTCTCTTTA CGCGGTCTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGTCCGT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAGACCAC 1620
CGTGAACGCC CACCAGGTCT TGCCTAAGCT CTTACATAAG AGGACTCTTG GACTCTCAGC 1680
AATGTCAACG ACCGACCTTG AGGCATACTT CAAAGACTGT TTGTTTAAAG ACTGGGAGGA 1740
GTTGGGGGAG GAGATTAGGT TAAAGGTCTT TGTACTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGTTCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCATG TTCATGTCCT 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCGTAT 1920
AAAGAATTTG GAGCTTCTGT GGAGTTACTC TCTTTTTTGC CTTCTGACTT CTTTCCTTCT 1980
ATTCGAGATC TCCTCGACAC CGCCTCTGCT CTGTATCGGG AGGCCTTAGA GTCTCCGGAA 2040
CATTGTTCAC CTCACCATAC AGCACTCAGG CAAGCTATCC TGTGTTGGGG TGAGTTGATG 2100
AATTTGGCCA CCTGGGTGGG AAGTAATTTG GAAGACCCAG CATCCAGGGA ATTAGTAGTC 2160
AGCTATGTCA ATGTTAATAT GGGCCTAAAA ATCAGACAAC TATTGTGGTT TCACATTTCC 2220
TGTCTTACTT TTGGAAGAGA AACTGTTCTT GAGTATTTGG TGTCTTTTGG AGTGTGGACT 2280
CGCACTCCTC CCGCTTACAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAAACT 2340
ACTGTTGTTA GACGACGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCAGACGA 2400
AGGTCTCAAT CGCCGCGTCG CAGAAGATCT CAATCTCGGG AATCTCAATG TTAGTATCCC 2460
TTGGACTCAT AAGGTGGGAA ACTTTACTGG GCTTTATTCT TCTACTGTAC CTGTCTTTAA 2520
TCCTGAGTGC CAAACTCCCT CCTTTCCTAA CATTCATTTA CAAGAGGATA TTATTAATAG 2580
ATGTCAACAA TATGTGGGCC CTCTTACAGT TAATGAAAAA AGGAGATTAA AATTAATTAT 2640
GCCTGCTAGG TTCTATCCTA ACCTTACCAA ATATTTGCCC TTGGATAAAG GCATTAAACC 2700
TTATTATCCT GAACATGCAG TTAATCATTA CTTCAAAACT AGGCATTATT TACATACGCT 2760
GTGGAAGGCT GGCATTCTAT ATAAAAGAGA AACTACACGC AGCGCTTCAT TTTGTGGGTC 2820
ACCATATTCT TGGGAACAAG AGCTACAGCA TGGGAGGTTG GTCTTCCAAA CCTCGACAAG 2880
GCATGGGGAC GAATCTTTCT GTTCCCAATC CTCTGGGATT CTTTCCCGAT CACCAGTTGG 2940
ACCCTGCGTT CGGAGCCAAC TCAAACAATC CAGATTGGGA CTTCAACCCC AACAAGGATC 3000
ACTGGCCAGA CGGAATCAAG GTAGGAGCGG GAGACTTCGG GCCAGGGTTC ACCCCACCAC 3060
ACGGCGGTCT TTTGGGGTGG AGCCCTCAGG CTCAGGGCAT CTTGACAACA GTGCCAGCAG 3120
CTCCTCCTCC TGCCTCCACC AATCGGCAGT CAGGAAGACA GCCTACTCCC ATCTCTCCAC 3180
CTCTAAGAGA CAGTCATCCT CAGGCCATGC AGTGG 3215






3215 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


292
AACTCCACAA CATTCCACCA AGCTCTGCTA GATCCCAGAG TGAGGGGCCT ATATTTTCCT 60
GCTGGTGGCT CCAGTTCCGG AACAGTAAAC CCTGTTCCGA CTACTGCCTC ACCCATATCG 120
TCAATCTTCT CGAGGACTGG GGACCCTGCA CCGAACATGG AGAGCACAAC ATCAGGATTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATA 240
CCACAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAGC ACCCACGTGT 300
CCTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCTTG TCCTCCAACT 360
TGTCCTGGCT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TATTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTACCAAG GTATGTTGCC CGTTTGTCCT 480
CTACTTCCAG GAACATCAAC TACCAGCACG GGACCATGCA GAACCTGCAC GATTCCTGCT 540
CAAGGAACCT CTATGTTTCC CTCTTGTTGC TGTACAAAAC CTTCGGACGG AAACTGCACT 600
TGTATTCCCA TCCCATCATC CTGGGCTTTC GCAAGATTCC TATGGGAGTG GGCCTCAGTC 660
CGTTTCTCCT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGC TTTCAGCTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAACATC 780
TTGAGTCCCT TTTTACCTCT ATTACCAATT TTCTTTTGTC TTTGGGTATA CATTTGAACC 840
CTAATAAAAC CAAACGTTGG GGCTACTCCC TTAACTTCAT GGGATATGTA ATTGGAAGTT 900
GGGGTACTTT ACCGCAGGAA CATATTGTAC AAAAACTCAA GCAATGTTTT CGAAAATTGC 960
CTGTAAATAG ACCTATTGAT TGGAAAGTAT GTCAAAGAAT TGTGGGTCTT TTGGGCTTTG 1020
CTGCCCCTTT TACACAATGT GGCTATCCTG CCTTGATGCC TTTATATGCA TGTATACAAT 1080
CTAAGCAGGC TTTCACTTTC TCGCCAACTT ACAAGGCCTT TCTGTGTAAA CAATATCTAA 1140
ACCTTTACCC CGTTGCCCGG CAACGGTCAG GTCTCTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACGGGTTG GGGCTTGGCC ATAGGCCATC GGCGCATGCG TGGAACCTTT GTGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCAG CTTGTTTTGC TCGCAGCCGG TCTGGAGCGA 1320
AACTTATCGG AACCGACAAC TCAGTTGTCC TCTCTCGGAA ATACACCTCC TTTCCATGGC 1380
TGCTAGGCTG TGCTGCCAAC TGGATCCTGC GCGGGACGTC CTTTGTCTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCGTCTCGGG GCCGTTTGGG CCTCTACCGT CCCCTTCTTC 1500
ATCTGCCGTT CCGGCCGACC ACGGGGCGCA CCTCTCTTTA CGCGGTCTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGACCGT GTGCACTTCG CTTCACCTCT GCACGTAGCA TGGAGACCAC 1620
CGTGAACGCC CACCAGGTCT TGCCCAAGGT CTTACACAAG AGGACTCTTG GACTCTCAGC 1680
AATGTCAACG ACCGACCTTG AGGCATACTT CAAAGACTGT TTGTTTAAAG ACTGGGAGGA 1740
GTTGGGGGAG GAGATTAGGT TAAAGGTCTT TGTACTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGTTCACCA GCACCATGCA ACTTTTTCCC CTCTGCCTAA TCATCTCATG TTCATGTCCT 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCGTAT 1920
AAAGAATTTG GAGCTTCTGT GGAGTTACTC TCTTTTTTGC CTTCTGACTT CTTTCCTTCT 1980
ATTCGAGATC TCCTCGACAC CGCCTCTGCT CTGTATCGGG AGGCCTTAGA GTCTCCGGAA 2040
CATTGTTCAC CTCACCATAC AGCACTCAGG CAAGCTATTC TGTGTTGGGG TGAGTTGATG 2100
AATCTGGCCA CCTGGGTGGG AAGTAATTTG GAAGACCCAG CATCCAGGGA ATTAGTAGTC 2160
AGCTATGTCA ATGTTAATAT GGGCCTAAAA ATTAGACAAC TATTGTGGTT TCACATTTCC 2220
TGCCTTACTT TTGGAAGAGA AACTGTCCTT GAGTATTTGG TGTCTTTTGG AGTGTGGATT 2280
CGCACTCCTC CCGCTTACAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAAACT 2340
ACTGTTGTTA GACGACGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCAGACGA 2400
AGGTCTCAAT CGCCGCGTCG CAGAAGATCT CAATCTCGGG AATCTCAATG TTAGTATCCC 2460
TTGGACTCAT AAGGTGGGAA ACTTTACTGG GCTTTATTCT TCTACTGTAC CTGTCTTTAA 2520
TCCTGATTGG AAAACTCCCT CCTTTCCTCA CATTCATTTA CAGGAGGACA TTATTAATAG 2580
ATGTCAACAA TATGTGGGCC CTCTGACAGT TAATGAAAAA AGGAGATTAA AATTAATTAT 2640
GCCTGCTAGG TTCTATCCTA ACCTTACCAA ATATTTGCCC TTGGACAAAG GCATTAAACC 2700
GTATTATCCT GAATATGCAG TTAATCATTA CTTCAAAACT AGGCATTATT TACATACTCT 2760
GTGGAAGGCT GGCATTCTAT ATAAGAGAGA AACTACACGC AGCGCCTCAT TTTGTGGGTC 2820
ACCATATTCT TGGGAACAAG AGCTACAGCA TGGGAGGTTG GTCTTCCAAA CCTCGACAAG 2880
GCATGGGGAC GAATCTTTCT GTTCCCAATC CTCTGGGATT CTTTCCCGAT CACCAGTTGG 2940
ACCCTGCGTT CGGAGCCAAC TCAAACAATC CAGATTGGGA CTTCAACCCC AACAAGGATC 3000
ACTGGCCAGA GGCAAATCAG GTAGGAGCGG GAGCATTTGG TCCAGGGTTC ACCCCACCAC 3060
ACGGAGGCCT TTTGGGGTGG AGCCCTCAGG CTCAGGGCAT ATTGACAACA CTGCCAGCAG 3120
CACCTCCTCC TGCCTCCACC AATCGGCAGT CAGGAAGACA GCCTACTCCC ATCTCTCCAC 3180
CTCTAAGAGA CAGTCATCCT CAGGCCATGC AGTGG 3215






3188 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


293
AATTCCACAA CATTCCACCA AGCTCTGCTA GATCCCAGAG TGAGGGGCCT ATATTTTCCT 60
GCTGGTGGCT CCAGTTCCGG AACAGTAAAC CCTGTTCCGA CTACTGCCTC ACCCATATCG 120
TCAATCTTCT CGAGGACTGG GGACCCTGCA CCGAACATGG AGAACACAAC ATCAGGATTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATA 240
CCACAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAGC ACCCACGTGT 300
CCTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCTTG TCCTCCAATT 360
TGTCCTGGCT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TATTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTACCAAG GTATGTTGCC CGTTTGTCCT 480
CTACTTCCAG GAACATCAAC CACCAGCACG GGGCCATGCA AGACCTGCAC GATTCCTGCT 540
CAAGGAACCT CTATGTTTCC CTCTTGTTGC TGTACAAAAC CTTCGGACGG AAACTGCACT 600
TGTATTCCCA TCCCATCATC CTGGGCTTTC GCAAGATTCC TATGGGAGTG GGCCTCAGTC 660
CGTTTCTCCT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGC TTTCAGTTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAACATC 780
TTGAGTCCCT TTTTACCTCT ATTACCAATT TTCTTTTGTC TTTGGGTATA CATTTAAACC 840
CTAATAAAAC CAAACGTTGG GGCTACTCCC TTAACTTCAT GGGATATGTA ATTGGAAGTT 900
GGGGTACTTT ACCGCAGGAA CATATTGTAC TAAAACTCAA GCAATGTTTT CGAAAATTGC 960
CTGTAAATAG CCCTATTGAT TGGAAAGTAT GTCAAAGAAT TGTGGGTCTT TTGGGCTTTG 1020
CTGCCCCTTT TACACAATGC GGCTATCCTG CCTTGATGCC TTTATATGCA TGTATACAAT 1080
CTAAGCAGGC TTTCACTTTC TCGCCAACTT ATAAGGCCTT TCTGTGTAAA CAATATCTGA 1140
ACCTTTACCC CGTTGCCCGG CAACGGTCAG GTCTCTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGATG GGGCTTGGCC ATAGGCCATC GGCGCATGCG TGGAACCTTT GTGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCAG CTTGTTTTGC TCGCAGCCGG TCTGGAGCGA 1320
AACTTATCGG AACCGACAAC TCTGTTGTCC TCTCTCGGAA ATACACCTCC TTTCCATGGC 1380
TGCTAGGGTG TGCTGCCAAC TGGATCCTGC GCGGGACGTC CTTTGTCTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCGTCTCGGG GCCGTTTGGG GCTCTACCGT CCCCTTCTTG 1500
TTCTGCCGTT CCGGCCGACC ACGGGGCGCA CCTCTCTTTA CGCGGTCTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGACCGT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAGACCAC 1620
CGTGAACGCC CACCAGGTCT TGCCCAAGGT CTTACATAAG AGGACTCTTG GACTCTCAGC 1680
CATGTCAACG ACCGACCTTG AGGCATACTT CAAAGACTGT GTGTTTAAAG ACTGGGAGGA 1740
GTTGGGGGAG GAGATTAGGT TAAAGGTCTT TGTACTAGGA GGCTGTAGGC ATAACTTTTT 1800
CACCTCTGCC TAATCATCTC ATGTTCATGT CCTACTGTTC AAGCCTCCAA GCTGTGCCTT 1860
GGGTGGCTTT GGGGCATGGA CATTGACCCG TATAAAGAAT TTGGAGCATC TGTGGAGTTA 1920
CTCTCTTTTT TGCCTTCTGA CTTCTTTCCG TCTATTCGAG ATCTCCTTGA CACCGCCTCT 1980
GCTCTGTATC GGGAGGCCTT AGAGTCTCCG GAACATTGTT CACCTCACCA TACAGCACTC 2040
AGGCAAGCTA TTCTGTGTTG GGGTGAGTTA ATGAATCTGG CCACCTGGGT GGGAAGTAAT 2100
TTGGAAGACC CAGCATCCAG GGAATTAGTA GTCAGCTATG TCAATGTTAA TATGGGCCTA 2160
AAAATCAGAC AACTATTGTG GTTTCACATT TCCTGCCTTA CTTTTGGAAG AGAAACTGTT 2220
TTGGAGTATT TGGTATCTTT TGGAGTGTGG ATTCGCACTC CTCCCGCTTA CAGACCACCA 2280
AATGCCCCTA TCTTATCAAC ACTTCCGGAA ACTACTGTTG TTAGACGACG AGGCAGGTCC 2340
CCTAGAAGAA GAACTCCCTC GCCTCGCAGA CGAAGGTCTC AATCGCCGCG TCGCAGAAGA 2400
TCTCAATCTC GGGAATCTCA ATGTTAGTAT CCCTTGGACT CATAAGGTGG GAAACTTTAC 2460
TGGGCTTTAT TCTTCTACTG TACCTGTCTT TAATCCCGAG TGGCAAACTC CCTCCTTTCC 2520
TCACATTCAT TTACAGGAGG ACATTATTAA TAGATGTCAA CAATATGTGG GCCCTCTTAC 2580
GGTTAATGAA AAAAGGAGAT TAAAATTAAT TATGCCTGCT AGGTTCTATC CTAACCTTAC 2640
TAAATATTTG CCCTTAGACA AAGGCATTAA ACCGTATTAT CCTGAACATG CAGTTAATCA 2700
TTACTTCAAA ACTAGGCATT ATTTACATAC TCTGTGGAAG GCTGGCATTC TATATAAGAG 2760
AGAAACTACA CGCAGCGCCT CATTTTGTGG GTCACCATAT TCTTGGGAAC AAGAGCTACA 2820
GCATGGGAGG TTGGTCTTCC AAACCTCGAC AAGGCATGGG GACGAATCTT TCTGTTCCCA 2880
ATCCTCTGGG ATTCTTTCCC GATCACCAGT TGGACCCTGC GTTCGGAGCC AACTCAAACA 2940
ATCCAGATTG GGACTTCAAC CCCAACAAGG ATCAATGGCC AGAGGCAAAT CAGGTAGGAG 3000
CGGGAGCATT CGGGCCAGGG TTCACCCCAC CACACGGCGG TCTTTTGGGG TGGAGCCCTC 3060
AGGCTCAGGG CATATTGACA ACAGTGCCAG CAGCACCTCC TCCTGCCTCC ACCAATCGGC 3120
AGTCAGGAAG ACAGCCTACT CCCATCTCTC CACCTCTAAG AGACAGTCAT CCTCAGGCCA 3180
TGCAGTGG 3188






3214 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


294
AACTCCACAA CATTCCACCA AGCTCTGCTA GACCCCAGAG TGAGGGGCCT ATACTTTCCT 60
GCTGGTGGCT CCAGTTCCGG AACAGTAAAC CCTGTTCCGA CTACTGCCTC ACCCATATCG 120
TCAATCTCCT CGAGGACTGG GGACCCTGCA CCGAACATGG AGAACACAAC ATCAGGATTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATA 240
CCACAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAGC ACCCACGTGT 300
CCTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCTTG TCCTCCAATT 360
TGTCCTGGCT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TATTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTACCAAG GTATGTTGCC CGTTTGTCCT 480
CTACTTCCAG GAACATCAAC TACCAGCACG GGACCATGCA AGACCTGCAC GATTCCTGCT 540
CAAGGAACCT CTATGTTTCC CTCTTGTTGC TGTACAAAAC CTTCGGACGG AAACTGCACT 600
TGTATTCCCA TCCCATCATC CTGGGCTTTC GCAAGATTCC TATGGGAGGG GGCCTCAGTC 660
CGTTTCTCCT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGC TTTCAGTTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAACATC 780
TTGAGTCCCT TTTTACCTCT ATTACCAATT TTCTTTTGTC TTTGGGTATA CATTTAAACC 840
CTAATAAAAC CAAACGTTGG GGCTACTCCC TTAACTTCAT GGGATATGTA ATTGGATGTT 900
GGGGTACTTT ACCGCAAGAA CATATTGTAC TAAAAATCAA GCAATGTTTT CGAAAACTGC 960
CTGTAAATAG ACCTATTGAT TGGAAAGTAT GTCAGAGACT TGTGGGTCTT TTGGGCTTTG 1020
CTGCCCCTTT TACACAATGT GGCTATCCTG CCTTAATGCC TTTATATGCA TGTATACAAT 1080
CTAAGCAGGC TTTCACTTTC TCGCCAACTT ACAAGGCCTT TCTGTGTAAA CAATATCTCC 1140
ACCTTTACCC CGTTGCCCGG CAACGGTCAG GTCTCTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGATG GGGCTTGGCT ATCGGCCATA GCCGCATGCG CGGACCTTTG TGGCTCCTAA 1260
GCCGATCCAT ACTGCGGAAC TCCTAGCAGC TTGTTTTGCT CGCAGGCGGT CTGGAGCGAA 1320
ACTTATCGGC ACCGACAACT CTGTTGTCCT CTCTCGGAAA TACACCTCCT TTCCATGGCT 1380
GCTAGGGTGT GCTGCCAACT GGATCCTGCG CGGGACGTCC TTTGTCTACG TCCCGTCGGC 1440
GCTGAATCCC GCGGACGACC CGTCTCGGGG CCGTTTGGGA CTCTACCGTC CCCTTCTTCA 1500
TCTGCCGTTC CGGCCGACCA CGGGGCGCAC CTCTCTTTAC GCGGTCTTTT TGTCTGTGCC 1560
TTCTCATCTG CCGGTCCGTG TGCACTTCGC TTCACCTCTG CACGTCGCAT GGAGACCACC 1620
GTGAACGCCC ACCAGGTCTT GCCCAAGGTC TTACATAAGA GGACTCTTGG ACTCTCAGCG 1680
ATGTCAACGA CCGACCTTGA GGCATACTTC AAAGACTGTT TGTTTAAGGA CTGGGAGGAG 1740
TTGGGGGAGG AGATTAGGTT AAAGGTCTTT GTACTAGGAG GCTGTAGGCA TAAATTGGTC 1800
TGTTCACCAG CACCATGCAA CTTTTTCACC TCTGCCTAAT CATCTCATGT TCATGTCCTA 1860
CTGTTCAAGC CTCCAAGCTG TGCCTTGGGT GGCTTTGGGG CATGGACATT GACCCGTATA 1920
AAGAATTTGG AGCTTCTGTG GAGTTACTCT CTTTTTTGCC TTCTGACTTC TTTCCTTCTA 1980
TTCGAGATCT CCTCGACACC GCCTCAGCTC TATATCGGGA GGCCTTAGAG TCTCCGGAAC 2040
ATTGTTCTCC TCATCATACA GCACTCAGGC AAGCTATTCT GTGTTGGGGT GAGTTGATGA 2100
ATCTGGCCAC CTGGGTGGGA AGTAATTTGG AAGACCCAGC ATCCAGGGAA TTAGTAGTCA 2160
GCTATGTCAA TGTTAATATG GGCCTAAAAA TCAGACAACT ACTGTGGTTT CACATTTCCT 2220
GTCTTACTTT TGGAAGAGAA ACTGTTCTTG AGTATTTGGT GTCTTTTGGA GTGTGGATTC 2280
GCACTCCTCC TGCTTACAGA CCACCAAATG CCCCTATCTT ATCAACACTT CCGGAAACTA 2340
CTGTTGTTAG ACGACGAGGC AGGTCCCCTA GAAGAAGAAC TCCCTCGCCT CGCAGACGAA 2400
GGTCTCAATC GCCGCGTCGC AGAAGATCTC AATCTCGGGA ATCTCAATGT TAGTATCCAT 2460
TGGACTCATA AGGTGGGAAA CTTTACTGGG CTTTATTCTT CTACTGTACC TGTCTTTAAT 2520
CCTGAGTGGC AAACTCCCTC CTTTCCTCAC ATTCATTTAC AGGAGGACAT TATTAATAGA 2580
TGTCAACAAT ATGTGGGCCC TCTTACAGTT AATGAAAAAA GGAGATTAAA ATTAATTATG 2640
CCTGCTAGGT TCTATCCTAA CCTTACCAAA TATTTGCCAT TGGACAAAGG CATTAAACCA 2700
TATTATCCTG AACATGCAGT TAATCATTAC TTCAAAACTA GGCATTATTT ACATACTCTG 2760
TGGAAGGCGG GCATTCTATA TAAGAGAGAA ACTACACGCA GTGCCTCATT CTGTGGGTCA 2820
CCATATTCTT GGGAACAAGA GCTACAGCAT GGGAGGTTGG TCTTCCAAAC CTCGACAAGG 2880
CATGGGGACG AATCTTTCTG TTCCCAATCC TCTGGGATTC TTTCCCGATC ACCAGTTGGA 2940
CCCTGCGTTC GGAGCCAACT CACACAATCC CGATTGGGAC TTCAACCCCA ACAAGGATCA 3000
TTGGCCAGAG GCAAATCAGG TAGGAGCGGG AGCATTCGGG CCAGGGTTCA CCCCACCACA 3060
CGGCGGTCTT TTGGGGTGGA GCCCGCAGGC TCAGGGCGTA TTGACAACCG TGCCAGTAGC 3120
ACCTCCTCCT GCCTCCACCA ATCGGCAGTC AGGAAGACAG CCTACTCCCA TCTCTCCACC 3180
TCTAAGAGAC AGTCATCCTC AGGCCATGCA GTGG 3214






3215 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


295
AACTCCACAA CATTCCACCA AGCTCTGCTA GACCCCAGAG TGAGGGGCCT ATACTTTCCT 60
GCTGGTGGCT CCAGTTCCGG AACAGTAAAC CCTGTTCCGA CTACTGCCTC ACCCATATCG 120
TCAATCTTCT CGAGGACTGG GGACCCTGCA CCGAACATGG AGAACACAAC ATCAGGATTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATA 240
CCACAGAGTC TACACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGCAGC ACCCACGTGT 300
CTTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCTTG TCCTCCAATT 360
TGTCCTGGTT ATCGTTGGAT GTGTCTGCGG CGTTTTATCA TATTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTACCAAG GTATGTTGTC TGTTTGTCCT 480
CTACTTCCAA GAACATCAAC TACCAGCACG GGACCATGCA AGACCTGCAC GATTCCTGCT 540
CAAGGAACCT CTATGTTTCC CTCTTCTTGC TGTACAAAAC CTTCGGACGG AAACTGCACT 600
TGTATTCCCA TCCCATCATC TTGGGCTTTC GCAAGATTCC TATGGGAGTG GGCCTCAGTC 660
CGTTTCTCCT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGC TTTCAGTTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAACATC 780
TTGAGTCCCT TTTTACCTCT ATTACCAATT TTCTTTTGTC TTTGGGTATA CATTTGAACC 840
CCAATAAAAC CAAACGTTGG GGCTATTCCC TTAATTTCAT GGGATATGTA ATTGGATGTT 900
GGGGTACTTT ACCGCAAGAA CATATTGTAC TAAAAATCAA GCAATGTTTT CGAAAACTGC 960
CTGTAAATAG ACCTATTGAT TGGAAAGTAT GTCAGAGAAT TGTGGGTCTT TTGGGCTTTG 1020
CTGCCCCTTT TACACAATGT GGCTATCCTG CCTTGATGCC TTTATATGCA TGTATACAAT 1080
CTAAGCAAGC TTTCACTTTC TCGCCAACTT ACAAGGCCTT TCTGTGTAAA CAATATCTGA 1140
ACCTTTACCC CGTTGCCCGG CAACGGTCAG GTCTCTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGATG GGGCTTGGCT ATTGGCCATC GCCGCATGCG TGGAACCTTT GTGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTGGCAG CCTGTTTTGC TCGCAGCCGG TCTGGAGCAA 1320
AACTTATCGG AACCGACAAC TCTGTTGTCC TCTCTCGGAA ATACACCTCC TTTCCATGGC 1380
TGCTCGGGTG TGCTGCCAAC TGGATCCTGC GCGGGACGTC CTTTGTCTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCGTCTCGGG GCCGTTTGGG CCTCTATCGT CCCCTTCTTC 1500
ATCTACCGTT CCGGCCGACC ACGGGGCGCA CCTCTCTTTA CGCGGTCTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGACCGT GTGCACTTCC CTTCACCTCT GCACGTCGCA TGGAGACCAC 1620
CGTGAACGCC CACCAGGTCT TGCCCAAGGT CTTACATAAG AGCACTCTTG GACTCTCAGC 1680
AATGTCAACG ACCGACCTTG AGGCATACTT CAAAGACTGT TTGTTTAAGG ACTGGGAGGA 1740
GTTGGGGGAG GAGATTAGGT TAAAGGTCTT TGTACTGGGA GGCTGTAGGC ATAAATTGGT 1800
CTGTTCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCATG TTCATGTCCT 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCGTAT 1920
AAAGAATTTG GAGCTTCTGT GGAGTTACTC TCTTTTTTGC CTTCTGACTT CTTTCCTTCT 1980
ATTCGAGATC TCCTCGACAC CGCCTCAGCT CTGTATCGGG AGGCCTTAGA GTCTCCGGAA 2040
CATTGCTCAC CTCACCATAC CGCACTCAGG CAAGCTATTC TGTGTTGGCG TGAGTTGATG 2100
AATCTGGCCA CCTGGGTGGG AAGTAATTTG GAAGACCCAG CATCCAGGGA ATTAGTAGTC 2160
AGCTATGTCA ATGTTAATAT CGGCCTAAAA ATCAGACAAC TACTGTGGTT TCACATTTCC 2220
TGTCTTACTT TTGGAAGAGA AACTGTTCTT GAGTATTTGG TGTCTTTTGG AGTGTGGATT 2280
CGCACTCCTC CTGCTTACAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAAACT 2340
ACTGTTGTTA GACGACGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCAGACGA 2400
AGGTCTCAAT CGCCGCGTCG CAGAAGATCT CAATCTCGGG AATCTCAATG TTAGTATCCC 2460
TTGGACTCAT AAGGTGGGAA ACTTTACTGG GCTTTATTCT TCTACTGTAC CTATCTTTAA 2520
TCCTGAGTGG CAAACTCCCT CCTTTCCTCA CATTCATTTA CAGGAGGACA TTATTAATAG 2580
ATGTCAACAA TATGTGGGCC CTCTTACAGT TAATGAAAAA AGGAGATTAA AGTTAATTAT 2640
GCCTGCTAGG TTCTATCCTA ACCTTACCAA ATATCTGCCC TTGGACAAAG GCATTAAACC 2700
ATATTATCCT GAACATGCAG TTAATCATTA CTTCAAAACT AGGCATTATT TACATACTCT 2760
GTGGAAGGCG GGCATTCTAT ATAAGAGAGA AACTACGCGC AGCGCCTCAT TTTGTGGGTC 2820
ACCATATTCT TGGGAACAAG AGCTACAGCA TGGGAGGTTG GTCTTCCAAA CCTCGACAAG 2880
GCATGGGGAC GAATCTTTCT GTTCCCAATC CTCTGGGATT CTTTCCCGAT CACCAGTTGG 2940
ACCCTGCGTT CGGAGCCAAC TCAAACAATC CAGATTGGGA CTTCAACCCC AACAAGGAAC 3000
ACTGGCCAGA GGCAAATCAG GTAGGAGCGG GAGCATTCGG GCCAGGGTTC ACCCCACCAC 3060
ACGGCGGTCT TTTGGGGTGG AGCCCTCAGG CTCAGGGCAT ATTGACAACA GTGCCAGTAG 3120
CACCTCCTCC TGCCTCCACC AATCGGCAGT CAGGAAGACA GCCTACTCCC ATCTCTCCAC 3180
CTCTAAGAGA CAGTCATCCT CAGGCCATGC AGTGG 3215






3215 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


296
AACTCCACAA CATTCCACCA AGCTGTGCTA GATCCCAGAG TGAGGGGCCT ATATCTTCCT 60
GCTGGTGGCT CCAGTTCCGG AACAGTGAAC CCTGTTCCGA CTACTGCCTC ACCCATATCG 120
TCAATCTTCT CGAGGACTGG GGACCCTGCA CCGAACATGG AGAACACAAC ATCAGGATTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATA 240
CCACAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAGC ACCCACGTGT 300
CCTGGCCCAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCTTG TCCTCCAATT 360
TGTCCTGGCT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TATTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTACCAAG GTATGTTGCC CGTTTGTCCT 480
CTACTTCCAG GAACATCAAC TACCAGCACG GGACCATGCA AGACCTGCAC GATTCCTGCT 540
CAAGGAACCT CTATGTTTCC CTCCTGTTGC TGTACAAAAC CTTCGGACGG AAACTGCACT 600
TGTATTCCCA TCCCATCATC CTGGGCTTTC GCAAGATTCC TATGGGAGTG GGCCTCAGTC 660
CGTTTCTCCT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGC TTTCAGTTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAACATC 780
TTGAGTCCCT TTTTACCTCT ATTACCAATT TTCTTTTGTC TTTGGGTATA CATTTGAACC 840
CTCATAAAAC CAAACGTTGG GGCTACTCCC TTAACTTCAT GGGATATGTA ATTGGAAGTT 900
GGGGTACTTT ACCACAGGAA CATATTGTAC TAAAAATCAA GCAATGTTTT CGGAAGCTGC 960
CTGTAAATAG ACCTATTGAT TGGAAAGTAT GTCAAAGGAT TGTGGGTCTT TTGGGCTTTG 1020
CTGCCCCTTT TACACAATGT GGCTATCCTG CCTTGATGCC TTTATATGCA TGTATACAAT 1080
CTAAGCAGGC TTTCACTTTC TCGCCAACTT ACAAGGCCTT TCTGTGTAAA CAATATCTGC 1140
ACCTTTACCC CGTTGCCCGG CAACGGTCAG GTCTCTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGATG GGGCTTGGCC ATTGGCCAAT CGGGCATGCG TGGAACCTTT GTGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCAG CTTGTTTTGC TCGCAGCCGG TCTGGAGCGA 1320
AACTTATCGG GACTGACAAC TCTGTTGTCC TCTCTCGGAA ATACACCTCC TTCCCATGGC 1380
TGCTCGGGTG TGCTGCCAAC TGGATCCTGC GCGGGACGTC CTTTGTCTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCGTCTCGGG GCCGTTTGGG CCTCTACCGT CCCCTTCTTC 1500
ATCTGCCGTT CCGGCCGACC ACGGGGCGCG CCTCTCTTTA CGCGGTCTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGTCCGT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAGACCAC 1620
CGTGAACGCC CACCAGGTCT TGCCCAAGGT CTTACATAAG AGGACTCTTG GACTCTCAGC 1680
GATGTCAACG ACCGACCTTG AGGCATATTT CAAAGACTGT TTGTTTAAAG ACTGGGAGGA 1740
GTTGGGGGAG GAGATTAGGT TAATGGTCTT TGTACTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGTTCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCCTG TTCATGTCCT 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTAGGG GCATGGACAT TGACACGTCT 1920
AAAGAATTTG GAGCTTCTGT GGAGTTACTC TCTTTTTTGC CTTCTGACTT CTTTCCTTCT 1980
ATTCGAGATC TCCTCGACAC CGCCTTTGCT CTGCATCGGG AGGCCTTAGA GTCTCCGGAA 2040
CATTGTTCAC CTCACCATAC AGCACTCAGG CAAGCTATTG TGTGTTGGGG TGAGTTGAGT 2100
AATCTGGCCA CCTGGGTGGG AAGTAATTTG GAAGACCCAG CATCCAGGGA ATTGGTAGTC 2160
AGCTATGTCA ATGTTAATAT GGGCCTAAAA ATCAGACAAC TATTGTGGTT TCACATTTCC 2220
TGTCTTACTT TTGGAAGAGA AACGGTTCTT GAGTATTTGG TATCTGTTGG AGTGTGGATT 2280
CGCACTCCTC AAGCCTACAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAAACT 2340
ACTGTTGTTA GACGACGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCAGACGA 2400
AGGTCTAAAT CGCCGCGTCG CAGAAGATCT CAATCTCGGG AATCTCAATG TTAGTATCCC 2460
TTGGACTCAT AAGGTGGGAA ACTTTACTGG TCTCTATTCT TCTACTGTAC CTGTCTTTAA 2520
TCCTGAGTGG CAAACTCCCT CCTTTCCTAA TATTCATTTA CAGGAGGATA TTATTAATAG 2580
ATGTCAACAA TATGTAGGCC CTCTTACAGT TAATGAAAAA AGGAGATTAA AATTAATTAT 2640
GCCTGCTAGG TTCTATCCTA ACCTTACCAA ATATTTGCCC TTGGATAAAG GTATTAAACC 2700
TTATTATCCT GAACATGCAG TTAATCATTA TTTCAAAACT AGGCATTATT TACATACTCT 2760
GTGGAAGGCT GGCATTCTAT ATAAGAGAGA AACTACACGT AGTGCCTCAT TTTGTGGGTC 2820
ACCATATTCT TGGGAACAAG AGCTACAGCA TGGGAGGTTG GTCTTCCAAA CCTCGACAAG 2880
GCATGGGGAC GAATCTTTCT GTTCCCAATC CTCTGGGATT CTTTCCCGAT CACCAGTTGG 2940
ACCCTGCATT CGGAGCCAAC TCAAACAATC CAGATTGGGA CTTCAACCCC AACAAGGATC 3000
ATTGGCCAGA GGCAAATCAG GTAGGAGCGG GAGCATTTGG GCCAGGGTTC ACTCCACCAC 3060
ACGGCGGTCT TTTGGGGTGG AGCCCTCAGG CTCAGGGCAT ATTGACAACA GTGCCAGCAG 3120
CGCCTCCTCC TGCCTCTACC AATCGGCAGT CAGGAAGACA GCCTACTCCC ATCTCTCCAC 3180
CTCTAAGAGA CAGTCATCCT CAGGCCATGC AGTGG 3215






3215 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


297
AACTCCACAA CATTCCACCA AGCTGTGCTA GATCCCAGAG TGAGGGGCCT ATATCTTCCT 60
GCTGGTGGCT CCAGTTCCGG AACAGTGAAC CCTGTTCCGA CTACTGCCTC ACCCATATCG 120
TCAATCTTCT CGAGGACTGG GGACCCTGCA CCGAACATGG AGAACACAAC ATCAGGATTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATA 240
CCACAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAGC ACCCACGTGT 300
CCTGGCCCAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCTTG TCCTCCAATT 360
TGTCCTGGCT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TATTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTACCAAG GTATGTTGCC CGTTTGTCCT 480
CTACTTCCAG GAACATCAAC TACCAGCACG GGACCATGCA AGACCTGCAC GATTCCTGCT 540
CAAGGAACCT CTATGTTTCC CTCCTGTTGC TGTACAAAAC CTTCGGACGG AAACTGCACT 600
TGTATTCCCA TCCCATCATC CTGGGCTTTC GCAAGATTCC TATGGGAGTG GGCCTCAGTC 660
CGTTTCTCCT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGC TTTCAGTTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAACATC 780
TTGAGTCCCT TTTTACCTCT ATTACCAATT TTCTTTTGTC TTTGGGTATA CATTTGAACC 840
CTCATAAAAC CAAACGTTGG GGCTACTCCC TTAACTTCAT GGGATATGTA ATTGGAAGTT 900
GGGGTACTTT ACCACAGGAA CATATTGTAC TAAAAATCAA GCAATGTTTT CGGAAGCTGC 960
CTGTAAATAG ACCTATTGAT TGGAAAGTAT GTCAAAGGAT TGTGGGTCTT TTGGGCTTTG 1020
CTGCCCCTTT TACACAATGT GGCTATCCTG CCTTGATGCC TTTATATGCA TGTATACAAT 1080
CTAAGCAGGC TTTCACTTTC TCGCCAACTT ACAAGGCCTT TCTGTGTAAA CAATATCTGC 1140
ACCTTTACCC CGTTGCCCGG CAACGGTCAG GTCTCTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGATG GGGCTTGGCC ATTGGCCAAT CGGGCATGCG TGGAACCTTT GTGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCAG CTTGTTTTGC TCGCAGCCGG TCTGGAGCGA 1320
AACTTATCGG GACTGACAAC TCTGTTGTCC TCTCTCGGAA ATACACCTCC TTCCCATGGC 1380
TGCTCGGGTG TGCTGCCAAC TGGATCCTGC GCGGGACGTC CTTTGTCTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCGTCTCGGG GCCGTTTGGG CCTCTACCGT CCCCTTCTTC 1500
ATCTGCCGTT CCGGCCGACC ACGGGGCGCG CCTCTCTTTA CGCGGTCTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGTCCGT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAGACCAC 1620
CGTGAACGCC CACCAGGTCT TGCCCAAGGT CTTACATAAG AGGACTCTTG GACTCTCAGC 1680
GATGTCAACG ACCGACCTTG AGGCATATTT CAAAGACTGT TTGTTTAAAG ACTGGGAGGA 1740
GTTGGGGGAG GAGATTAGGT TAATGGTCTT TGTACTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGTTCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCCTG TTCATGTCCT 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTAGGG GCATGGACAT TGACACGTAT 1920
AAAGAATTTG GAGCTTCTGT GGAGTTACTC TCTTTTTTGC CTTCTGACTT CTTTCCTTCT 1980
ATTCGAGATC TCCTCGACAC CGCCTTTGCT CTGCATCGGG AGGCCTTAGA GTCTCCGGAA 2040
CATTGTTCAC CTCACCATAC AGCACTCAGG CAAGCTATTG TGTGTTGGGG TGAGTTGATG 2100
AATCTGGCCA CCTGGGTGGG AAGTAATTTG GAAGACCCAG CATCCAGGGA ATTGGTAGTC 2160
AGCTATGTCA ATGTTAATAT GGGCCTAAAA ATCAGACAAC TATTGTGGTT TCACATTTCC 2220
TGTCTTACTT TTGGAAGAGA AACGGTTCTT GAGTATTTGG TATCTGTTGG AGTGTGGATT 2280
CGCACTCCTC AAGCCTACAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAAACT 2340
ACTGTTGTTA GACGACGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCAGACGA 2400
AGGTCTAAAT CGCCGCGTCG CAGAAGATCT CAATCTCGGG AATCTCAATG TTAGTATCCC 2460
TTGGACTCAT AAGGTGGGAA ACTTTACTGG TCTCTATTCT TCTACTGTAC CTGTCTTTAA 2520
TCCTGAGTGG CAAACTCCCT CCTTTCCTAA TATTCATTTA CAGGAGGATA TTATTAATAG 2580
ATGTCAACAA TATGTAGGCC CTCTTACAGT TAATGAAAAA AGGAGATTAA AATTAATTAT 2640
GCCTGCTAGG TTCTATCCTA ACCTTACCAA ATATTTGCCC TTGGATAAAG GTATTAAACC 2700
TTATTATCCT GAACATGCAG TTAATCATTA TTTCAAAACT AGGCATTATT TACATACTCT 2760
GTGGAAGGCT GGCATTCTAT ATAAGAGAGA AACTACACGT AGTGCCTCAT TTTGTGGGTC 2820
ACCATATTCT TGGGAACAAG AGCTACAGCA TGGGAGGTTG GTCTTCCAAA CCTCGACAAG 2880
GCATGGGGAC GAATCTTTCT GTTCCCAATC CTCTGGGATT CTTTCCCGAT CACCAGTTGG 2940
ACCCTGCATT CGGAGCCAAC TCAAACAATC CAGATTGGGA CTTCAACCCC AACAAGGATC 3000
ATTGGCCAGA GGCAAATCAG GTAGGAGCGG GAGCATTTGG GCCAGGGTTC ACTCCACCAC 3060
ACGGCGGTCT TTTGGGGTGG AGCCCTCAGG CTCAGGGCAT ATTGACAACA GTGCCAGCAG 3120
CGCCTCCTCC TGCCTCTACC AATCGGCAGT CAGGAAGACA GCCTACTCCC ATCTCTCCAC 3180
CTCTAAGAGA CAGTCATCCT CAGGCCATGC AGTGG 3215






3212 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


298
AACTCCACCA CATTCCACCA AGCTCTGCTA GATCCCAGAG TGAGGGGCCT ATATTTTCCT 60
GCTGGTGGCT CCAGTTCCGG AACAGTAAAC CCTGTTCCGA CTACTGCCTC ACCCATATCG 120
TCAATCTTCT CGAGGACTGG GGACCCTGCG CCGAACATGG AGAACACAAC ATCAGGATTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATA 240
CCACAGAGTC TAGACTCGTG GACTTCTCTC AATTTTCTAG GGGGAGCACC CACGTGTCCT 300
GGCCAAAATT CGCAGTCCCC AACCTCCAAT CACTCACCAA CCTCTTGTCC TCCAATTTGT 360
CCTGGCTATC GCTGGATGTG TCTGCGGCGT TTTATCATAT TCCTCTTCAT CCTGCTGCTA 420
TGCCTCATCT TCTTGTTGGC TCTTCTGGAC TACCAAGGTA TGTTGCCCGT TTGTCCTCTA 480
CTTCCAGGAA CATCAACTAC CAGCACGGGA CCATGCAAGA CCTGCACGAT TCCTGCTCAA 540
GGAACCTCTA TGTTTCCCTC TTGTTGCTGT ACAAAACCTT CGGACGGAAA TTGCACTTGT 600
ATTCCCATCC CGTCATCTTG GGCTTTCGCA AGATTCCTAT GGGAGTGGGC CTCAGTCCGT 660
TTCTCCTGGC TCAGTTTACT AGTGCCATTT GTTCAGTGGT TCGCAGGGCT TTCCCCCACT 720
GTTTGGCTTT CAGTTATATG GATGATGTGG TATTGGGGGC CAAGTCTGTA CAACATCTTG 780
AGTCCCTTTA TACCTCTATT ACCAATTTTC TTGTGTCTTT GGGTATACAT TTGAACCCTA 840
ATAAAACCAA ACGTTGGGGC TACTCCCTTA ACTTCATGGG ATATGTAATT GGAAGTTGGG 900
GTACGTTACC ACAGGAACAT ATTGTACAAA AAATCAAGCA ATGTTTTCGG AAACTGCCTG 960
TAAATAGACC TATTGATTGG AAAGTATGTC AAAGAATTGT GGGTCTTTTG GGCTTTGCTG 1020
CCCCTTTTAC ACAATGTGGT TATCCTGCCT TGATGCCTTT ATATGCATGT ATACAAGCTA 1080
AGCAGGCTTT TACTTTCTCG TCAACTTACA AGGCCTTTCT GTGTAAACAA TATCTGCACC 1140
TTTACCCCGT TGCCCGGCAA CGGTCAGGTC TCTGCCAAGT GTTTGCTGAC GCAACCCCCA 1200
CTGGATGGGG CTTGGCCATA GGCCATCGGC GCATGCGTGG AACCTTTGTG GCTCCTCTGC 1260
CGATCCATAC TGCGGAACTC CTAGCAGCTT GTTTTGCTCG CAGCCGGTCT GGAGCGAAAC 1320
TTATCGGGAC TGACAACTCT GTTGTCCTCT CTCGGAAATA CACCTCCTTC CCATGGCTGC 1380
TCGGATGTGC TGCCAACTGG ATCCTGCGCG GGACGTCCTT TGTCTACGTC CCGTCGGCGC 1440
TGAATCCCGC GGACGACCCG TCTCGGGGTC GTTTGGGCCT CTACCGTCCC CTTCTTCATT 1500
TGCCGTTCCG GCCGACCACG GGGCGCACCT CTCTTTACGC GGTCTCCCCG TCTGTGCCTT 1560
CTCATCTGCC GGACCGTGTG CACTTCGCTT CACCTCTGCA CGTCGCATGG AGACCACCGT 1620
GAACGCCCAT CAGGTGTTGC CCAAGGTCTT ATATAAGAGG ACTCTTGGAC TTTCAGCAAT 1680
GTCAACGACC GACCTTGAGG CATACTTCAA AGACTGTTTG TTTAAGGACT GGGAGGAGTT 1740
GGGGGAGGAA CTTAGGTTAA TGATCTTTGT ACTAGGAGGC TGTAGGCATA AATTGGTCTG 1800
TTCACCAGCA CCATGCAACT TTTTCACCTC TGCCTAATCA TCTCTTGTTC ATGTCCTATG 1860
GTTCAAGCCT CCAAGCTGTG CCTTGGGTGG CTTTAGGACA TGGACATTGA CCCATATAAA 1920
GAATTTGGAG CTTCTGTGGA GTTACTCTCT TTTTTGCCTT CTGACTTCTT TCCTTCTATT 1980
CGAGATCTCC TCGACACCGC CTCTGCTCTG TATCGGGAGG CCCTAGAGTC TCCGGAGCAT 2040
TGTACACCTC ACCATACAGC ACTCAGGCAA GCTATTCTGT GTTGGGGTGA GTTGATGAAC 2100
CTGGCCACCT GGGTGGGAAG TAATTTGGAA GATCCAACAT CCAGGGAAGC AGTAGTCAGC 2160
TATGTCAATG TTAATATGGG CCTAAAACTC AGACAACTAT TGTGGTTTCA CATTTCCTGT 2220
CTTACTTTTG GAAGAGATAC TGTTCTTGAG TATTTGGTGT CTTTTGGAGT GTGGATTCGC 2280
ACTCCTACCG CTTACAGACC ACCAAATGCC CCTATCTTAT CAACACTTCC GGAAACTACT 2340
GTTGTTAGAC GACGAGGCAG GTCCCCTAGA AGAAGAACTC CCTCGCCTCG CAGACGAAGG 2400
TCTCAATCGC CGCGTCGCAG AAGATCTCAA TCTCGGGAAC CTCAATGTTA ATGTCCCTTG 2460
GACTCATAAG GTGGGAAACT TTACAGGACT TTACTCTTCT ACTGTACCTG TCTTTAATCC 2520
TGAGTGGCAA ACTCCCTCCT TTCCTAACAT TCATTTACAG GAGGACATTA TTGATAGATG 2580
TCAACAATAT GTGGGCCCTC TTACAGTTAA TGAAAAAAGG AGATTAAAAT TAATTATGCC 2640
TGCTAGGTTT TATCCAAACC TTACCAAATA TTTGCCCTTG GATAAAGGCA TTAAACCTTA 2700
TTATCCTGAA CATGCAGTTA ATCATTACTT TCAAACTAGG CATTATTTAC ATACTCTGTG 2760
GAAGGCTGGC ATTCTATATA AGAGAGAAAC TACCCGCAGC GCTTCATTTT GTGGGTCACC 2820
ATATTCTTGG GAACAAGAGC TACAGCATGG GAGGTTGGTC TTCCAAACCT CGACAAGGCA 2880
TGGGGACGAA TCTTTCTGTT CCCAATCCTC TGGGATTCTT TCCCGATCAC CAGTTGGACC 2940
CTGCGTTCGG AGCCAACTCA AACAATCCAG ATTGGGACTT CAACCCCAAC AAGGATCATT 3000
GGCCAGAGGC CAATCAGGTA GGAGTGGGAG CATTCGGGCC AGGGTTCACC CCACCACACG 3060
GCGGTCTTTT GGGGTGGAGC CCTCAGGCTC AGGGCATATT GACAACAGTG CCAGCAGCGC 3120
CTCCTCCTGC CTCTACCAAT CGGCAGTCAG GAAGACAGCC AACTCCCATC TCTCCACCTC 3180
TAAGAGACAG TCATCCTCAG GCCATGCAGT GG 3212






3215 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


299
AACTCCACAA CATTCCAACA AGCTCTGCAG GATCCCAGAG TCAGGGTCCT TTATTTTCCT 60
GCTGGTGGCT CCAGTTCCGG AACAGTAAAC CCTGTTCCGA CTACTGCCTC TCTCATTTCG 120
TCAATCTTCT CGAGGATTGG GGACCCTGTA ACGAACATGG AGAACACAAC ATCAGGATTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAAAAT CCTCACAATA 240
CCACAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAGC ACCCGTGTGT 300
CCTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCTTG TCCTCCAATT 360
TGTCCTGGCT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TCTTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTACCAAG GTATGTTGCC CGTTTGTCCT 480
CTACTTCCAG GAACATCAAC TACCAGCACG GGACCATGCA AGACCTGCAC GATTCCTGCT 540
CAAGGAACCT CTATGTTTCC CTCATGTTGC TGTACAAAAC CTTCGGACGG AAACTGCACT 600
TGTATTCCCA TCCCATCATC CTGGGCTTTC GTAAGATTCC TATGGGAGTG GGCCTCAGTC 660
CGTTTCTCCT GGCTCAGTTT ACTAGCGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGC TTTCAGTTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAACATC 780
TTGAGTCCCT TTATACCTCT ATTACCAATT TTCTTTTGTC TTTGGGTATA CATTTAAACC 840
CTAATAAAAC CAAAAGATGG GGCTATTCCC TTAACTTCAT GGGCTATGTA ATTGGAAGTT 900
GGGGTACCTT ACCACAAGAA CATATTGTAC TAAAAATCAC ACAATGTTTT CGAAAACTTC 960
CTGTTAATAG GCCTATTGAT TGGAAAGTGT GTCAAAGAAT TGTGGGTCTT TTGGGCTTTG 1020
CTGCCCCTTT TACACAATGT GGGTATCCTG CCTTAATGCC CTTGTATGCC TGTATTCAAG 1080
CTAAGCAGGC TTTCACTTTC TCGCCAACTT ATAAGGCCTT TCTGTGTAAA CAATATCTGA 1140
ACCTTTACCC CGTTGCCCGG CAACGGTCTG GTCTTTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGCTG GGGCTTGGCC ATGGGCCATC AGCGCATGCG TGGAACCTTT GTGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCGG CTTGTTTTGC TCGCAGCCGG TCTGGAGCAA 1320
ACATTATCGG AACCGACAAC TCTGTCGTCC TCTCTCGGAA ATACACATCC TTTCCATGGC 1380
TGCTCGGGTG TGCTGCCAAC TGGATCCTAC GCGGGACGTC CTTTGTTTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCGTCTCGCG GCCGTTTGGG GCTCTACCGT CCCCTTCTTT 1500
GTCTGCGGTT CCGGCCAACC ACGGGGCGCA CCTCTCTTTA CGCGGTCTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGACCGT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAAACCAC 1620
CGTGAACGCC CACATGGTCT TGCCCAAGGT CTTGCATAAG AGAACTCTTG GACTCTCAGC 1680
AATGTCAACG ACCGACCTTG AGGCATATTT CAAAGACTGT GTGTTCAAAG ACTGGGAGGA 1740
GTTGGGGGAG GAGGTTAGAT TAAAGGTCTT TGTACTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGCGCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCATG TTCATGTCCT 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCTTAT 1920
AAAGAATTTG GAGCTTCTGT GGAGTTACTC TCTTTTTTGC CTTCTGATTT CTTTCCATCT 1980
ATTCGAGACC TCCTCGACAC CGCCTCAGCT CTGTATCGGG AGGCCTTAGA GTCTCCGGAG 2040
CATTGTTCAC CTCACCATAC AGCACTCAGG CAAGCTGTTC TGTGTTGGGG TGAGTTAATG 2100
AATCTGGCTA CCTGGGTGGG AAGTAATTTG GAAGACCCAG CATCAAGAGA ATTGGTAGTC 2160
AGTTATGTCA ATGTTAATAT GGGCCTAAAA ATCAGGCAAC TGTTGTGGTT TCATATTTCC 2220
TGTCTTACTT TTGGAAGAGA AACTGTTCTT GAGTACTTGG TGTCCTTTGG AGTGTGGATT 2280
CGCACTCCTC CCGCTTACAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAAACT 2340
ACTGTTGTTA GACGAAGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCAGACGA 2400
AGGTCTCAAT CGCCGCGTCG CAGAAGATCT CAATCTCGGG AATCCCAATG TTAGTATCCC 2460
TTGGACTCAT AAGGTGGGAA ACTTTACTGG GCTTTATTCT TCTACTGTAC CTGTCTTTAA 2520
TCCTGAATGG CAAACTCCCT CTTTTCCTGA CATTCATTTG CAGGAGGACA TTATTAATAG 2580
ATGTCAACAA TATGTGGGCC CTCTTACAGT TAATGAAAAA AGAAGATTAA AATTAATTAT 2640
GCCTGCTAGG TTTTATCCTA ACCTTACTAA ATATTTGCCC TTAGACAAAG GCATTAAACC 2700
TTATTATCCA GAACAGACAG TTAATCATTA CTTCAAAACT AGGCATTATT TGCATACTCT 2760
GTGGAAGGCT GGTAGTCTAT ATAAGAGAGA AACTACACGC AGCGCCTCAT TTTGTGGGTC 2820
ACCATATTCT TGGGAACAAG AGCTACAGCA TGGGAGGTTG GTCTTCAAAA CCTCGGAAAG 2880
GCATGGGGAC GAATCTTTCG GTACCCAATC CTCTGGGATT CTTTCCCGAT CACCAGTTGG 2940
ACCCTGCGTT CGGAGCCAAC TCAAACAATC CCGATTGGGA CTTCAACCCC AACAAGGATC 3000
ACTGGCCAGA GGCAAATCAG GTAGGAGCGG GAGCATTCGG GCCAGGGTTC ACCCCACCAC 3060
ACGGAGGTCT TTTGGGGTGG AGCCCTCAGG CCCAGGGCAT ATTGACAACA GTGCCAGCAG 3120
CTCCTCCTTC TGCCTCCACC AATCGGCAGT CAGGAAGACA GCCTACGCCC ATCTCTCCAC 3180
CTCTAAGAGA CAGTCATCCT CAGGCCATGC AGTGG 3215






3215 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


300
AACTCCACAA CATTCCAACA AGCTCTGCTA GATCCCAGAG TGAGGGGCCT ATATTTTCCT 60
GCTGGTGGCT CCAGTTCCGG AACAGTAAAC CCTGTTCCGA CTACTGCCTC TCTCATTTCG 120
TCAATCTTCT CGAGGACTGG GGACCCTGTA ACGAACATGG AGAACACAAC ATCAGGATTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATA 240
CCACAGAGTC TAGACTCGGG GTGGACTTCT CTCAATTTTC TAGGGGAAGC ACCAAGGTGT 300
CCTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCTTG TCCTCCAATT 360
TGTCCTGGCT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TCTTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTACCAAG GTATGTTGCC CGTTTGTCCT 480
CTACTTCCAG GAACATCAAC TACCAGCACG GGACCATGCA AGACCTGCAC GATTCCTGCT 540
CAAGGAACCT CTATGTTTCC CTCATGTTGC TGTACAAAAC CTTCGGACGG AAACTGCACT 600
TGTATTCCCA TCCCATCATC CTGGGCTTTC GTAAGATTCC TATGGGAGTG GGCCTCAGTT 660
CGTTTCTCCT GGCTCAGTTT ACTAGCGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGC TTTCAGTTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAACATC 780
TTGAGTCCCT TTATACCTCT ATTACCAATT TTCTTTTGTC TTTGGGTATA CATTTGAACC 840
CTAATAAGAC CAAAAGATGG GGCTATTCCC TTAACTTCAT GGGCTATGTA ATTGGAAGTT 900
GGGGTACCTT ACCACAAGAA CATATTGTAC TAAAAATCAA ACAATGTTTT CGAAAACTTC 960
CTGTAAATAG GCCTATTGAT TGGAAGGTCT GCCAAAGAAT TGTGGGTCTT TTGGGATTTG 1020
CTGCCCCTTT TACACAATGT GGATATCCTG CCTTAATGCC TTTGTATGCA TGTATTCAAG 1080
CTAAGCAAGC TTTCACTTTT TCGTCAACTT ACAAAGCCTT TCTGTGTAAA CAATATCTGA 1140
ACCTTTACCC CGTTGCCCGG CAACGGTCTG GTCTCTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGCTG GGGCTTGGCC ATTGGCAATC AGCGCATGCG TGGAACCTTT GTGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCAG CTTGTTTTGC TCGCAGCCGG TCTGGAGCAA 1320
AACTTATCGG AACTGACAAC TCTGTCGTCC TCTCTCGCAA ATACACATCC TTTCCATGGG 1380
TGCTCGGCTG TGCTGCCAAC TGGATCCTAC GAGGGACGTC CTTTGTTTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCGTCTCGGG GCCGTTTGGG GATCTACCGT CCCCTTCTTC 1500
GTCTGCGGTT CCGGCCAACC ACGGGGCGCA CCTCTCTTTA CGCGGTCTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGACCGT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAGACCAC 1620
CGTGAACGCC CACATGGTAT TGCCCAAGGT CTTGCATAAG AGGACTCTTG GACTCTCAGC 1680
GATGTCAACG ACCGACCTTG AGGCATACTT CAAAGACTGT GTATTTAAAG ACTGGGAGGA 1740
GTTGGGGGAG GAGATTAGAT TAAAGGTCTT TGTACTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGCGCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCATG TTCATGTCCT 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCTTAT 1920
AAAGAATTTG GAGCTTCTGT GGAGTTACTC TCTTTTTTGC CTTCTGATTT CTTTCCATCT 1980
ATTCGAGACC TCCTCGACAC CGCCTCAGCT CTGTATCGGG AGGCCTTAGA GTCTCCGGAA 2040
CATTGTTCAC CTCACCATAC AGCACTCAGG CAAGCTGTTC TGTGTTGGGG TGAGTTAATG 2100
AATCTGGCTA CCTGGGTGGG AAGTAATTTG GAAGACCCAG CATCCAGGGA ATTAGTGGTC 2160
AGTTATGTCA ACATTAATAT GGGCCTAAAA ATCAGACAAC TATTGTGGTT TCACATTTCC 2220
TGTCTTACTT TTGGAAGAGA AACTGTTCTT GAGTATTTGG TGTCTTTTGG AGTGTGGATT 2280
CGCACTCCTC CCGCTTACAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAAACT 2340
ACTGTTGTTA GACGTCGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCAGACGA 2400
AGGTCTCAAT CACCGCGTCG CAGAAGATCT CAATCTCGGG AATCCCAATG TTAGTATCCC 2460
TTGGACTCAT AAGGTGGGAA ACTTTACTGG GCTTTATTCT TCTACTGTAC CTGTCTTTAA 2520
TCCTGAATGG CAAACTCCCT CTTTTCCTGA CATTCATTTG CAGGAGGACA TTATTAATAG 2580
ATGTCAACAA TATGTGGGCC CTCTTACAGT TAATGAAAAA AGAAGATTAA AATTAATTAT 2640
GCCTGCTAGG TTTTATCCTA ACCTTACCAA ATATTTGCCC TTAGATAAAG GCATTAAACC 2700
TTATTATCCT GAACATGCAG TTAATCATTA CTTCAAAACA AGGCATTATT TACATACTCT 2760
GTGGAAGGCT GGCATCTTAT ATAAAAGAGA AACTACACGC AGTGCCTCAT TTTGTGGGTC 2820
ACCATATTCT TGGGAACAAG AGCTACAGCA TGGGAGGTTG GTCTTCCAAA CCTCGGAAAG 2880
GCATGGGGAC GAATCTTTCT GTTCCCAATC CTCTGGGATT CTTTCCCGAT CACCAGTTGG 2940
ACCCTGCATT CGGAGCCAAC TCAAACAATC CAGATTGGGA CTTCAACCCC AACAAGGATC 3000
AATGGCCAGA GGCAAATCAG GTAGGAGCGG GAGCATTCGG GCCAGGGTTC ACCCCACCAC 3060
ACGGAGGTCT TTTGGGGTGG AGCCCTCAGG CACAAGGCAT ATTGACAACA CTGCCAGCAG 3120
CTCCTCCTCC TGCCTCCACC AATCGGCAGT CAGGAAGACA GCCTACGCCC ATCTCTCCAC 3180
CTCTAAGAGA CAGTCATCCT CAGGCCATGC AGTGG 3215






3161 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


301
AATTCCACAA CCTTCCACCA AACTCTACAA GATCCCCCTG CTGGTGGCTC CAGTTCAGGA 60
ACAGTAAACC CTGTTCCGAC TACTGTCTCT CACATATCGT CAATCTTCAC GAGGATTGGA 120
GACCCTGCAC TGAACATGGA GAACATCACA TCAGGATTCC TAGGACCCCT GCTCGTGTTG 180
CAGGCGGGGT TTTTCTTGTT GACAAGAATC CTCACAATAC CGCAGAGTCT AGACTCGTGA 240
TGGACTTCTC TCAATTTTCT AGGGGGAACT ACCGTGTGTC TTGGCCAAAA TTCGCAGTCG 300
CCAACCTCCA ATCACTCACC AACCTCCTGT CCTCCAACTT GTCCTGGTTA TCGCTGGATC 360
TGTCTGCGGC GTTTTATCAT CTTCCTCTTC ATCCTGCTGC TATGCCTCAT CTTCTTGTTG 420
GTTCTTCTGG ACTATCAAGG TATGTTGCCC GTTTGTCCTC TAATTCCAGG ATCTTCAACG 480
ACCAGCACGG GACCATGCAG GACCTGCACG ACTCCTGCTC AAGGCAACTC TATGTATCCC 540
TCCTGTTGCT GTACCAAACC TTCGGACGGA AATTGCACCT GTATTCCCAT CCCATCATCT 600
TGGGCTTTCG GAAAATTCCT ATGGGAGTGG GCCTCAGCCC GTTTCTCCTG GCTCAGTTTA 660
CTAGTGCCAT TTGTTCAGTG GTTCGTAGGG CTTTCCCCCA CTGTTTGGCT TTCAGTTATA 720
TGGATGATGT GGTATTGGGG GCCAAGTCTG TACAGCATCT TGAGTCCCTT TTTACCGCTG 780
TTACCAATTT TCTTTTGTCT TTGGGCATAC ATTTAAACCC TAACAAAACA AAAAGATGGG 840
GTTACTCTTT ACACTTCATG GGCTATGTCA TTGGATGTTA TGGGTCATTG CCACAAGATC 900
ACATCAGACA GAAAATCAAA GAATGTTTTA GAAAACTTCC TGTTAACAGG CCTATTGATT 960
GGAAAGGCTG TCAACGAATT GTGGGTTTAT TGGGTTTTGC TGCCCCTTTT ACACAATGTG 1020
GTTATCCTGC GTTGATGCCT TTGTATGCAT GTATTCAATC TAAGCAGGCT TTCACTTTCT 1080
CGCCAACTTA CAAGGCCTTT CTGTGTAAAC AATACCTGAA CCTTTACCCC GTTGCCCGGC 1140
AACGGCCAGG TCTGTGCCAA GTGTTTGCTG ACGCAACCCC CACTGGCTGG GGCTTGGTCA 1200
TGGGCCATCA GCGCATGCGT GGAACCTTTC GGGCTCCTCT GCCGATCCAT ACTGCGGAAC 1260
TCCTAGCCGC TTGTTTTGCT CGCAGCAGGT CTGGAGCAAA CATTCTCGGG ACGGATAACT 1320
TTGTTGTCCT ATCCCGCAAA TATACATCGT TTCCATGGCT GCTAGGCTGT GCTGCCAACT 1380
GGATCCTGAG CGGGACGTCC TTCGTTTACG TCCCGTCGGC GCTGAATCCA GCGGACGACC 1440
CTTCTCGGGG CCGCTTGGGA CTCTCTCGTC CCCTTCTCCG TCTGCCGTTT CGTCCGACCA 1500
CGGGGCGCAC CTCTCTTTAC GCGGACTCCC CGTCTGTGCC TTCTCATCTG CCGGACCGTG 1560
TGCACTTCGC TTCACCTCTG CACGTCGCAT GGAGACCACC GTGAACGCCC ACCAATTCTT 1620
GCCCAAGGTC TTACATAAGA GGACTCTTGG ACTCTCAGCA ATGTCAACGA CCGACCTTGA 1680
GGCATACTTC AAAGACTGTT TGTTTAAAGA GTGGGAGGAG TTGGGGGAGG AGATTAGATT 1740
AAAGTTGTTT GTATTAGGAG GCTGTAGGCA TAAATTGGTC TGCGCACCAG CACCATGCAA 1800
CTTTTTCACC TCTGCCTAAT CATCTCTTGT TCATGTCCTA CTGTTCAAGC CTCCAAGCTG 1860
TGCCTTGGGT GGCTTTAGGA CATGGACATT GATCCTTATA AAGAATTTGG AGCTTCTATG 1920
GAGTTGCTCT CGTTTTTGCC TTCTGACTTC TATCCTTCAG TACGAGATCT TCTAGATACC 1980
GCCTCAGCTC TATATCGGGA AGCCTTAGAG TCTCCTGAGC ATTGTACACC TCATCATACT 2040
GCACTCAGGC AAGCAATTCT TTGCTGGGGG GAATTAATGA CTCTAGCCAC CTGGGTGGGT 2100
GGTAATTTGC AAGATCCAAC ATCCAGGGAC CTAGTAGTCA GTTATGTTAA CACTAATATG 2160
GGCCTAAAGT TCAGGCAACT ATTGTGGTTT CACGTTTCTT GTCTCACTTT TGGAAGAGAA 2220
ACAGTCGTAG AGTATTTGGT GTCTTTTGGA GTGTGGATTC GCACTCCTCA AGCTTATAGA 2280
CCACCAAATG CCCCTATCTT ATCAACACTT CCGGAGACTT GTGTTGTTAG ACGACGAGGC 2340
AGGTCCCCTA GAAGAAGAAC TCCCTCGCCT CGCAGACGAA GGTCTCAATC GCCGCGTCGC 2400
AGAAGATCTC AATCTCGGGA ATCTCAATGT TAGTATTCCT TGGACTCATA AGGTGGGAAA 2460
CTTTACGGGG CTTTATTCTT CTACTGTTCC TGTCTTTAAC CCTCATTGGA AAACACCCTC 2520
TTTTCCTAAT ATACATTTAC ACCAAGACAT TATCAAAAAA TGTGAACAAT TTGTAGGCCC 2580
ACTCACAGTC AATGAGAAAA GAAGACTGCA ATTGATTATG CCTGTCAGGT TTTATCCAAT 2640
GGTTACCAAA TATTTGCCAT TGGATAAGGG TATTAAACCG TATTATCCAG AACATCTAGT 2700
TAATCATTAC TTCCAAACCA GACATTATTT ACACACTCTA TGGAAGGCGG GTGTATTATA 2760
TAAGAGAGAA ACAACACATA GCGCCTCATT TTGTGGATCA CCATATTCTT GGGAACAAGA 2820
GATACAGCAT GGGGCAGAAT CTTTCCACCA GCAATCCTCT GGGATTCTTT CCCGACCACC 2880
AGTTGGATCC AGCCTTCAGA GCAAACACCG CAAATCCAGA TTGGGACTTC AATCCCAACA 2940
AGGACACCTG GCCAGACGCC AACAAGGTAG GAGCTGGAGC ATTCGGGCTG GGACTCACCC 3000
CACCGCACGG AGGCCTTTTG GGGTGGAGCC CTCAGGCTCA GGGCATACTA CAGACCGTGC 3060
CAGCAAATCC GCCTCCTGCC TCTACCAATC GCCAGACAGG AAGGCAGCCT ACCCCTCTGT 3120
CTCCACCTTT GAGAGACACT CATCCTCAGG CCATGCAGTG G 3161






3182 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


302
AACTCCACAA CCTTCCACCA AACTCTGCAA GATCCCAGAG TGAGAGGCCT GTATTTCCCT 60
GCTGGTGGCT CCAGTTCAGG AACAGTAAAC CCTGTTCCGA CTACTGCCTC TCACTTATCG 120
TCAATCTTCT CGAGGATTGG GGACCCTGCG CTGAACATGG AGAACATCAC ATCAGGATTC 180
CTAGGACCCC TTCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATA 240
CCGCAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAAC TACCGTGTGT 300
CTTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCCTG TCCTCCAACT 360
TGTCCTGGTT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TCTTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTATCAAG GTATGTTGCC CGTTTGTCCT 480
CTAATTCCAG GATCCTCAAC CACCAGCACG GGACCATGCC GAACCTGCAC GACTCCTGCT 540
CAAGGAACCT CTATGTATCC CTCCTGTTGC TGTACCAAAC CTTCGGACGG AAATTGCACC 600
TGTATTCCCA TCCCATCATC CTGGGCTTTC GGAAAATTCC TATGGGAGTG GGCCTCAGCC 660
CGTTTCTCCT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGC TTTCAGTTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAGCATC 780
TTGAGTCCCT TTTTACCGCT GTTACCAATT TTCTTTTGTC TTTGGGTATA CATTTAAACC 840
CTAACAAAAC AAAGAGATGG GGTTACTCTC TAAATTTTAT GGGCTATGTC ATTGGATGTT 900
ATGGGTCCTT GCCACAAGAA CACATCATAC AAAAAATCAA AGAATGTTTT AGAAAACTTC 960
CTGTTAACAG GCCTATTGAT TGGAAAGTAT GTCAACGAAT TGTGGGTCTT TTGGGTTTTG 1020
CTGCCCCTTT TACTCAATGT GGTTATCCTG CTTTAATGCC CTTGTATGCA TGTATTCAAT 1080
CTAAGCAGGC TTTCACTTTC TCGCCAACTT ACAAGGCCTT TCTGTGTAAA CAATACCTGA 1140
ACCTTTACCC CGTTGCCGGG CAACGGCCAG GTCTATGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGCTG GGGCTTGGCT ATGGGCCATC AGCGCATGCG TGGAACCTTT TCGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCCG CTTGTTTTGC TCGCAGCAGG TCTGGAGCAA 1320
ACATTATCGG GACTGATAAC TCTGTTGTCC TCTCCCGCAA ATATACATCG TTTCCATGGC 1380
TGCTAGGCTG TGCTGCCAAC TGGATCCTGC GCGGGACGTC CTTTGTTTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCGTCTCGGG GTCGCTTGGG ACTCTCTCGT CCCCTTCTCC 1500
GTCTGCCGTT CCGACCGACC ACGGGGCGCA CCTCTCTTTA CGCGGACTCC CCGTCTGTGC 1560
CTTCTCATCT GCCTGACCTT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAGACCAC 1620
CGTGAACGCC CACCAAATAT TGCCCAAGGT CTTACATAAG AGGACTCTTG GACTCTCTGC 1680
AATGTCAACG ACCGACCTTG AGGCATACTT CAAAGACTGT TTGTTTAAAG ACTGGGAGGA 1740
GTTGGGGGAG GAGATTAGAT TAAAGGTCTT TGTACTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGCGCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCTTG TTCATGTCCT 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCTTGA 1920
AAAGAATTTG GAGCTACCGT GGAGTTACTC TCGTTTTTGC CTTCTGACTT CTTTCCTTCA 1980
GTACGAGATC TTCTAGATAC CGCCTCAGCT CTGTATCGGG ATGCCTTAGA GTCTCCTGAG 2040
CATTGTTCAC CTCACCATAC TGCACTCAGG CAAGCAATTC TTTGCTGGGG GGAACTAATG 2100
ACTCTAGCTA CCTGGGTGGG TGTTAATTTG GAAGATCCAG CATCTAGGGA CCTAGTAGTC 2160
AGTTATGTCA ACACTAATAT GGGCCTAAAG TTCAGACAAC TCTTGTGGTT TCACATTTCT 2220
TGTCTCATTT TTGGAAGAGA AACAGTTATA GAGTATTTGG TGTCTTTCGG AGTGTGGATT 2280
CGCACTCCTC CAGCTTATAG ACCACCAAAT GCCCCTATCC TATCAACACT TCCGGAGACT 2340
ACTGTTGTTA GACGACGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCAGACGA 2400
AGGTCTCAAT CGCCGCGTCG CAGAAGATCT CAATCTCGGG AATCTCAATG TTAGTATTCC 2460
TTGGACTCAT AAGGTGGGGA ATTTTACTGG GCTTTATTCT TCTACTGTAC CTGTCTTTAA 2520
TCCTCATTGG AAAACACCAT CTTTTCCTAA TATACATTTA CACCAAGACA TTATCAAAAA 2580
ATGTGAACAG TTTGTAGGCC CACTCACAGT TAATGAGAAA AGAAGATTGC AATTGATCAT 2640
GCCTGCTAGG TTTTATCCAA AGGTTACCAA ATATTTACCA TTGGATAAGG GTATTAAACC 2700
TTATTATCCA GAACATCTAG TTAATCATTA CTTCCAAACT AGACACTATT TACACACTCT 2760
ATGGAAGGCG GGTATATTAT ATAAGAGAGA AACAACACAT AGCGCCTCAT TTTGTGGGTC 2820
ACCATATTCT TGGGAACAAG ATCTACAGCA TGGGGCAGAA TCTTTCCACC AGCAATCCTC 2880
TGGGATTCTT TCCCGACCAC CAGTTGGATC CAGCCTTCAG AGCAAACACC GCAAATCCAG 2940
ATTGGGACTT CAATCCCAAC AAGGACACCT GGCCAGACGC CAACAAGGTA GGAGCTGGAG 3000
CATTCGGGCT GGGTTTCACC CCACCGCACG GAGGCCTTTT GGGGTGGAGC CCTCAGGCTC 3060
AGGGCATACT ACAAACTTTG CCAGCAAATC CGCCTCCTGC CTCCACCAAT CGCCAGTCAG 3120
GAAGGCAGCC TACCCCTCTG TCTCCACCTT TGAGAAACAC TCATCCTCAG GCCATGCAGT 3180
GG 3182






3182 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


303
AACTCCACAA CTTTCCACCA AACTCTGCAA GATCCCAGAG TGAGAGGCCT ATATTTCCCT 60
GCTGGTGGCT CCAGTTCAGG AACAGTAAAC CCTGTTCCGA CTACTGCCTC TCCCTTATCG 120
TCAATCTTCT CGAGGATTGG GGACCCTGTG ACGAATATGG AGAACATCAC ATCAGGATTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATA 240
CCGCAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC GAGGGGGAAC TACCGTGTGT 300
CTTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCCTG TCCTCCAACT 360
TGTCCTGGTT ATCGCTGGAT GTGTCTGCGG GGTTTTATCA TCTTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GAGTATCAAG GTATGTTGCA CGTTTGTCCT 480
CTAATTCCAG GAACAACAAC AACCAGTACG GGACCATGCA AAACCTGCAC GACTCCTGCT 540
CAAGGCAACT CTATGTTTCC CTCATGTTGC TGTACCAAAA CTTCGGATGG AAATTGCACC 600
TGTATTCCCA TCCCATCGTC TTGGGCTTTC GCAAAATACC TATGGGAGTG GGCCTCAGTC 660
CGTTTCTCTT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGC TTTCAGCTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAGCATC 780
TTGAGTCCCT TTTTACCGCT GTTACCAATT TTCTTTTGTC TTTGGGTATA CATTTAAACC 840
CTAACAAAAC AAAGAGATGG GGTTACTCTT TACATTTCAT GGGCTATGTC ATTGGATGTT 900
ATGGGTCCTT GCCACAAGAA CACATCATAC AAAAAATCAA AGAATGTTTT AGAAAAGTTC 960
CTGTTAACAG GCCTATTGAT TGGAAAGTAT GTCAACGAAT TGTGGGTCTT TTAGGTTTTG 1020
CTGCCCCTTT CACACAATGT GGTTATCCTG CTTTAATGCC CTTGTATGCT TGTATTCAAT 1080
TTAAGCAGGC TTTCACTTTC TCGCCAACTT ACAAGGCCTT TCTGTGTAAA CAATACCTGA 1140
ACCTTTACCC CGTTGCCCGG CAACGGCCAG GTCTATGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGCTG GGGCTTGGGT ATGGGCCATC AGCGCATGCG TGGAACCTTT TCGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCCG CCTGTTTTGC TCGCAGCAGG TCTGGAGCAA 1320
ACATTCTCGG GACGGATAAC TCTGTTGTTC TCTCCCGCAA ATATACATCG TTTCCATGGC 1380
TGCTAGGCTG TGCTGCCAAC TGGATCCTGC GCGGGACGTC CTTTGTTTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCTTCTCGGG GCCGCTTGGG ACTCTCTCGT CCCCTTCTCT 1500
GTCTGCCGTT TCGACCGACC ACGGGGCGCA CCTCTCTTTA CGCGGACTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGACCGT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAGACCAC 1620
CGTGAACGCC CATCAGATCC TGCCCAAGGT CTTACATAAG AGGACTCTTG GACTCCCAGC 1680
AATGTCAACG ACCGACCTTG AGGCCTACTT CAAAGACTGT GTGTTTAAGG ACTGGGAGGA 1740
GCTGGGGGAG GAGATTAGGT TAAAGGTCTT TGTATTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGCGCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCTTG TACATGTCCC 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCTTAT 1920
AAAGAATTTG GAGCTACTGT GGAGTTACTC TCGTTTTTGC CTTCTGACTT CTTTCCTTCC 1980
GTACGAGATC TCCTAGACAC CGCCTCAGCT CTGTATCGGG AAGCCTTAGA GTCTCCTGAG 2040
CATTGTTCAC CTCACCATAC TGCACTCAGG CAAGCAATTC TTTGCTGGGG GGAACTAATG 2100
ACTCTAGCTA CCTGGGTGGG TGTTAATTTG GAAGATCCAG CATCTAGAGA CCTAGTAGTC 2160
AGTTATGTCA ACACTAATAT GGGCTTAAAG TTCAGGCAAC TCTTGTGGTT TCACATTTCT 2220
TGTCTCACTT TTGGAAGAGA AACAGTTATA GAGTATTTGG TGGCTTTCGG AGTGTGGATT 2280
CGCACTCCTC CAGCTTATAG ACCACCAAAT GCCCCTATCC TATCAACACT TCCGGAGACT 2340
ACTGTTGTTA GACGACGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCAGACGA 2400
AGGTCTCAAT CGCCGCGTCG CAGAAGATCT CAATCTCGGG AATCTCAATG TTAGTATTCC 2460
TTGGACTCAT AAGGTGGGAA ACTTTACGGG GTTTTATTCT TCTACTGTTC CTGTCTTTAA 2520
CCCTCATTGG GAAACCCCCT CTTTTCCTAA TATACATTTA CACCAAGACA TTATCAAAAA 2580
ATGTGAACAG TTTGTAGGCC CACTCACAGT TAATGAGAAA AGAAGATTGC AATTGATTAT 2640
GCCTGCTAGG TTTTATCCAA AGGTTACCAA ATATTTACCA TTGGATAAGG GTATTAAACC 2700
TTATTATCCA GAACATCTAG TTAATCATTA CTTCCAAACT AGACACTATT TACACACTCT 2760
ATGGAAGGCG GGTATATTAT ATAAGAGAGA AACAACACAT AGCGCCTCAT TTTGTGGGTC 2820
ACCATATTCT TGGGAACAAG ATCTACAGCA TGGGGCAGAA TCTATCCACC AGCAATCCTC 2880
TGGGATTCTT TCCCGACCAC CAGTTGGATC CAGCCTCCAG AGCAAACACC GCAAATCCAG 2940
ATTGGGACTT CAATCCCAAC AAGGACACCT GGCCAGACGC CAACAAGGAT GGAGCTGGAG 3000
CATTCGGGCT GGGACTCACC CCACCGCACG GAGGCCTTTT GGGGTGGAGC CCTCAGGCTC 3060
AGGGCATACT ACACACCGTG CCAGCAAATC CGCCTCCTGC CTCTACCAAT CGCCAGACAG 3120
GAAGGCAACC TACCCCTCTG TCTCCACCTT TGAGAGACAC TCATCCTCAG GCCGTGCAGT 3180
GG 3182






3182 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


304
AACTCCACAA CCTTCCACCA AACTCTGCAA GATCCCAGAG TGAGAGGCCT GTATTTCCCT 60
GCTGGTGGCT CCAGTTCAGG AACAGTAAAC CCTGTTCTGA CTACTGCCTC TCCCTTATCG 120
TCAATCTCCG CGAGGACTGG GGACCCTGCA CTGAACATGG AGAACATCAC ATCAGGATTG 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATA 240
CCGCAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAAC TACCGTGTGT 300
CTTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCTTG TCCTCCAACT 360
TGTCCTGGTT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TCTTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTATCAAG GTATGTTGCC CGTTTGTCCT 480
CTAATTCCAG GATCTTCAAC AACCAGCACG GGACCATGCA GAACCTGCAC GACTCCTGCT 540
CAAGGAACCT CTATGTATCC CTCCTGTTGC TGTACCAAAC CTTCGGACGG AAATTGCACC 600
TGTATTCCCA TCCCATCATC TTGGGCTTTC GGAAAATTCC TATGGGAGTG GGCCTCAGCC 660
CGTTTCTCCT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGC TTTCAGTTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAGCATC 780
TTGAGTCCCT TTTTACCGCT GTTACCAATT TTCTTTTGTC TCTGGGTATA CATTTAAACC 840
CTAACAAAAC AAAAAGATGG GGTTATTCCC TAAACTTCAT GGGTTACATA ATTGGAAGTT 900
GGGGAACGTT GCCACAAGAT CATATTGTAC AAAAGATCAA AGAATGTTTT AGAAAACTTC 960
CTGTTAACAG GCCTATTGAT TGGAAAGTAT GGCAACGAAT TGTGGGTCTT TTGGGCTTTG 1020
CTGCTCCATT TACACAATGT GGATATCCTG CCTTAATGCC TTTGTATGCC TGTATACAAG 1080
CTAAACAGGC TTTCACTTTC TCGCCAACTT ACAAGGCCTT TCTAAGTAAA CAGTACATGA 1140
ACCTTTACCC CGTTGCTCGG CAACGGCCTG GTCTGTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGCTG GGGCTTGGCA ATAGGCAATC AGCGCATGCG TGGAACCATT GTGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCCG CTTGTTTTGC TCGCAGCCGG TCTGGGGCAA 1320
AGCTCATCGG AACTGACAAT TCTGTTGTCC TCTCGCGGAA ATATACATCG TTTCCATGGC 1380
TGCTAGGTTG TACTGCCAAC TGGATCCTTC GCGGGACGTC CTTTGTTTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCTTCTCGGG GCCGCTTGGG ACTCTCTCGT CCCCTTCTCC 1500
GTCTGCCGTT CCAGCCGACC ACGGGGCGCA CCTCTCTTTA CGCGGTCTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGTCCGT GTGCACTTCG CTTCACCTCT GCACATTGCA TGGAGACCAC 1620
CGTGAACGCC CATCAGATTA TGCCCAAGGT TTTACATAAG AGGACTCTTG GACTCCCAGC 1680
AATGTCAACG ACCGACCTTG AGGCCTACTT CAAAGACTGT GTGTTTAAGG ACTGGGAGGA 1740
GCTGGGGGAG GAGATTAGGT TAAAGGTCTT TGTATTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGCGCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCTTG TTCATGTCCT 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTAGG GCATGGACAT TGACCCTTAT 1920
AAACAATTTG GAGCTACTGT GGAGTTACTC CCGTATTTGC CTTCTGACTT CTTTCTCTAC 1980
GTACGAGATC TCCTAGATAC CGCCTCAGCT CTGTATCGGG AAGCCTTAGA GTCTCCTGAG 2040
CATTGTTCAC CTCACCATAC TGCACTCAGG CAAGCAATTC TTTGCTGGGG GGAACTAATG 2100
ACTCTAGCTA CCTGGGTGGG TGTTAATTTG GAAGATCCAG CATCTAGAGA CTTAGTAGCT 2160
AGTTATGTCA ACACTAATAT GGGCCTAAAG TTCAGGCAAC TCTTGTGGTT TCACATTTCT 2220
TGTCTCACTT TTGGAAGAGA AACAGTTATA GAGTATTTGG TGTCTTTCGG AGTGTGGATT 2280
CGCACTCCTC CAGCTTATAG ACCACCAAAT GCCCCTATCC TATCAACACT TCCGGAGACT 2340
ACTGTTGTTA CACGACGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TGCCAGACCA 2400
AGGTCTCAAT CGCCGCGTCG CAGAAGATCT CAATCTCGGG AATCTCAATG TTAGTATTCC 2460
TTGGACTCAT AAGGTGGGGA ACTTTACGGG GCTTTATTCT TCTACTGTTC CTGTCTTTAA 2520
TCCTCATTGG AAAACACCTT CTTTTCCTAA TATACATTTA CACCAAGACA TTATCAAAAA 2580
ATGTGAACAA TTTGTAGGCC CACTCACAGT CAATGAGAAA AGAAGACTGC AATTGATTAT 2640
GCCTGCTAGG TTTTATCCAA ATGTCACCAA ATATTTGCCA TTGGATAAGG GTATTAAACC 2700
TTATTATCCA GAGCATCTAG TTAATCATTA CTTCCAAACC AGACATTATT TACACACTCT 2760
ATGGAAGGCG GGTATATTAT ATAAGAGAGA AACAACACAT AGCGCCTCAT TTTGTGGGTC 2820
ACCATATTCT TGGGAACAAG AGCTACAGCA TGGGGCAGAA TCTTTCCACC AGCAATCCTC 2880
TGGGATTCTT TCCCGACCAC CAGTTGGATC CAGCCTTCAG AGCAAACACC GCAAATCCAG 2940
ATTGGGACTT CAATCCCAAC AAGGACACCT GGCCAGACGC CAACAAGGTA GGAGCTGGAG 3000
CATTCGGGCT GGGTTTCACC CCACCGCACG GAGGTCTTTT GGGGTGGAGC CCTCAGGCTC 3060
AGGGCATACT ACATACCGTG CCAGCAAATC CGCCTCCTGC CTCTACCAAT CGCCAGTCAG 3120
GAAGGCAGCC TACCCCTCTG TCTCCACCTT TGAGAAACAC TCATCCTCAG GCCATGCAGT 3180
GG 3182






3182 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


305
AACTCCACAA CCTTCCACCA AACTCTGCAA GATCCAAGAG TGAGAGGCCT GTATTTCCCT 60
GCTGGTGGCT CCAGTTCAGG AACAGTAAAC CCTGTTCTGA CTACTGCCTC TCCCTTATCG 120
TCAATCTCCG CGAGGACTGG GGACCCTGTG ACGATCATGG AGAACATCAC ATCAGGATTC 180
CTAGGACCCC TGCTCGTGTT AGAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATA 240
CCGCAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAAC TACCGTGTGT 300
CTTGGCCAAA ATTCGCAGTC CCCAACCTCC CATCACTCAC CAACCTCCTG TCCTCCAATT 360
TGTCCTGGTT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TATTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTATCAAG GTATGTTGCC CGTTTGTCCT 480
CTAATTCCAG GTACTTCAAC AACCAGCACG GGACCATGCA GAACCTGCAC GACTCCTGCT 540
CAAGGAACCT CTATGTATCC CTCCTGTTGC TGTACCAAAC CTTCGGACGG AAATTGCACC 600
TGTATTCCCA TCCCATCATC TTGGGCTTTC GGAAAATTCC TATGGCAGTG GGCCTCAGC6 60
CGTTTCTCCT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGG TTTCAGCTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAGCATC 780
GTGAGTCCCT TTATACCGCT GTTACCAATT TTCTTTTGTC TCTGGGTATA CATTTAAACC 840
CTAACAAAAC AAAAAGATGG GGTTATTCCC TAAACTTCAT GGGTTACATA ATTGGAAGTT 900
GGGGAACGTT GCCACAGGAT CATATTGTAC AAAAGATCAA ACACTGTTTT AGAAAACTTT 960
CTGTTAACAG GCCTATTGAT TGGAAAGTAT GGCAACGAAT TGTGGGTCTT TTGGGTTTTG 1020
CTGCTCCATT TACACAATGT GGTTATCCTG CCTTAATGCC TTTGTATGCC TGTATACAAG 1080
CTAAACAGGC TTTCACTTTC TCGCCAACTT ACAAGGCCTT TCTAAGTAAA CAGTACATGA 1140
ACCTTTACCC CGTTGCTCGG CAACGGCCTG GTCTGTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGCTG GGGCTTGGCA TAGGGCCATC AGCGCATGCG TGGAACCTTT GAGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCCG CTTGTTTTGC TCGCAGCAGG TCTGGAGCAA 1320
ACATTATCGG GACTGATAAC TCTGTTGTCC TATCGCGGAA ATATACATCG TTTCCATGGC 1380
TGCTAGGTTG TACTGCCAAC TGGATCCTTC GCGGGACGTC CTTTGTTTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCCTCTCGGG GCCGCTTGGG ACTCTCTCGT CCCCTTCTCC 1500
GTCTGCCGTT CCAGCCGACC ACGGGGCGCA CCTCTCTTTA CGCGGTCTCA CCGTCTGTGC 1560
CTTCTCATCT GCCGGTCCGT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAGACCAC 1620
CGTGAACGCC CATCAAAGTC TGCCCAAGGT CTTACATAAG AGGACTCTTG GACTCCCAGC 1680
AATGTCAACG ACCGACCTTG AGGCCTACTT CAAAGACTGT GTGTTTAAGG ACTGGGAGGA 1740
GCTGGGGGAG GAGATTAGGT TAAAGGTCTT TGTATTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGCGCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCTTG TTCATGTCCC 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCTTAT 1920
AAAGAATTTG GAGCTACTGT GGAGTTACTC TCGTTTTTGC CTTCTGACTT CTTTCCTTCC 1980
GTAAGAGATC TCCTAGACAC CGCCTCAGCT CTGTATCGAG AAGCCTTAGA GTCTCCTGAG 2040
CATTGCTCAC CTCACCATAC TGCACTCAGG CAAGCCATTC TCTGCTGGGG GGAACTGATG 2100
ACTCTAGCAT CCTGGGTGGG TGATAATTTG GAAGATCCAG CGTCTAGGGA CCTAGTAGTC 2160
AGTTATGTTA ACACTAATAT GGGCCTAAAG ATCAGGCAAC TATTGTGGTT TCATATATCT 2220
TGCCTTACTT TTGGAAGAGA GACTGTACTT GAATATTTGG TCTCTTTCGG AGTGTGGATT 2280
CGCACTCCTC CAGCCTATAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAAACT 2340
ACTGTTGTTA GACGACGGGA CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCAGACGA 2400
AGGTCTCAAT CGCCGCGTCG CAGAAGATCT CAATCTCGGG AATCTCAATG TTAGTATTCC 2460
TTGGACTCAT AAGGTGGGGA ACTTTACTGG GCTTTATTCT TCTACTGTAC CTGTCTTTAA 2520
TCCTCATTGG AAAACACCAT CTTTTCCTAA TATACATTTA CACCAAGACA TTATCAAAAA 2580
ATGTGAACAG TTTGTAGGCC CACTCACAGT TAATGAGAAA AGAAGATTGC AATTGATTAT 2640
GCCTGCTAGG TTTTATCCAA AGGTTACCAA ATATTTACCA TTGGATAAGG GTATTAAACC 2700
TTATTATCCA GAACATCTAG TTAATCATTA CTTCCAAACT AGACACTATT TACACACTCT 2760
ATGGAAGGCG GGTATATTAT ATAAGAGAGA AACAACACAT AGCGCCTCAT TTTGTGGGTC 2820
ACCATATTCT TGGGAACAAG ATCTACAGCA TGGGGCAGAA TCTATCCACC AGCAATCCTC 2880
TGGGATTCTT TCCCGACCAC CAGTTGGATC CAGCCTTCAG AGCAAACACC GCAAATCCAG 2940
ATTGGGACTT CAATCCCAAC AAGGACACCT GGCCAGACGC CAACAAGGTA GGAGCTGGAG 3000
CATTCGGGCT GGGTTTCACC CCACCGCACG GAGGCCTTTT GGGGTGGAGC CCTCAGGCTC 3060
AGGGCATACT ACAAACTTTG CCAGCAAATC CGCCTCCTGC CTCCACCAAT CGCCAGTCAG 3120
GAAGGCAGCC TACCCCTCTG TCTCCACCTT TGAGAAACAC TCATCCTCAG GCCATGCAGT 3180
GG 3182






3182 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


306
AACTCCACAA CCTTCCACCA AACTCTGCAA GATCCCAGAG TGAGAGGCCT GTATCTCCCT 60
GCTGGTGGCT CCAGTTCAGG AACAGTAAAC CCTGTTCCGA CTACTGTCTC TCCCATATCG 120
TCAATCTTCT CGAGGATTGG GGACCCTGCG CTGAACATGG AGAACATCAC ATCAGGATTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAAAAT CCTCACAATA 240
CCGAAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAAC CACCGTGTGT 300
CTTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCCTG TCCTCCAACT 360
TGTCCTGGTT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TCTTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTATCAAG GTATGTTGCC CGTTTGTCCT 480
CTGATTCCAG GATCTTCAAC CACCAGCACG GGACCATGCA GAACCTGCAC GACTCCTGCT 540
CAAGGAACCT CTATGTATCC CTCCTGTTGC TGTACCAAAC CTTCGGACGG AAATTGCACC 600
TGTATTCCCA TCCCATCATC CTGGGCTTTC GGAAAATTCC TATGGGAGTG GGCCTCAGCC 660
CGTTTCTCCT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGC TTTTAGTTAT ATGGATGATG TGGTATTGGG GGCCAAAACT GTTCACCATC 780
TTGAGTCCCT TTTTACCGCT GTTACCAATT TTCTTTTGTC TTTGGGTATA CATCTAAACC 840
CTAACAAAAC AAAAAGATGG GGTTACTCTT TACATTTTAT GGGCTATGTC ATTGGATGTT 900
ATGGGTCTTT GCCACAAGAT CACATCATAC AGAAAATCAA AGAATGTTTT AGAAAACTTC 960
CTGTTAACAG GCCTATTGAT TGGAAAGTCT GTCAACGTAT TGTGGGTCTT TTGGGATTTG 1020
CTGCTCCTTT TACACAATGT GGTTATCCTG CTTTAATGCC CTTGTATGCA TGTATTCAAT 1080
CTAAGCAGGC TTTCACTTTC TCGCCAACTT ACAAGGCCTT TCTGTGTAAA CAATACCTGA 1140
ACCTTTACCC CGTTGCCCGG CAACGCCCAG GTCTGTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGCTG GGGCTTGGTC ATGGGCCATC AGCGCATGCG TGGAACCTTT CAGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCCG CTTGTTTTGC TCGCAGCCGG TCTGGAGCAA 1320
ACATTCTCGG GACGGATAAC TCTGTTGTTC TCTCCCGCAA ATATACGTCG TTTCCATGGC 1380
TGCTAGGCTG TGCTGCCAAC TGGATCCTGC GCGGGACGTC CTTTGTTTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCTTCTCGGG GCCGCTTGGG ACTCTCTCGT CCCCTTCTCC 1500
GTCTGCCGTT TCGACCGACC ACGGGGCGCA CCTCTCTTTA CGCGGACTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGACCGT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAGACCAC 1620
CGTGAACGCC CACCAATTCT TGCCCAAGGT CTTACATAAG AGGACTCTTG GACTCTCTGT 1680
AATGTCAACG ACCGACCTTG AGGCATACTT CAAAGACTGT TTGTTTAAGG ACTGGGAGGA 1740
GTCGGGGGAG GAGATTAGAT TAATGATCTT TGTACTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGCGCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCTTG TTCATGTCCT 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTAGG ACATGGACAT TGATCCTTAT 1920
AAAGAATTTG GAGCTACTGT GGAGTTACTC TCGTTTCTGC CTTCTGACTT CTTTCCTTCA 1980
GTACGAGATC TTCTAGATAC CGCCTCAGCT CTATATCGGG AAGCCTTAGA ATCTCCTGAG 2040
CATTGTTCAC CTCACCATAC TGCACTCAGG CAAGCAATTC TCTGCTGGGG GGATCTAATA 2100
ACTCTATCCA CCTGGGTGGG TGGTAATTTG GAAGATCCAA CATCTAGGGA CCTAGTAGTC 2160
AGTTATGTTA ACACTAATAT GGGCCTAAAG TTCAGGCAAC TATTGTGGTT TCACATTTCT 2220
TGTCTCACTT TTGGAAGAGA AACGGTCATA GAGTATTTGG TGTCTTTTGG AGTGTGGATT 2280
CGCACTCCTC CAGCTTATAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAGACT 2340
ACTGTTGTTA GACGACGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCAGACGA 2400
AGGTCTCAAT CGCCACGTCG CAGAAGAACT CAATCTCGGG AATCTCAATG TTAGTATTCC 2460
CTGGACTCAT AAGGTGGGAA ACTTTACGGG GCTTTATTCT TCTACTGTTC CTGTCTTTAA 2520
CCCTCATTGG AAAACACCCT CTTTTCCTAA TATACATTTA CACCAAGACA TTATCAAAAA 2580
ATGTGAACAA TTTGTAGGCC CACTCACAGT CAATGAGAAA AGAAGACTGC AATTGATTAT 2640
GCCTGCTAGG TTTTATCCAA AGGTTACCAA ATATTTGCCA TTGGATAAGG GTATTAAACC 2700
TTATTATCCA GAACATCTAG TTAATCATTA CTTCCAAACC AGACATTATT TACACACTCT 2760
ATGGAAGGCG GGTGTATTAT ATAAGAGAGA AACTACACAT AGCGCCTCAT TTTGTGGGTC 2820
ACCATATTCC TGGGAACAAG AGCTACAGCA TGGGGCAGAA TCTTTCCACC AGCAATCCTC 2880
TGGGATTCTT TCCCGACCAC CAGTTGGATC CAGCCTTCAG AGCAAACACT GCAAATCCAG 2940
ATTGGGACTT CAATCCCAAC AAGGACTCCT GGCCAGACGC CAACAAGGTA GGAGCTGGAG 3000
CATTCGGGCT GGGATTCACC CCACCGCACG GAGGCCTTTT GGGGTGGAGC CCTCAGGCTC 3060
AGGGCATACT ACAAACCTTG CCAGCAAATC CGCCTCCTGC CTCCACCAAT CGCCAGTCAG 3120
GAAGGCAACC TACCCCTCTG TCTCCACCTT TGAGAAACAC TCATCCTCAG GCCATGCAGT 3180
GG 3182






3182 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


307
AACTCCACAA CCTTCCACCA AACTCTGCAA GATCCCAGAG TGAGAGGCCT GTATTTCCCT 60
GCTGGTGGCT CCAGTTCAGG AACAGTAAAC CCTGTTCCGA CTACTGTCTC TCCCATATCG 120
TCAATCTTCT CGAGGATTGG GGACCCTGCG CTGAACATGG AGAACATCAC ATCAGGATTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATA 240
CCGCAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAAC TACCGTGTGT 300
CTTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCCTG TCCTCCAACT 360
TGTCCTGGTT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TCTTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTATCAAG GTATGTTGCC CGTTTGTCCT 480
CTAATTCCAG GATCTTCAAC TACCAGCACG GGACCATGCA GAACCTGCAC GACTCCTGCT 540
CAAGGAACCT CTATGTATCC CTCCTGTTGC TGTACCAAAC CTTCGGACGG AAATTGCACC 600
TGTATTCCCA TCCCATCATC CTGGGCTTTC GGAAAATTCC TATGGGAGTG GGCCTCAGCC 660
CGTTTCTCCT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGC TTTCAGTTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAGCATC 780
TTGAGTCCCT TTTTACCGCT GTTACCAATT TTCTTCTGTC TTTGGGTATA CATTTAAACC 840
CTAACAAAAC AAAAAGATGG GGTTACTCTT TACATTTCAT GGGCTATGTC ATTGGATGTT 900
ATGGGTCATT GCCACAAGAT CACATCATAC AGAAAATCAA AGAATGCTTT AGAAAACTTC 960
CTGTTAACAG GCCTATTGAT TGGAAAGTCT GTCAACGTAT TGTGGGTCTT TTGGGTTTTG 1020
CTGCCCCTTT TACACAATGT GGTTATCCTG CTTTAATGCC TTTGTATGCA TGTATTCAGT 1080
CGAAGCAGGC TTTTACTTTC TCGCCAACTT ACAAGGCCTT TCTGTGTAAA CAATACCTGA 1140
ACCTTTACCC CGTTGCCCGG CAACGGCCAG GTCTGTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGCTG GGGCTTGGTC ATGGGCCATC AGCGCATGCG TGGAACCTTT CTGGCTCGTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCCG CTTGTTTTGC TCGCAGCAGG TCTGGAGCAA 1320
ACATTCTCGG GACGGATAAC TCTGTTGTTC TCTCCCGCAA ATATACATCG TATCCATGGC 1380
TGCTAGGCTG TGCTGCCAAC TGGATCCTGC GCGGGACGTC CTTTGTTTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCTTCTCGGG GTCGCTTGGG ACTCTCTCGT CCCCTTCTCC 1500
GTCTGCCGTT TCGACCGACC ACGGGGCGCA CCTCTCTTTA CGCGGACTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGACCGT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAGACCAC 1620
CGTGAAAGCC CAACCATTCT TGCCCAAGGT CTTACATAAG AGGACTCTTG GACTCTCTGT 1680
AATGTCAACG ACCGACCTTG AGGCATACTT CAAAGACTGT TTGTTTAAAG ACTGGGAGGA 1740
GTTGGGGGAG GAGATTAGAT TAAAGGTCTT TGTATTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGCGCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCTTG TTCATGTCCT 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGATCCTTAT 1920
AAAGAATTTG GAGCTACTGT GGAGTTACTC TCGTTTTTGC CTTCTGACTT CTTTCCTTCA 1980
GTACGAGATC TTCTAGATAA CGCCTCAGCT CTGTATCGGG AAGCCTTAGA GTCTCCTGAG 2040
CATTGTTCAC CTCACCATAC TGCACTCAGG CAAGCAATAC TGTGCTGGGG GGAACTAATC 2100
ACTCTAGCTA CCTGGGTGGG TGGTAATTTG GAAGATCCAA TATCCAGGGA CCTAGTAGCT 2160
AGTTATGTCA ACACTAATAT GGGCCTAAAA TTCAGGCAAC TATTGTGGTT TCACATTTCT 2220
TGTCTCACTT TTGGAAGAGA AACAGTTATA GAGTATTTGG TGTCTTTTGG AGTGTGGATT 2280
CGCACTCCTC CAGCTTATAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAGACT 2340
ACTGTTGTTA GACGACGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCAGACGA 2400
AGGTCTCAAT CGCCGCGTCG CAGAAGATCT CAATCTCGGG AATCTCAATG TTAGTATTCC 2460
TTGGACTCAT AAGGTGGGAA ACTTTACGGG GCTTTATTCT TCTACTGTAC CTGTCTTTAA 2520
CCCTCATTGG AAAACACCCT CTTTTCCTAA TATACATTTA CACCAAGACA TTATCAAAAA 2580
ATGTGAACAA TTTGTAGGCC CACTCACAGT CAATGAGAAA AGAAGACTGC AATTGATTAT 2640
GCCAGCTAGG TTTTATCCAA ATGTTACCAA ATATTTGCCA TTGGATAAGG GTATTAAACC 2700
TTATTATCCA GAATATTTAG TTAATCATTA CTTCCAAACT AGACATTATT TACACACTCT 2760
ATGGAAGGCG GGTATATTAT ACAAGAGAGA AACTACACAT AGCGCCTCAT TTTGTGGGTC 2820
ACCATATTCT TGGGAACAAG AGCTACAGCA TGGGGCAGAA TCTTTCCACC AGCAATCCTC 2880
TGGGATTCTT TCCCGACCAC CAGTTGGATC CAGCCTTCAG AGCAAACACC GCAAATCCAG 2940
ATTGGGACTT CAATCCCAAC AAGGACACCT GGCCAGACGC CAACAAGGTA GGAGCTGGAG 3000
CATTCGGGCT GGGATTCACC CCACCACACG GAGGCCTTTT GGGGTGGAGC CCTCAGGCTC 3060
AGGGCATACT AGAAACGTTG CCAGCAAATC CGCCTCCTGC CTCTACCAAT CGCCAGTCAG 3120
GAAGGCAGCC TACCCCGCTG TCTCCACCTT TGAGAAACAC TCATCCTCAG GCCATGCAGT 3180
GG 3182






3182 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


308
AACTCCACAA CTTTCCACCA AACTCTGCAA GATCCCAGGG TGAGAGGCCT GTATTTCCCT 60
GCTGGTGGCT CCAGTTCAGG AACAGTAAAC CCTGTTCCGA CTACTGCCTC TCCCATATCG 120
TCAATCTTCT CGAGGATTGG GGACCCTGCA CTGAACATGG AGAACATCAC ATCAGGATTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAGAAT CCTCACAATA 240
CCGCAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAAC CACCGTGTGT 300
CTTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCCTG TCCTCCAACT 360
TGTCCTGGTT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TCTTCCTCTT CATCCTGCTT 420
CTATGCCTCA TCTTCTTGTT GGTTCTACTG GACTATCAAG GTATGTTGCC CGTGTGTCCT 480
CTAATTCCAG GATCTTCAAC CACCAGCGCG GGACCATGCA GAACCTGCAC GACTACTGCT 540
CAAGGAACCT CTATGTATCC CTCCTGTTGC TGTACCAAAC CTTCGGACGG AAATTGCACC 600
TGTATTCCCA TCCCATCATC CTGGGCTTTC GGAAAATTCC TATGGGAGTG GGCCTCAGCC 660
CGTTTCTCCT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGTAGG GCTTTCCCCC 720
ACTGTTTGGC TTTCAGTTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAGCATC 780
TTGAGTCCCT TTTTACCGCT GTTACCAATT TTCTTTTGTC TTTGGGTATA CATTTAAACC 840
CTAACAAAAC TAAGAGATGG GGTTACTCTT TACATTTCAT GGGCTATGTC ATTGGAAGTT 900
ATGGGTCATT GCCACAAGAT CACATCATAC AGAAAATCAA AGAATGTTTT AGAAAACTTC 960
CTATTAACAG GCCTATTGAT TGGAAAGTCT GTCAACGTAT TGTGGGTCTT TTGGGTTTTG 1020
CTGCCCCTTT TACACAATGT GGTTATCCTG CTTTAATGCC CTTGTATGCC TGTATTCAAT 1080
CTAAACAGGC TTTCACTTTC TCGCCAACTT ACAAGGCCTT TCTGTGTAAA CAATACCTAG 1140
ACCTTTACCC CGTTGCTAGG CAACGGCCAG GTCTGTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGCTG GGGCTTGGTC ATGGGCCATC AGCGCATGCG TGGAACCTTT CTGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCCG CTTGTTTTGC TCGCAGCAGG TCTGGAGCAA 1320
ACATTCTCGG GACGGATAAC TCTGTTGTTC TCTCCCGCAA ATATACATCG TTTCCATGGC 1380
TGCTAGGCTG TGCTGCCAAC TGGATCCTGC GCGGGACGTC CTTTGTTTAC GTCCCGTCGG 1440
CGCTGAATCC CGCGGACGAC CCTTCTCGGG GCCGCTTGGG GATCTTTCGT CCCCTTCTCC 1500
GTCTGCCGTT CCGTCCGACC ACGGGGCGCA CCTCTCTTTA CGCGGACTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGTCCGT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAGACCAC 1620
CGTGAACGCC CACCACTTCT TGCCCAAGGT CTTACATAAG AGGACTCTTG GACTCTCAGC 1680
AATGTCAACG ACCGACCTTG AGGCATACTT CAAAGACTGT TTGTTTAAGG ACTGGGAGGA 1740
GTTGGGGGAG GAGATTAGAT TAAAGGTCTT TGTACTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGCGCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCTTG TTCATGTCCT 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCTTAT 1920
AAAGAATTTG GAGCTACTGT GGAGTTACTC TCATTTTTGC CTTCTGACTT TTTTCCTTCG 1980
GTACGAGATC TTCTAGATAC CGCCTCAGCT CTGTATCGGG ATGCCTTAGA GTCTCCTGAG 2040
CATTGTTCAC CTCACCATAC TGCACTCAGG CAAGCAATTC TTTGCTGGGG GGAACTAATG 2100
ACTCTAGCTA CCTGGGTGGG TGTTAATTTG GAAGATCCAG CATCTAGGGA CCTAGTAGTC 2160
AGTTATGTCA ACACTAATAT GGGCCTAAAG TTCAGGCAAC TATTGTGGTT TCACATTTTT 2220
TGTCTCACTT TTGGAAGAGA AACAGTCATA GAGTATTTGG TGTCTTTCGG AGTGTGGATT 2280
CGCACTCCTC CAGCTTATAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAAACT 2340
ACTGTTGTTA GACGACGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCAGACGA 2400
AGATCTCAAT CGCCGCGTCG CAGAAGATCT CAATCTCGGG AATCTCAATG TTAGTATTCC 2460
TTGGACTCAT AAAGTGGGTA ACTTTACGGG GCTTTATTCC TCTACTGTAC CTGTCTTTAA 2520
CCCTCATTGG AAAACACCCT CTTTTCCTAA TATACATCTA CACCAAGACA TTATCAAAAA 2580
ATGTGAACAA TTTGTAGGCC CACTCACAGT AAATGAGAAA CGAAGACTGC AATTAATTAT 2640
GCCTGCTAGG TTTTATCCAA ATGTTACTAA ATATTTGCCA TTAGATAAGG GTATTAAACC 2700
TTATTATCCG GAACATTTAG TTAATCATTA CTTCCAAACC AGACATTATT TACACACTCT 2760
ATGGAAGGCG GGTATATTAT ATAAGAGGGA AACAACACGT AGCGCCTCAT TTTGTGGGTC 2820
ACCATATTCT TGGGAACAAG AGCTACAGCA TGGGGCAGAA TCTTTCCACC AGCAATCCTC 2880
TGGGATTCTT TCCCGACCAC CAGTTGGATC CAGCCTTCAG AGCAAACACC GCAAATCCAG 2940
ATTGGGACTT CAATCCCAAC AAGGACACCT GGCCAGACGC CAACAAGGTA GGAGCTGGAG 3000
CATTCGGGCT GGGATTCACC CCACCGCACG GAGGCCTTTT GGGGTGGAGC CCTCAGGCTC 3060
AGGGCATAAT ACAAACCTTG CCAGCAAATC CGCCTCCTGC ATCTACCAAT CGCCAGTCAG 3120
GAAGGCAGCC TACCCCGCTG TCTCCACCTT TGAGAAACAC TCATCCTCAG GCCATGCAGT 3180
GG 3182






3212 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


309
AACTCCACAA CATTTCATCA AGCTCTGCAG GATCCCAGAG TAAGAGGCCT GTATTTTCCT 60
GCTGGTGGCT CCAGTTCCGG AACAGTGAAC CCTGTTCCGA CTACTGCCTC ACTCATCTCG 120
TCAATCTTCT CGAGGATTGG GGACCCTGCA CCGAACATGG AAAGCATCAC ATCAGGATTA 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAAAAT CCTCACAATA 240
CCGCAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAGC TCCCGTGTGT 300
CTTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTCAC CAACCTCTTG TCCTCCAATT 360
TGTCCTGGCT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TCTTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTATCAAG GTATGTTGCC CGTTTGTCCT 480
CTAATTCCAG GATCATCAAC CACCAGCACG GGACCCTGCC GAACCTGCAT GACTCTTGCT 540
CAAGGAACCT CTATGTTTCC CTCATGTTGC TGTTCAAAAC CTTCGGACGG AAATTGCACT 600
TGTATTCCCA TCCCATCATC ATGGGCTTTC GGAAAATTCC TATGGGAGTG GGCCTCAGCC 660
CGTTTCTCCT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGCCGG GCTTTCCCCC 720
ACTGTCTGGC TTTCAGTTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACGACATC 780
TTGAGTCCCT TTATACCTCT GTTACCAATT TTCTTTTGTC TTTGGGTATA CATTTAAATC 840
CCAACAAAAC AAAAAGATGG GGATATTCCC TAAATTTCAT GGGTTATGTA ATTGGAAGTT 900
GGGGGTCATT ACCACAGGAA CACATCATAC AAAAAATCAA ACACTGTTTT GGAAAACTCC 960
CTGTTAACCG GCCTATTGAT TGGAAAGTAT GTCAAGGAAT TGTGGGTCTT TTGGGCTTTG 1020
CTGCCCCTTT TACACAATGT GGGTATCCTG CTTTAATGCC TCTGTATACG TGTATTCAAT 1080
CTAAGCAGGC TTTCACTTTC TCGCCAACTT ACAAGGCCTT TCTGTGTAAA CAATACCTGA 1140
ACCTTTACCC CGTTGCCCGG CAACGGCCAG GTCTGTGCCA AGTGTTTGCT GATGCAACCC 1200
CCACTGGCTG GGGCTTGGCC ATAGGCATTC AGCGCATGCG CGGAACCTTT GTGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCCG CTTGTTTTGC TCGCAGCAGG TCTGGAGCAA 1320
AACTTATCGG GACCGATAAT TCTGTCGTTC TCTCCCGGAA ATATACATCC TTTCCATGGC 1380
TGCTAGGCTG TGCTGCCAAC TGGATCCTGC GAGGGACGTC CTTTGTCTAC GTCCCGTCAG 1440
CGCTGAATCC TGCGGACGAC CCGTCTCGGG GTCGCTTGGG GATCTTTCGT CCCCTTCTCC 1500
GTCTGCGGTT CCGGCCGACC ACGGGGCGCA CCTCTCTTTA CGCGGTCTCC CCGTCTGTGC 1560
CTTCTCATCT GCCGGACCGT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAGACCAC 1620
CGTGAACGCC CACCAAATCT TGCCCAAGGT CTTACATAAG AGGACTCTTG GACTCTCTGC 1680
AATGTCAACG ACCGACCTTG AGGCATACTT CAAAGACTGT TTGTTTAAAG ACTGGGAGGA 1740
GTTGGGGGAG GAGATTAGAT TAAAGGTCTT TGTACTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGCGCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCTTG TTCATGTCCT 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCTTAT 1920
AAAGAATTTG GAGCTACTGT GGAGTTACTC TCGTTTTTGC CTTCTGACTT CTTTCCTTCA 1980
GTAAGAGATC TTCTAGATAC CGCCTCAGCT CTGTATCGGG ATGCCTTAGA ATCTCCTGAA 2040
CATTGTTCAC CGCACCACAC TGCACTCAGG CAAGCCATTC TTTGCTGGGG GGAACTAATG 2100
ACTCTAGCTA CCTGGGTGGG TGTAAATTTG GAAGATCCAG CATCCAGGGA CCTAGTAGTC 2160
AGTTATGTCA ATACTAATAT GGGCCTAAAG TTCAGGCAAT TATTGTGGTT TCACATTTCT 2220
TGTCTCACTT TTGGAAGAGA AACCGTCATA GAGTATTTGG TGTCTTTTGG AGTGTGGATT 2280
CGCACTCCTC CAGCTTATAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAGAAT 2340
ACTGTTGTTA GACGAAGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCAGACGA 2400
AGATCTCAAT CGCCGCGTCG CAGAAGATCT CAATCTCCAG CTTCCCAATG TTAGTATTCC 2460
TTGGACTCAT AAGGTGGGAA ATTTTACGGG GCTCTACTCT TCTACTATTC CTGTCTTTAA 2520
TCCTAACTGG AAAACTCCAT CTTTTCCTGA TATTCATTTG CACCAGGACA TTATTAACAA 2580
ATGTGAACAA TTTGTAGGTC CTCTAACAGT AAATGAAAAA CGAAGATTAA ACTTAGTCAT 2640
GCCTGCTAGA TTTTTTCCCA TCTCTACAAA ATATTTGCCC CTAGAGAAAG GTATAAAACC 2700
TTATTATCCA GATAATGTAG TTAATCATTA CTTCCAAACC AGACACTATT TACATACCCT 2760
ATGGAAGGCT GGGCATCTAT ATAAAAGAGA AACTACACGT AGCGCCTCAT TTTGTGGGTC 2820
ACCATATTCT TGGGAACAAG AGCTACATCA TGGGGCTTTC TTGGACGGTC CCTCTCGAAT 2880
GGGGGAAGAA TATTTCCACC ACCAATCCTC TGGGATTTTT TCCCGACCAC CAGTTGGATC 2940
CAGCATTCAG AGCAAACACC AGAAATCCAG ATTGGGACCA CAATCCCAAC AAAGACCACT 3000
GGACGGAAGC CAACAAGGTA GGAGTGGGAG CCTTCGGGCC GGGGTTCACT CCCCCACACG 3060
GAGGCCTTTT GGGGTGGAGC CCTCAGGCTC AAGGCATGCT AAAAACATTG CCAGCAGACC 3120
CGCCTCCTGC CTCCACCAAT CGGCAGTCAG GAAGGCAGCC TACCCCAATC ACTCCACCTT 3180
TGAGAGACAC TCATCCTCAG GCCATGCAGT GG 3212






3212 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


310
AATTCCACAA CATTCCACCA AGCTCTGCAG GATCCCAGAG TAAGAGGCCT GTATTTTCCT 60
GCTGGTGGCT CCAGTTCCGG AACAGTGAAC CCTGTTCCGA CTACTGCCTC ACTCATCTCG 120
TCAATCTTCT CGAGGATTGG GGACCCTGCA CCGAACATGG AAAGCATCAC ATCAGGATTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGGG TTTTTCTTGT TGACAAAAAT CCTCACAATA 240
CCGCAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGAGC TCCCGTGTGT 300
CTTGGCCAAA ATTCGCAGTC CCCAACCTCC AGTCACTCAC CAACCTCTTG TCCTCCAATT 360
TGTCCTGGCT ATCGCTGGAT GTGTCTGCGG CGTTTTATCA TCTTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTATCAAG GTATGTTGCC CGTTTGTCCT 480
CTAATTCCAG GATCATCAAC CACCAGTACG GGACCCTGCC GAACCTGCAC GACTCTTGCT 540
CAAGGAACCT CTATGTTTCC CTCATGTTGC TGTTCAAAAC CTTCGGACGG AAATTGCACT 600
TGTATTCCCA TCCCATCATC ATGGGCTTTC GGAAAATTCC TATGGGAGTG GGCCTCAGCC 660
CGTTTCTCCT GGCTCAGTTT ACTAGTGCCA TTTGTTCAGT GGTTCGCCGG GCTTTCCCCC 720
ACTGTCTGGC TTTCAGTTAT ATGGATGATG TGGTATTGGG GGCCAAGTCT GTACAACATC 780
TTGAGTCCCT TTATACCGCT GTTACCAATT TTCTTTTGTC TTTGGGTATA CATTTAAATC 840
CCAACAAAAC AAAAAGATGG GGCTATTCCC TTAATTTCAT GGGTTATGTA ATTGGAAGTT 900
GGGGCTCATT ACCACAGGAA CACATCATAC AAAAAATCAA AGACTGTTTT AGAAAACTCC 960
CTGTTAACCG GCCTATTGAT TGGAAAGTAT GTCAAAGAAT TGTGGGTCTT TTGGGCTTTG 1020
CTGCCCCCTT TACACAATGT GGATATCCTG CTTTAATGCC TCTGTATGCA TGTACTCAAT 1080
CTAAGCAGGC TTTCACTTTC TCGCCAACTT ACAAGGCCTT TCTGTGTAAA CAATACCTGA 1140
ACCTTTACCC CGTTGCCCGG CAACGGCCAG GTCTGTGCCA AGTGTTTGCT GATGCAACCC 1200
CCACTGGCTG GGGCTTGGCC ATAGGCATTC AGCGCATGCG CGGAACCTTT GTGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCCG CTTGTTTTGC TCGCAGCAGG TCTGGAGCAA 1320
AACTTATCGG GACCGATAAT TCTGTCGTTC TCTCCCGGAA GTATACATCC TTTCCATGGC 1380
TGCTAGGCTG TGCTGCCAAC TGGATCCTGC GAGGGACGTC CTTTGTCTAC GTCCCGTCAG 1440
CGCTGAATCC TGCGGACGAC CCGTCTCGGG GTCGCTTGGG GATCTATCGT CCCCTTCTCC 1500
GTCTGCCGTT CCAGCCGACC ACGGGGCGCA CCTCTCTTTA CGCGGTCTCC CCGTCTGTTC 1560
CTTCTCATCT GCCGGACCGT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAGACCAC 1620
CGTGAACGCC CACCAAATAT TGCCCAAGGT CTTACATAAG AGGACTCTTG GACTCTCTGC 1680
AATGTCAACG ACCGACCTTG AGGCATACTT CAAAGACTGT TTGTTTAAAG ACTGGGAGGA 1740
GTCGGGGGAG GAGATTAGAT TAAAGGTCTT TGTACTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGCGCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCTTG TTCATGTCCT 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCTTAT 1920
AAAGAATTTG GAGCTACTGT GGAGTTACTC TCGTTTTTGC CTTCTGACTT CTTTCCTTCA 1980
GTAAGAGATC TTCTAGATAC CGCCTCAGCT CTGTATCGGG ATGCCTTAGA GTCTCCTGAG 2040
CATTGTTCAC CTCACCACAC TGCACTCAGG CAAGCCATTC TTTGCTGGGG AGAACTAATG 2100
ACTCTAGCTA CCTGGGTGGG TGTAAATTTG GAAGATCCAG CATCCAGGGA CCTAGTAGTC 2160
AGTTATGTCA ATACTAATAT GGGCCTAAAG TTCAGGCAAT TATTGTGGTT TCACATTTCT 2220
TGTCTCACTT TTGGAAGAGA AACCGTCATA GAGTATTTGG TGTCTTTTGG AGTGTGGATT 2280
CGCACTCCTC CAGCTTATAG ACCACCAAAT GCCCCTATCT TATCAACACT TCCGGAGAAT 2340
ACTGTTGTTA GACGAAGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCAGACGA 2400
AGATCTCAAT CGCCGCGTCG CAGAAGATCT CAATCTCCAG CTTCCCAATG TTAGTATTCC 2460
TTGGACTCAT AAGGTGGGAA ATTTTACGGG GCTTTACTCT TCTACTATAC CTGTCTTTAA 2520
TCCTAACTGG AAAACTCCAT CTTTTCCTGA TATTCATTTG CACCAGGACA TTATTAACAA 2580
ATGTGAACAA TTTGTAGGTC CTCTAACTGT AAATGAAAAA CGAAGATTAA ACTTAGTCAT 2640
GCCTGCTAGA TTTTTTCCCA TCTCTACGAA ATATTTGCCC CTAGAGAAAG GTATAAAACC 2700
TTATTATCCA GATAATGTAG TTAATCATTA CTTCCAAACC AGACACTATT TACATACCCT 2760
ATGGAAGGCG GGCATCTTAT ATAAAAGAGA AACTACACGT AGCGCCTCAT TTTGTGGGTC 2820
ACCTTATTCT TGGGAACAAG AGCTACATCA TGGGGCTTTC TTGGACGGTC CCTCTCGAAT 2880
GGGGGAAGAA TATTTCCACC ACCAATCCTC TGGGATTTTT TCCCGACCAC CAGTTGGATC 2940
CAGCATTCAG AGCAAACACC AGAAATCCAG ATTGGGACCA CAATCCCAAC AAAGACCACT 3000
GGACAGAAGC CAACAAGGTA GGAGTGGGAG CATTCGGGCC TGGGTTCACT CCCCCACACG 3060
GAGGCCTTTT GGGGTGGAGC CCTCAGGCTC AAGGCATGCT AAAAACATTG CCAGCAGATC 3120
CGCCTCCTGC CTCCACCAAT CGGCAGTCAG GAAGGCAGCC TACCCCAATC ACTCCACCTT 3180
TGAGAGACAC TCATCCTCAG GCCATGCAGT GG 3212






3215 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


311
AACTCAACTC ACTTCCACCA AGCTCTGTTG GATCCCAGGG TAAGGGCACT GTATTTTCCT 60
GCTGGTGGCT CCAGTTCAGG AACACAGAAC CCTGCTCCGA CTATTGCCTC TCTCACATCA 120
TCAATCTCCT CGAAGACTGG GGGCCCTGCT ATGAACATGG AGAACATCAC ATCAGGACTC 180
CTAGGACCCC TGCGCGTGTT ACAGGCGGTG TGTTTCTTGT TGACAAAAAT CCTCACAATA 240
CCACAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGACT ACCCAGGTGT 300
CCTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTTAC CAACCTCCTG TCCTCCAACT 360
TGTCCTGGCT ATCGTTGGAT GTGTCTGCGG CGTTTTATCA TCTTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTACCAAG GTATGTTGCC CGTTTGTCCT 480
CTACTTCCAG GATCCACGAC CACCAGCACG GGACCATGCA AAACCTGCAC AGCTCTTGCT 540
CAAGGAACCT CTATGTTTCC CTCCTGTTGC TGTTCCAAAC CCTCGGACGG AAACTGCACC 600
TGTATTCCCA TCCCATCATC TTGGGCTTTA GGAAAATACC TATGGGAGTG GGCCTCAGCC 660
CGTTTCTCCT GGCTCAGTTT ACTAGTGCAA TTTGTTCAGT GGTGCGTAGG GCTTTCCCCC 720
ACTGTCTGGC TTTTAGTTAT ATGGATGATC TGGTATTGGG GGCCAAATCT GTGCAGCATC 780
TTGAGTCCCT TTATACCGCT GTTACCAATT TTCTGTTATC TGTGGGTATC CATTTAAATA 840
CTGCTAAAAC AAAAAGATGG GGTTACAACC TACATTTCAT GGGTTATGTT ATTGGTAGTT 900
GGGGAACGTT ACCCCAAGAT CATATTGTAC ACAAAATCAA AGATTGTTTT CGAAAAGTTC 960
CTGTAAATCG CCCAATTGAT TGGAAAGTTT GTCAAAGTAT TGTGGGTCTT TTGGGCTTTG 1020
CGGCCCCTTT TACCCAATGT GGTTATCCTG CTCTCATGCC TTTGTATGCC TGTATTACTG 1080
CTAAACAGGC TTTTGTCTTC TCGCCAACTT ACAAGGCCTT TCTGTGTAAA CAATACATGA 1140
ACCTTTACCC CGTTGCTCGG CAACGGCCAG GCCTGTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGCTG GGGCTTGGCC ATAGGCCATC AGCGCATGCG TGGAACCTTT GTGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTTGCAG CTTGCTTCGC TCGCAGCCGG TCTGGAGCAA 1320
TCCTCATCGG CACAGACAAT TCTGTCGTCC TCTCTCGGAA GTATACATCC TTTCCATGGC 1380
TGCTCGGTTG TGCTGCCAAC TGGATCCTGC GCGGGACGTC CTTTGTTTAC GTCCCGTCGG 1440
CGCTGAATCC AGCGGACGAA CCCTCCCGGG GTCGCTTGGG GCTGTACCGC CCCCTTCTTC 1500
GTCTGCCGTT CCAGCCGACA ACGGGTCGCA CCTCTCTTTA CGCGGACTCC CCGTCTGTTC 1560
CTTCTCATCT GCCGGACCGT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAGACCAC 1620
CGTGAACGCC CCCTGGAGTT TGCCAACAGT CTTACATAAG AGGACTCTTG GACTTTCAGG 1680
ACGGTCAATG ACCTGGATCG AAGACTACAT CAAAGACTGT GTATTTAAGG ACTGGGAGAG 1740
GCTGGGGGAG GAGATCAGGT TAAAGGTCTT TGTACTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGTTCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCTTG TTCATGTCCC 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCTTAT 1920
AAAGAATTTG GAGCTTCTGT GGAATTGTTC TCTTTTTTGG CTTCTGACTT CTTTCCGTCT 1980
GTTCGGGACC TCCTCGACAC CGCCTCAGCC CTGTACCGGG ATGCCTTAGA GTCACCGGAA 2040
CATTGCACCC CCAATCATAC CGCTCTCAGG CAAGCTATTT TGTGCTGGGG TGAGTTAATG 2100
ACTTTGGCTT CCTGGGTGGG TAATAATTTG GAAGACCCTG CAGCTAGGGA TTTAGTAGTT 2160
AATTATGTCA ACACTAATAT GGGCTTAAAG ATTAGACAAC TATTGTGGTT TCACATCTCC 2220
TGTCTTACTT TTGGAAGAGA AACAGTTCTT GAGTATTTGG TGTCCTTTGG AGTGTGGATT 2280
CGCACTCCAC CTGCTTATAG ACCACCAAAT GCCCCTATCC TATCCACACT TCCGGAAACT 2340
ACTGTTGTTA GACGACGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCCGACGA 2400
AGGTCTCAAT CGCCGCGTCG CAGAAGATCT CAATCTCCAG CTTCCCAATG TTAGTATTCC 2460
TTGGACTCAT AAGGTGGGAA ATTTTACGGG GCTCTACTCT TCTACTGTAC CTGCTTTCAA 2520
TCCTAACTGG TTAACTCCTT CTTTTCCTGA TATTCATTTA CATCAGGATA TGATATCTAA 2580
ATGTGAACAA TTTGTAGGCC CGCTCACTAA AAATGAATTG AGAAGATTAA AATTGGTCAT 2640
GCCAGCTAGA TTTTATCCTA AGCATACCAA ATATTTCCTA TTGGAGAAAG GGATTAAACC 2700
CTATTATCCA GATCAGGCAG TTAATCATTA TTTTCAAACC AGACATTATT TGCATACTTC 2760
ATGGAAGGCG GGAATTCTAT ATAAGAGAGA AACCACACGT AGCGCCTCAT TTTGTGGGGG 2820
ACAATATTCC TGGGAACAAG AGCTACAGCA TGGGAGCACC TCTCTCAACG ACAAGAAGGG 2880
GCATGGGACA GAATCTTTCT GTGCCCAATC CACTGGGCTT CTTGCCAGAC CATCAGCTGG 2940
ATCCGCTATT CAGAGCAAAT TCCAGCAGTC CCGACTGGGA CTTCAACACA AACAAGGACA 3000
GTTGGCCAAT GGCAAACAAG GTAGGAGTGG GAGGCTACGG TCCAGGGTTC ACACCCCCAC 3060
ACGGTGGCCT GCTGGGGTGG AGCCCTCAGG CACAGGGTGT TTTAACAACC TTGCCAGCAC 3120
ATCCGCCTCC TGCTTCCACC AATCGGCTGT CCGGGAGGAA GCCAACCCAA GTCTCTCCAC 3180
CTCTAAGAGA CACACATCCT CAGGCCATGC AGTGG 3215






3215 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


312
AACTCAACTC ACTTCCACCA GGCTCTGTTG GATCCGAGGG TAAGGGCACT GTATTTTCCT 60
GCTGGTGGCT CCAGTTCAGG CACGCAGAAC CCTGCTCCGA CTATTGCCTC TCTCACATCA 120
TCAATCTCCT CGAAGACTGG GGGCCCTGCT ATGAACATGG ACAACATCAC ATCAGGACTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGTG TGTTTCTTGT TGACAAAAAT CCTCACAATA 240
CCACAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGACT ACCCGGGTGT 300
CCTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTTAC CAACCTCCTG TCCTCCAACT 360
TGTCCTGGCT ATCGTTGGAT GTGTCTGCGG CGTTTTATCA TCTTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTATCAAG GTATGTTGCC CGTTTGTCCT 480
CTAATTCCAG GATCTACGAC CACCAGCACG GGACCATGCA AAACCTGCAC AACTCTTGCT 540
CAAGGAACCT CTATGTTTCC CTCCTGTTGC TGTTCCAAAC CCTCGGACGG AAACTGCACC 600
TGTATTCCCA TCCCATCATC TTGGGCTTTA GGAAAATACC TATGGGAGTG GGCCTCAGCC 660
CGTTTCTCCT GGCTCAGTTT ACTAGTGCAA TTTGTTCAGT GGTGCGTAGG GCTTTCCCCC 720
ACTGTCTGGC TTTTAGTTAT ATGGATGATC TGGTATTGGG AGCCAAATCT GTGCAGCATC 780
TTGAGTCCCT TTATACCGCT GTTACCAATT TTCTGTTATC TGTGGGTATC CATTTGAATA 840
CCTCTAAAAC AAAAAGATGG GGTTACAATT TACATTTCAT GGGTTATGTC ATTGGCAGTT 900
GGGGAGCATT ACCCCAAGAT CATATTGTAC ACAAAATCAA AGAATGTTTT CGAAAAGTTC 960
CTGTAAATCG TCCAATTGAC TGGAAAGTTT GTCAACGTAT TGTGGGACTT TTGGGCTTTG 1020
CTGCTCCTTT TACCCAATGT GGTTATCCTG CTCTCATGCC TCTGTATAAC TGTATCACTG 1080
CGAAACAGGC TTTTGTCTTT TCGCCAACTT ACAAGGCCTT TCTCTGTAAA CAGTACATGA 1140
ACCTTTACCC CGTTGCTCGG CAACGGCCAG GCCTGTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGTTG GGGCTTGGCC ATTGGCCATC AGCGCATGCG TGGAACCTTT GTGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTTGCAG CTTGCTTCGC TCGCAGCCGG TCTGGAGCAA 1320
TCCTCATCGG CACAGACAAT TCTGTCGTCC TCTCCCGGAA GTATACATCC TTTCCATGGC 1380
TGCTCGGATG TGCTGCCAAC TGGATCCTGC GCGGGACGTC CTTTGTTTAC GTCCCGTCGG 1440
CGCTGAATCC AGCGGACGAA CCCTCCCGGG GCCGCTTGGG GCTCTACCGC CCTCTTCTGC 1500
GTCTGCCGTT CCAGCCGACC ACGGGTCGCA CCTCTCTTTA CGCGGACTCC CCGTCTGTTC 1560
CTTCTCATCT GCCGGTCCGT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAGACCAC 1620
CGTGAACGCC CCCTGGAGTT TGCCAACAGT CTTACATAAG AGGACTATTG GACTTTCAGG 1680
ACGGTCAATG ACCTGGATCG AAGAATACAT CAAAGACTGT GTATTTAAAG ACTGGGAGGA 1740
GCTGGGGGAG GAGATCAGGT TAAAGGTCTT TGTACTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGCGCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTCTTG TTTATGTCCC 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCTTAT 1920
AAAGAATTTG GAGCTTCTGT GGAATTGTTC TCTTTTTTGC CTTCTGACTT CTTTCCGTCA 1980
ATCCGAGACC TTCTCGACAC CGCCTCAGCT CTGTATCGGG ATGCGTTAGA GTCACCGGAA 2040
CATTGCACCC CCAATCATAC CGCTCTCAGG CAAGCTATTT TGTGTTGGGG TGAATTAATG 2100
ACTTTGGCTT CCTGGGTGGG CAATAATTTG GAGGACCCTG CAGCCAGGGA TTTAGTAGTT 2160
AACTATGTTA ACACTAATAT GGGCTTAAAG ATTAGACAAC TATTGTGGTT TCACATTTCC 2220
TGCCTTACTT TTGGAAGAGA AACAGTTCTT GAGTATTTGG TGTCCTTTGG AGTGTGGATT 2280
CGCACTCCTC CAGCTTATAG ACCACCAAAT GCCCCTATCC TATCCACACT TCCGGAAACT 2340
ACTGTTGTTA GACGACGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCAGACGA 2400
AGGTCTCAAT CGCCGCGTCG CAGAAGATCT CAATCTCCAG CTTCCCAATG TTAGTATTCC 2460
TTGGACTCAT AAGGTGGGAA ATTTTACGGG GCTCTACTCT TCTACTGTAC CTGCTTTCAA 2520
TCCTCACTGG TTAACTCCTT CTTTTCCTGA TATTCATTTG CATCAAGACC TGATATCTAA 2580
ATGTGAACAA TTTGTAGGCC CACTTACCAA AAATGAATTG AGAAGGTTGA AATTGATTAT 2640
GCCAGCCAGA TTCTTTCCTA AACTTACTAA ATATTTCCCT CTGGAGAAAG ACATTAAACC 2700
TTATTATCCA GAGCATGCAG TTAATCATTA TTTTCAAACC AGACATTATT TGCATACTTT 2760
ATGGAAGGCG GGAATTTTAT ATAAGAGAGA ATCCACACGT AGCGCCTCAT TTTGTGGGTC 2820
ACCATATTCT TGGGAACAAG AGCTACAGCA TGGGAGCACC TCTCTCAACG ACAAGAAGGG 2880
GCATGGGACA GAATCTCTCT GTGCCCAATC CACTGGGATT CTTTCCAGAC CATCAACTGG 2940
ATCCTCTTTT CAGAGCAAAT TCCAGCAGTC CCGATTGGGA CTTCAACAAA AACAAGGACA 3000
CTTGGCCAAT GGCAAACAAG GTAGGAGTGG GAGGTTACGG TCCAGGGTTC ACACCCCCAC 3060
ACGGTGGCCT GTTGGGGTGG AGCCCTCAGG CACAAGGTGT TCTAACAACC TTGCCAGCAG 3120
ATCCGCCTCC TGCCTCCACC AATCGGCTGT CCGGGAGGAA GCCAACCCCA GTCTCTCCAC 3180
CTCTAAGAGA CACACATCCA CAGGCAATGC AGTGG 3215






3215 base pairs


nucleic acid


single


linear




DNA (genomic)



NO


NO


313
AACTCAACCC AGTTCCACCA AGCTCTGTTG GATCCCAGGG TAAGGGCTCT GTACTTCCCT 60
GCTGGTGGCT CCAGTTCAGG GACACAGAAC CCTGCTCCGA CTATTGCCTC TCTCACATCA 120
TCAATCTTCT CGAAGACTGG GGGCCCTGCT ATGAACATGG ACAACATTAC ATCAGGACTC 180
CTAGGACCCC TGCTCGTGTT ACAGGCGGTG TGTTTCTTGT TGACAAAAAT CCTCACAATA 240
CCACAGAGTC TAGACTCGTG GTGGACTTCT CTCAATTTTC TAGGGGGACT ACCCGGGTGT 300
CCTGGCCAAA ATTCGCAGTC CCCAACCTCC AATCACTTAC CAACCTCCTG TCCTCCAACT 360
TGTCCTGGCT ATCGTTGGAT GTGTCTGCGG CGTTTTATCA TCTTCCTCTT CATCCTGCTG 420
CTATGCCTCA TCTTCTTGTT GGTTCTTCTG GACTATCAAG GTATGTTGCC CGTTTGTCCT 480
CTACTTCCAG GATCCACGAC CACCAGCACG GGACCCTGCA AAACCTGCAC AACTCTTGCA 540
CAAGGAACCT CTATGTTTCC CTCCTGTTGC TGTTCCAAAC CCTCGGACGG AAACTGCACT 600
TGTATTCCCA TCCCATCATC CTGGGCTTTA GGAAAATACC TATGGGAGTG GGCCTCAGCC 660
CGTTTCTCCT GGCTCAGTTT ACTAGTGCAA TTTGTTCAGT GGTGCGTCGG GCTTTCCCCC 720
ACTGTTTGGC TTTTAGTTAT ATGGATGATC TGGTATTGGG GGCCAAATCT GTGCAGCATC 780
TTGAGTCCCT TTATACCGCT GTTACCAATT TTCTGTTATC TGTGGGTATC CATTTAAATA 840
CCTCTAAAAC AAAAAGATGG GGTTACTCCC TACATTTTAT GGGTTATGTC ATTGGTAGTT 900
GGGATCATT ACCCCAAGAT CACATTGTAC ACAAAATCAA GGAATGCTTT CGAAAACTGGC 960
CTGTAAATCG TCCAATTGAT TGGAAAGTTT GTCAACGCAT AGTGGGTCTT TTGGGCTTTG 1020
CTGCCCCTTT CACCCAATGC GGTTATCCTG CTCTCATGCC TCTGTATGCC TGTATTACTG 1080
CTAAACAGGC TTTTGTCTTC TCGCCAACCT ACAAGGCCTT TCTGTGTAAA CAATACATGA 1140
ACCTTTACCC GGTTGCTCGG CAACGGCCAG GCCTGTGCCA AGTGTTTGCT GACGCAACCC 1200
CCACTGGTTG GGGCTTGGCC ATTGGCCATC AGCGCATGCG TGGAACCTTT GTGGCTCCTC 1260
TGCCGATCCA TACTGCGGAA CTCCTAGCAG CTTGTTTCGC TCGCAGCAGG TCTGGAGCGA 1320
CTCTCATCGG CACGGACAAT TCTGTTGTCC TCTCTAGGAA GTACACCTCC TTTCCATGGC 1380
TGCTCGGATG TGCTGCAAAC TGGATCCTGC GCGGGACGTC CTTTGTTTAC GTCCCATCGG 1440
CGCTGAATCC CGCGGACGAC CCCTCCCGGG GCCGCTTGGG GCTGTACCGC CCTCTTCTCC 1500
GTCTGCCGTT CCAGCCGACG ACGGGTCGCA CCTCTCTTTA CGCGGACTCC CCGTCTGTTC 1560
CTTCTCATCT GCCGGACCGT GTGCACTTCG CTTCACCTCT GCACGTCGCA TGGAGACCAC 1620
CGTGAACGCC CCCTGGAGTT TGCCAACAGT CTTACATAAG CGGACTCTTG GACTTTCAGG 1680
ATGGTCAATG ACCTGGATCG AAGAATACAT CAAAGACTGT GTATTTAAGG ACTGGGAGGA 1740
GTTGGGGGAG GAGATTAGGT TAAAGGTCTT TGTATTAGGA GGCTGTAGGC ATAAATTGGT 1800
CTGTTCACCA GCACCATGCA ACTTTTTCAC CTCTGCCTAA TCATCTTTTG TTCATGTCCC 1860
ACTGTTCAAG CCTCCAAGCT GTGCCTTGGG TGGCTTTGGG GCATGGACAT TGACCCTTAT 1920
AAAGAATTTG GAGCTTCTGT GGAGTTACTC TCGTTTTTGC CTTCTGATTT CTTCCCATCG 1980
GTTCGGGACC TACTCGACAC CGCTTCAGCT CTTTACCGGG ATGCTTTAGA GTCACCTGAA 2040
CATTGCACTC CCAACCATAC TGCTCTCAGG CAAGCTATTT TGTGTTGGGG TGAGTTAATG 2100
ACTTTGGCTT CCTGGGTGGG CAATAATTTG GAGGACCCTG CAGCTAGGGA TTTAGTAGTT 2160
AACTATGTTA ACACTAACAT GGGCCTAAAA ATTAGACAAC TGTTGTGGTT TCACATTTCC 2220
TGCCTTACTT TTGGAAGAGA AACAGTTCTA GAGTATTTGG TGTCCTTTGG AGTGTGGATT 2280
CGCACTCCTC CTGCTTACAG ACCACCAAAT GCCCCTATCC TATCCACACT TCCGGAAACT 2340
ACTGTTGTTA GACGACGAGG CAGGTCCCCT AGAAGAAGAA CTCCCTCGCC TCGCAGACGA 2400
AGATCTCAAT CGCCGCGTCG CCGCAGATCT CAATCTCCAG CTTCCCAATG TTAGTATTCC 2460
TTGGACTCAT AAGGTGGGAA ACTTTACGGG GCTTTACTCT TCTACTGTGC CTGCTTTTAA 2520
TCCTAACTGG TCCACTCCTT CTTTTCCTGA TATTCATTTG CATCAAGACC TGATTTCTAA 2580
ATGTGAACAA TTTGTAGGCC CACTTACTAA AAATGAATTA CGAAGATTAA AATTGGTTAT 2640
GCCAGCTAGA TTTTATCCTA AGGTTACCAA ATATTTTCCC ATGGATAAAG GCATCAAACC 2700
CTATTATCCT GAGCATGCAG TTAATCATTA CTTTAAAACC AGACATTATT TGCATACTTT 2760
ATGGAAGGCG GGAATTTTAT ATAAGAGAGA ATCCACACGT AGCGCCTCAT TTTGTGGGTC 2820
ACCATATTCC TGGGAACAAG AGCTACAGCA TGGGAGCACC TCTCTCAACG ACACGAAGAG 2880
GCATGGGACA GAATCTCTCT GTGCCCAATC CTCTGGGATT CTTTCCAGAC CATCAGCTGG 2940
ATCCGCTATT CAGAGCAAAT TCCAGCAGTC CCGACTGGGA CTTCAACACA AACAAGGACA 3000
GTTGGCCAAT GGCAAACAAG GTAGGAGTGG GAGGCTACGG TCCAGGGTTC ACACCCCCAC 3060
ACGGTGGCCT GCTGGGGTGG AGCCCTCAAG CACAAGGTGT GTTAACAACC TTGCCAGCAG 3120
ATCCGCCTCC TGCTTCCACC AATCGGCGGT CCGGGAGAAA GCCAACCCCA GTCTCTCCAC 3180
CTCTAAGAGA CACACATCCA CAGGCAATGC AGTGG 3215







Claims
  • 1. A method for identifying HBV drug resistant strains in a sample, comprising:(i) hybridizing polynucleic acids present in said sample, with a combination of at least a first probe and a second probe, wherein said first probe hybridizes specifically to a mutant HBV RT pol gene target sequence present in said sample, wherein said mutant target sequence comprises at least one codon selected from the group consisting of codons 514, 519-528 and 551-555; and wherein said second probe hybridizes specifically to HBV genotype-specific target nucleic acid sequences in said sample; (ii) detecting the hybrids formed in step (i); (iii) inferring the identity of HBV drug resistant strains in said sample from the differential hybridization signal(s) obtained in step (ii), through discrimination between wild-type and drug resistant HBV strains and through determination of the genotype.
  • 2. A method according to claim 1 wherein said first probe is a mutant probe identifying a drug resistant HBV strain.
  • 3. A method according to claim 1 wherein said first probe is a wild-type probe identifying a wild-type HBV strain.
  • 4. A method according to claim 1 wherein said sample is a biological sample.
  • 5. A method according to claim 4 wherein said biological sample is a sample from a patient.
  • 6. A method according to claim 1 wherein steps (i) to (iii) are repeated on at least two samples from a patient such that the presence of said HBV mutant strains may be monitored as a function of time.
  • 7. A method according to claim 1 wherein the genotype of said HBV strain is determined from said inferring step (iii).
  • 8. A method according to claim 7 wherein said genotyping is performed in a HBV region selected from the groups consisting of preS1 and HBsAg.
  • 9. A method according to claim 7 wherein detection of the presence of a HBV strain resistant to drugs and inferring of the genotype of said strain are done in one single experimental setup.
  • 10. A method according to claim 1 wherein said probes hybridize under the same hybridization and wash conditions.
  • 11. A method according to claim 1 wherein said polynucleic acids in said sample are released, isolated, concentrated and/or amplified prior to the hybridizing of step (i).
  • 12. A method according to claim 1 wherein said hybridization assay is a reverse hybridization assay.
  • 13. A method according to claim 1 wherein said hybridization assay is a line probe assay.
  • 14. A method according to claim 1 wherein the resistance of HBV strains to lamivudine or penciclovir is inferred from step (iii).
  • 15. A method according to claim 1, wherein the presence or absence of a mutation in the YMDD motif of said HBV RT pol is detected.
  • 16. A method according to claim 1, wherein said mutant HBV RT pol gene target sequence comprises at least codon 552.
  • 17. A method according to claim 16, wherein said mutant HBV RT pol gene target sequence further comprises at least one codon selected from the group consisting of codon 514, 521, 525, 528, and 555.
  • 18. A method according to claim 1, wherein said mutant HBV RT pol gene target sequence comprises at least one codon selected from the group consisting of codon 514, 521, 525, 528, 552 and 555.
  • 19. A method according to claim 3, wherein said first probe hybridizes specifically to SEQ ID NO: 115 or the complement thereof.
  • 20. A method according to claim 1, wherein said second probe hybridizes specifically to of a sequence selected from the group consisting SEQ ID NOs: 22, 58, 63, 148, 193 and 219 or the complements thereof.
  • 21. A method according to claim 3, wherein said first probe hybridizes specifically to SEQ ID NO: 115 or the complement thereof; and wherein said second probe hybridizes specifically to a sequence selected from the group consisting of SEQ ID NOs: 22, 58, 63, 148, 193 and 219 or the complements thereof.
  • 22. A combination comprising at least a combination of a first probe and a second probe, wherein said first probe hybridizes specifically to a mutant HBV RT pol gene target sequence and identifies drug resistant HBV strains, said target sequence comprising at least one codon selected from the group consisting of codons 514, 519-528 and 551-555; and wherein said second probe hybridizes specifically to an HBV genotype-specific target nucleic acid sequence.
  • 23. A combination according to claim 22 further comprising a third probe which is a wild-type probe identifying wild-type HBV strains.
  • 24. A combination according to claim 23 wherein said third probe hybridizes specifically to SEQ ID NO: 115 or the complement thereof.
  • 25. A combination according to claim 22 wherein said second probe hybridizes specifically to a sequence selected from the group consisting of SEQ ID NOs: 22, 58, 63, 148, 193 and 219 or the complements thereof.
  • 26. A method according to claim 1 wherein in step (i) said nucleic acids in said sample are further hybridized with a third probe which hybridizes specifically to a nucleic acid sequence selected from the group consisting of a mutant HBV preCore gene target sequence, a mutant HBsAg gene target sequence, a mutant HBV RT pol gene target sequence and a HBV genotype-specific target sequence.
  • 27. A method according to claim 26 wherein the first probe is a wild-type probe identifying wild-type HBV strains.
  • 28. A method according to claim 27 wherein said probe hybridizing specifically to a mutant HBV preCore gene target is selected from the group consisting of SEQ ID NOs: 88 and 119, wherein said probe hybridizing specifically to a mutant HBsAg gene target is SEQ ID NO: 78, wherein said probe hybridizing specifically to a mutant HBV RT pol gene target is SEQ ID NO: 115 and wherein said probe hybridizing specifically to a HBV genotype-specific target sequence is selected from the group consisting of SEQ ID NOs: 22, 58, 63, 148, 193 and 219; or wherein said probe hybridizes specifically to the complements thereof.
  • 29. A method according to claim 1 or 26 wherein at least one mutation selected from the list consisting of a mutation of F to L at position 514, a mutation of V to L at position 521, a mutation of P to L at position 525, a mutation of L to M at position 528, a mutation of M to V or I at position 552, a mutation of V or L to I at position 555, is detected in said HBV RT.
  • 30. A method according to claim 1 or 26 further wherein the presence of wild-type polymorphisms at positions surrounding the mutation position is detected.
Priority Claims (1)
Number Date Country Kind
96870053 Apr 1996 EP
PCT Information
Filing Document Filing Date Country Kind
PCT/EP97/02002 WO 00
Publishing Document Publishing Date Country Kind
WO97/40193 10/30/1997 WO A
US Referenced Citations (1)
Number Name Date Kind
6228575 Gingeras et al. May 2001 B1
Foreign Referenced Citations (7)
Number Date Country
0 229 701 Jul 1987 EP
0 569 237 Nov 1993 EP
WO 91 10746 Jul 1991 WO
90 13667 Jul 1993 WO
WO 93 13120 Jul 1993 WO
WO 95 02690 Jan 1995 WO
9511995 May 1995 WO
Non-Patent Literature Citations (17)
Entry
Norder et al (Journal of General Virology 73:1201-1208, 1992).*
Ni et al (Res. Virol. 146:397-407, 1995).*
Zhang et al (Journal of Medical Virology 48:8-16, 1996).*
Rodriguez-Frias et al (Hepatology 22(6):1641-1647, 1995).*
Blum, H.E. Digestion 56:85-95, 1995.*
Harrison, T.J. European Journal of Gastroenterolgy & Hepatology 8(4): 306-311, 1996.*
Carman et al. Hepatitis and Chronic Liver Disease. 16(2): 407-428, Jun. 1996.*
Ling et al. Hepatology 24(3)): 711-713, Sep. 1996.*
Norder et al. Virology 198:489-503, 1994.*
G.A. Tipples et al.: “Mutation in HBV RNA-dependent DNA polymerase confers resistance to lamivu vitro” Hepatology, vol. 24, No. 3, Sep. 1996, Philadelphia US, pp. 714-717, XP0020442 cited in the application see the whole document.
R. Ling et al.: “Selection of mutations in the hepatitis B virus polymerase during therapy of transplant recipients with lamivudine” Hepatology, vol. 24, No. 3, Sep. 1996, Philadelphia US, pp. 713, XP002044247 cited in the application see the whole document.
A. Bartholomeusz et al.: “Mutations in the hepatitis B virus polymerase gene that are associated resistance to famciclovir and lamivudine” International Antiviral News, vol. 5, No. 8, 1997, Lo GB, pp. 123-124, XP002044248 see the whole document.
Grandjacques et al, “Rapid detection of genotypes and mutations in the pre-core promoter and the pre-core region of hepatitis B virus genome: correlation with viral persistence and disease diverity”, Journal of Hepatology 2000; 33:430-439.
Lau et al, “Features of response and resistance to lamivudine in patients with chronic hepatitis B with and without HbeAg”, AASLD Abstract, Hepatology Oct. 1998, p. 318A.
Stuyver et al, “A new genotype of hepatitis B virus: complete genome and phylogenetic relatedness”, Journal of General Virology (2000) 81, 67-74.
Magnius, et al., “Subtypes, Genotypes and Molecular Epidemiology of the Hepatitis B Virus as Reflected by Sequence Variability of the S-Gene”, Intervirology 1995, 38:24-34.
Database Strand, Acc. Nr. Q69847, “Hepatitis B virus subtype . . . ”, Mar. 6, 1995, B.M. Andrews, et al., XP002034142.