Method for using an initial maintenance opportunity for non-contention ranging

Information

  • Patent Grant
  • 6944881
  • Patent Number
    6,944,881
  • Date Filed
    Monday, June 19, 2000
    24 years ago
  • Date Issued
    Tuesday, September 13, 2005
    19 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Miller; John
    • Manning; John
    Agents
    • McDonnell, Boehnen Hulbert & Berghoff, LLP
Abstract
A method of preventing collisions when a cable modem re-registers with a cable modem termination system on a cable television network following failure of a primary communications channel between the cable modem and the cable modem termination system. The method provides a service identifier that is transmitted to the cable modem during initial registration of the cable modem with the cable modem termination system. Upon registration of the cable modem with the cable modem termination system, the cable modem stores the service identifier in memory. After failure of the primary channel, the cable modem reinitializes on the cable network and waits for transmission of a bandwidth allocation map from the cable modem termination system. When the cable modem receives the bandwidth allocation map, it determines if the map contains a unicast initial maintenance opportunity. When the map contains a initial maintenance opportunity having a unicast associated identifier, the cable modem compares the service identifier stored in its memory with a unique service identifier contained in the initial maintenance opportunity information element of the bandwidth allocation map. When the service identifiers match, the cable modem then uses the initial maintenance opportunity having the unicast associated identifier contained in the information element of the bandwidth allocation map to re-register with the network.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to communications in computer networks. In particular, the invention relates to ranging methods in a data-over-cable system.


2. Description of the Related Art


Cable television networks such as those provided by Comcast Cable Communications, Inc., of Philadelphia, Pa., Cox Communications of Atlanta, Ga., Tele-Communications, Inc., of Englewood Colo., Time-Warner Cable, of Marietta Ga., Continental Cablevision, Inc., of Boston Mass., and others provide cable television services to a large number of subscribers over a large geographical area. The cable television networks typically are interconnected by cables such as coaxial cables or a Hybrid Fiber/Coaxial (“HFC”) cable system which have data rates of about 10 Mega-bits-per-second (“Mbps”) to about 30+ Mbps.


The Internet, a world-wide network of interconnected computers, provides multi-media content including audio, video, graphics and text that typically requires a large bandwidth for downloading and viewing. Most Internet Service Providers (“ISPs”) allow customers to connect to the Internet via a serial telephone line from a Public Switched Telephone Network (“PSTN”) at data rates including 14,400 bps, 28,800 bps, 33,600 bps, 56,000 bps and others that are much slower than the about 10 Mbps to about 30+Mbps available on a coaxial cable or HFC cable system on a cable television network.


With the explosive growth of the Internet, many customers have desired to use the larger bandwidth of a cable television network to connect to the Internet and other computer networks. Cable modems, such as those provided by 3Com Corporation, of Santa Clara, Calif., Motorola Corporation, of Arlington Heights, Ill., Hewlett-Packard Co., of Palo Alto, Calif., Bay Networks, of Santa Clara, Calif., Scientific-Atlanta, of Norcross, Ga., General Instruments, of Horsham, Pa., and others offer customers higher-speed connectivity to the Internet, an intranet, Local Area Networks (“LANs”) and other computer networks via cable television networks. These cable modems currently support a data connection to the Internet and other computer networks via a cable television network with a data rate of up to about 30+ Mbps, which is a much larger data rate than can be supported by a modem used over a serial telephone line.


Many cable television networks, however, provide only uni-directional cable systems, supporting only a “downstream” cable data path. A downstream data path is the flow of data to a customer from a cable system “headend”—a central location in the cable television network that is responsible for sending cable signals in the downstream direction. Traditionally, cable television networks provided one-way cable systems with a return “upstream” data path via a telephone network (i.e., a “telephony return”), such as a public switched telephone network provided by AT&T, GTE, Sprint, MCI and others. An upstream data path is the flow of data from the customer back to the cable system headend. A cable television system with an upstream connection to a telephony network is called a “data-over-cable system with telephony return.”


As the cable television network has developed, two-way cable systems without telephony returns, wherein both downstream and upstream flow occur on the cable network, have become increasingly prevalent. In a two-way cable system, customer premise equipment sends response data packets to the cable modem, which sends the data packets upstream via the cable television network to the cable modem termination system. The cable modem termination system sends the data packets to appropriate hosts on the data network and sends the response data packets back to the appropriate cable modem.


As a cable modem is initialized in a data-over-cable system, it registers with a cable modem termination system to allow the cable modem to receive data over a cable television connection from a data network (e.g., the Internet, a WAN or a LAN). The cable modem forwards configuration information it receives in a configuration file during initialization to the cable modem termination system as part of a registration request message. A cable modem also helps initialize and register any attached customer premise equipment with the cable modem termination system.


When a cable modem initializes on a cable television network, it uses a ranging process to determine the appropriate transmission parameters for its data transfer For a description of the ranging process, see DOCSIS Radio Frequency Interface Specification SP-RFIv1.1-I03-991105 (hereinafter “DOCSIS RFI Spec 1.1”), which is incorporated herein by reference. Under existing ranging procedures, the cable modem sends a ranging message at an initial maintenance opportunity. The initial maintenance opportunity is a contention opportunity under existing standards, and thus any cable modem attached to the network may be attempting to use the same opportunity. If two or more cable modems attempt to use the same initial maintenance opportunity, a collision occurs and the cable modem termination system does not receive any of the ranging messages. When the cable modems fail to receive a response from the cable modem termination system, the modems determine a random “backoff period” that the modem will wait before attempting to resend the ranging request.


As the number of cable modems using cable networks increases, this method will become increasingly inefficient. In order to accommodate a larger number of modems on the network, the modems may need to use larger backoff periods. Moreover, there is no gaurantee that another collision will not occur when the modem again transmits its ranging request. These limitations will lead to an increased number of ranging attempts that a cable modem must perform before accessing the cable modem termination system. The effects of these limitations will be especially pronounced when a downstream channel fails, and all the cable modems previously using that channel must re-initialize on another channel or on the same channel after it comes back online.


There is therefore a need in the art for an improved method of ranging.


SUMMARY OF THE INVENTION

In a first aspect, the invention provides a controlled, deterministic method of preventing collisions when a cable modem registers with a cable modem termination system on a cable television network following failure of a primary communications channel between the cable modem and the cable modem termination system. The method provides a service identifier that is transmitted to the cable modem during initial registration of the cable modem with the cable modem termination system. Upon registration of the cable modem with the cable modem termination system, the cable modem stores the service identifier in memory. After failure of the primary channel, the cable modem reinitializes on the cable network and waits for transmission of a bandwidth allocation map from the cable modem termination system. When the cable modem receives the bandwidth allocation map, it determines if the map contains an initial maintenance opportunity having a unicast, broadcast or multicast associated identifier, or a combination thereof. If the map contains an initial maintenance opportunity having a unicast associated identifier, the cable modem compares the service identifier stored in its memory with the unicast associated identifier for the initial maintenance opportunity information element of the bandwidth allocation map. If the service identifiers match, the cable modem uses the initial maintenance opportunity having a unicast associated identifier contained in the information element of the bandwidth allocation map to range on the network. If the cable modem determines that the bandwidth allocation map does not contain a initial maintenance opportunity having a unicast associated identifier, the cable modem uses standard contention ranging with an initial maintenance opportunity having a broadcast or multicast associated identifier in the bandwidth allocation map to range on the network. If the cable modem determines that the bandwidth allocation map does contain a initial maintenance opportunity having a unicast associated identifier, but the service identifiers do not match, the cable modem uses standard contention ranging with an initial maintenance opportunity having a broadcast or multicast associated identifier in the bandwidth allocation map.


In accordance with a preferred embodiment of the present invention, the bandwidth allocation map contains a plurality of initial maintenance opportunities having associated identifiers, wherein the associated identifiers are broadcast, multicast or unicast. In a further preferred embodiment, the cable modem reads only the first of the plurality of initial maintenance opportunities in the bandwidth allocation map. If the associated identifier for the initial maintenance opportunity is unicast and corresponds to the service identifier in the cable modem, the cable modem ranges on the network using non-contention ranging, otherwise the cable modem uses standard contention ranging.


In a further preferred embodiment, the cable modem reads all of the initial maintenance opportunities in the bandwidth allocation map prior to ranging on the cable television network. If any of the initial maintenance opportunities has a unicast associated identifier corresponding to the service identifier stored in the cable modem, the cable modem uses that initial maintenance opportunity having a unicast associated identifier to range on the cable television network. Otherwise, the cable modem uses an initial maintenance opportunity having a broadcast or multicast associated identifier in the bandwidth allocation map to range on the cable television network.


The foregoing and other aspects and advantages of illustrative embodiments of the present invention will be more readily apparent from the following detailed description, which proceeds with references to the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention are described with reference to the following drawings, wherein:



FIG. 1 is a block diagram illustrating a two-way cable modem system;



FIG. 2 is a block diagram illustrating a protocol stack for a cable modem;



FIG. 3 is a block diagram illustrating an Upstream Channel Descriptor message structure;



FIG. 4 is a block diagram illustrating a bandwidth allocation map;



FIG. 5 is a block diagram illustrating a bandwidth allocation map information element; and



FIG. 6 is a flow diagram illustrating a preferred embodiment of a non-contention ranging process.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Exemplary Data-Over-Cable System



FIG. 1 is a block diagram illustrating an exemplary data-over-cable system 10 with both telephony return 22 and bi-directional data flow over the cable network 14. The preferred embodiments, however, utilize the bi-directional data path (i.e., both downstream and upstream communication via the cable network 14), rather than the telephony return 22. In a data-over cable system 10 without telephony return, customer premise equipment (“CPE”) 18 or a cable modem (“CM”) 16 has an upstream connection to the cable modem termination system (“CMTS”) 12 via a cable television connection, a wireless connection, a satellite connection, or a connection via other technologies to send data upstream to the cable modem termination system. The data-over-cable system 10 shows the CMTS 12 connected to the CM16 via a cable television network 14, hereinafter the cable network 14. FIG. 1 illustrates one CMTS 12. However, data-over-cable system 10 may include multiple CMTSs 12.


In one preferred embodiment of the present invention, the CMTS 12 is a Total Control hub by 3Com Corporation of Santa Clara, Calif., with a cable modem termination unit. A Total Control hub is a chassis with multiple networking cards connected by a common bus. An exemplary Total Control hub is described in U.S. Pat. No. 5,528,595, granted to Dale M. Walsh et al., and is incorporated herein by reference. However, CMTS 12 could also be another network server including those by Lucent Technologies of Murray Hill, N.J., Livingston Enterprises, Inc. of Pleasanton, Calif., Ascend Communications of Alameda, Calif., Cisco Systems, Inc., of San Jose, Calif. and others.


The cable network 14 includes cable television networks such as those provided by Comcast Cable Communications, Inc., of Philadelphia, Pa., Cox Communications, or Atlanta, Ga., Tele-Communications, Inc., of Englewood Colo., Time-Warner Cable, of Marietta, Ga., Continental Cablevision, Inc., of Boston, Mass., and others. As noted above, the cable network 14 is connected to the Cable Modem (“CM”) 16 over a bi-directional cable connection. CM 16 may be any commercially available cable modem such as those provided by 3Com Corporation of Santa Clara, Calif., Motorola Corporation of Arlington Heights, Ill., Hewlett-Packard Co. of Palo Alto, Calif., Bay Networks of Santa Clara, Calif., Scientific-Atlanta, of Norcross, Ga., General Instruments of Horsham, Pa., and others. FIG. 1 illustrates one CM 16; however, in a typical data-over-cable system, hundreds or thousands of CMs 16 are connected to the CMTS 12. The CM 16 is connected to the CPE 18, such as a personal computer system, via a Cable Modem-to-CPE Interface (“CMCI”) 20. One CPE 18 is illustrated in FIG. 1; however, the CM 16 may be connected to multiple CPEs 18 attached.


The CMTS 12 is located at a “headend” 26 of the cable system 10. Content servers, operations servers, administrative servers and maintenance servers used in data-over-cable system 10 (not shown in FIG. 1) may be at the headend 26 or in different locations. Access points to the data-over-cable system 10 are connected to one or more CMTS 12, or cable headend access points. Such configurations may be “one-to-one”, “one-to-many,” or “many-to-many,” and may be interconnected to other Local Area Networks (“LANs”) or Wide Area Networks (“WANs”).


The CMTS 12 is connected to a data network 28 by a CMTS-Network System Interface (“CMTS-NSI”) 32. The preferred embodiments are, however, not limited to the architecture of the data-over-cable system 10 illustrated in FIG. 1, and more or fewer components, connections and interfaces could alternatively be used.


Network Device Protocol Stack



FIG. 2 is a block diagram illustrating a protocol stack 36 for network devices in the data-over-cable system 10. In one preferred embodiment of the present invention, network devices in the data-over-cable system 10 are compliant with Data-Over-Cable-Service-Interface-Specification (“DOCSIS”) standards from the Multimedia Cable Network Systems (“MCNS”), which are incorporated herein by reference. The DOCSIS standards can be found on the World Wide Web at the Universal Resource Locator (“URL”) “www.cablemodem.com.”



FIG. 2 illustrates the downstream and upstream protocols used, for example, in the CM 16. As is known in the art, the Open System Interconnection (“OSI”) model is used to describe open computer networks. The OSI model consists of seven layers including from lowest-to-highest, a physical, data-link, network, transport, session, presentation and application layer. The physical layer transmits bits over a communication link. The data link layer transmits error free frames of data. The network layer transmits and routes data packets.


For downstream data transmission, network devices, including for example the CM 16, are connected to the cable network 14 in a physical layer 38 via a Radio Frequency (“RF”) Interface 40. The RF interface 40 and the MAC layer 44 are used for an upstream cable connection in a data-over-cable system 10 without telephony return. In a preferred embodiment of the present invention, the RF Interface 40 has an operation frequency range of 50 megahertz (“MHz”) to 1 gigahertz (“GHz”) and a channel bandwidth of 6 MHz. However, other frequency ranges may alternatively be used.


The RF interface 40 uses a signal modulation method, such as Quadrature Amplitude Modulation (“QAM”). As is known in the art, QAM is used as a means of encoding digital information over radio, wire, or fiber optic transmission links. QAM is a combination of amplitude and phase modulation and is an extension of multiphase phase-shift-keying. QAM can have any number of discrete digital levels typically including 4, 16, 64 or 256 levels In one embodiment of the present invention, QAM-64 is used in the RF interface 40. However, other operating frequencies and modulation methods may alternatively be used, including for example, Quadrature Phase Shift Keying (“QPSK”) modulation). The RF interface 40 is preferably compliant with the Institute of Electrical and Electronic Engineers (“IEEE”) standard 802.14 for cable modems, the contents of which are incorporated herein by reference. IEEE standards can be found on the World Wide Web at the URL “www.ieee.org.” Other RF interfaces 40 may alternatively be used, including, for example, RF interfaces from MCNS.


Above the RF interface 40 in the protocol stack 36 a transmission convergence sublayer 41, which is only present in the downstream direction. Transmission convergence sublayer 41 provides for the transmission of services such as digital video over the physical layer 38 bitstream. For more information on transmission convergence sublayer 41, reference may be made to DOCSIS Radio Frequency Interface Specification SP-RFIv1.1-I03-991105 (hereinafter “DOCSIS RFI Spec 1.1”), the contents of which are incorporated herein by reference.


Above the RF interface 40 in the upstream direction, and transmission convergence sublayer 41 in the downstream direction, is a data-link layer 42. Data-link layer comprises a Medium Access Control (“MAC”) layer 44, a link security layer 46, and a logical link control (“LLC”) layer 48. As is known in the art, the MAC layer 44 controls access to a transmission medium via physical layer 38. For more information on the MAC layer protocol 44, reference may be made to IEEE 802.14 for cable modems. However, other MAC layer protocols 44 may alternatively be used, including, for example, MCNS MAC layer protocols. Above the MAC layer 44 is an optional link security protocol stack 46. Link security protocol stack 46 prevents unauthorized users from making a data connection from the cable network 14. Above the link security protocol stack 46 is LLC layer 48. For more information on LLC layer 48, reference may be made to ISO/IEC 10039, which is incorporated herein by reference.


Above both the downstream and upstream data-link layers 42, in a network layer 52, is an Internet Protocol (“IP”) layer 54. IP layer 54, hereinafter IP 54, roughly corresponds to OSI layer 3, the network layer, but is typically not defined as part of the OSI model. As is known in the art, IP 54 is a routing protocol designed to route traffic within a network or between networks. For more information on IP 54, reference may be made to RFC-791, J. Postel, Internet Protocol, Sep. 1, 1981, the contents of which are incorporated herein by reference.


Internet Control Message Protocol (“ICMP”) layer 56 is used for network management. The main functions of ICMP layer 56, hereinafter ICMP 56, include error reporting, reachability testing (e.g., “pinging”), congestion control, route-change notification, performance, subnet addressing and others. Because IP 54 is an unacknowledged protocol, datagrams may be discarded and ICMP 56 is used for error reporting. For more information on ICMP 56, reference may be made to RFC-792, J. Postel, Internet Control Message Protocol, Sep. 1, 1981, the contents of which are incorporated herein by reference.


Above IP 54 and ICMP 56 is a transport layer 58 with a User Datagram Protocol (“UDP”) layer 60. UDP layer 60, hereinafter UDP 60, roughly corresponds to OSI layer 4, the transport layer, but is typically not defined as part of the OSI model. As is known in the art, UDP 60 provides a connectionless mode of communications with datagrams. For more information on UDP 60 reference may be made to RFC-768, J. Postel, User Datagram Protocol, Aug. 28, 1990, the contents of which are incorporated herein by reference Transmission Control Protocol (“TCP”) may also be used in the transport layer 58. For more information on TCP, reference may be made to RFC-793, J. Postel, Transmission Control Protocol, Sep. 1, 1981, the contents of which are incorporated by reference.


Above the network layer are a Simple Network Management Protocol (“SNMP”) layer 62, Trivial File Transfer Protocol (“TFTP”) layer 64, and Dynamic Host Configuration Protocol (“DHCP”) layer 66. SNMP layer 62 is used to support network management functions. For more information on SNMP layer 62, reference may be made to the contents of which are RFC-1157, J. D. Case et al., Simple Network Management Protocol, May 1, 1990, incorporated herein by reference. TFTP layer 64 is a file transfer protocol used to download files and configuration information. For more information on TFTP layer 64, reference may be made to RFC-1350, K. Sollins, The TFTP Protocol (Revision 2), July 1992, the contents of which are incorporated herein by reference. DHCP layer 66 is a protocol for passing configuration information to hosts on an IP 54 network. For more information on DHCP layer 66, see RFC-2131, R. Droms, Dynamic Host Control Protocol, March 1997, and RFC-2132, S. Alexander and R. Droms, DHCP Options and BOOTP Vendor Extensions, March 1997, the contents of each of which are incorporated herein by reference.


The CM 16 supports transmission and reception of IP 54 datagrams as specified for example by RFC-791. The CMTS 12 may also perform filtering of IP 54 datagrams. The CM 16 is also preferably configurable for IP 54 datagram filtering to restrict the CM 16 and the CPE 18 to the use of only their assigned IP 54 addresses. The CM 16 is preferably configurable for IP 54 datagram UDP 60 port filtering (i.e., deep filtering).


The CM 16 forwards IP 54 datagrams destined to an IP 54 unicast address across the cable network 14. Some routers have security features intended to filter out invalid users who alter or masquerade packets as if sent from a valid user. Since routing policy is under the control of network operators, such filtering is a vendor specific implementation. The CM 16 also forwards IP 54 datagrams destined to an IP 54 multicast address across the cable network 14. The CM 16 is preferably configurable to keep IP 54 multicast routing tables and to use group membership protocols.


An operating environment for the CMTS 12, the CM 16, the CPE 18, and other network devices includes a processing system with at least one high speed Central Processing Unit (“CPU”) and a memory system. In accordance with the practices of persons skilled in the art of computer programming, the present invention is described below with reference to acts and symbolic representations of operations or instructions that are performed by the processing system, unless indicated otherwise. Such acts and operations or instructions are sometimes referred to as being “computer-executed,” or “CPU executed.”


It will be appreciated that the acts and symbolically represented operations or instructions include the manipulation of electrical signals by the CPU. The memory locations where data are maintained are physical locations that have particular electrical, magnetic, optical, or organic properties corresponding to the data bits. The data may also be maintained on a computer readable medium including magnetic disks, optical disks, organic disks, and any other volatile or non-volatile mass storage system readable by the CPU. The computer readable medium may include cooperating or interconnected computer readable media, which exist exclusively on the processing system or distributed among multiple interconnected processing systems that may be local or remote to the processing system.


Initialization of a Cable Modem


When the CM 16 is initially powered on, the CM 16 scans for a valid available downstream channel. Once the CM 16 has acquired a valid downstream channel, the CM 16 waits for an Upstream Channel Descriptor (“UCD”) from the CMTS 12. The UCD is used to provide transmission parameters for all available upstream channels. Information in the UCD is used by the CM 16 to determine whether the CM 16 can use the given upstream channel. The UCD is transmitted by the CMTS 12 as a MAC management message at a periodic opportunity (e.g., every 2 seconds). To provide for flexibility, the UCD message parameters are encoded in a Type/Length/Value (“TLV”) form.



FIG. 3 is a block diagram illustrating a UCD message structure 70. The message structure 70 includes a MAC 44 management header 72 and channel descriptor (“CD”) parameters 74. The CD parameters 74 provide the necessary information for the CM 16 to communicate upstream with the CMTS 12. The CD parameters 74 preferably include the parameters shown in Table 1 and may contain optional vendor specific parameters. However, more or fewer parameters than are illustrated in Table 1 may alternatively be used.










TABLE 1





CD Parameters 74
Description







Upstream Channel ID
This parameter is selected by CMTS 12



to identify the upstream channel referred



to by the UCD.


Configuration Change
This parameter contains a value that is


Count
incremented by one each time the



information in the UCD changes.


Mini-Slot Size
This parameter defines the size of the



mini-slot for the upstream channel. The



mini-slot is the granularity level for



upstream operations.


Downstream Channel ID
This parameter contains the ID of the



downstream channel on which the UCD is



transmitted.


Overall Channel Information
This parameter contains TLV encoded



data including symbol rate, upstream



center frequency, and a preamble



superstring.


Burst Descriptors
This parameter contains compound TLV



data that defines the physical layer



characteristics to be used for each type of



upstream usage opportunity.










Non-Contention Ranging


Once the CM 16 has acquired valid downstream and upstream channels, the CM 16 begins the ranging process. The CM 16 waits for transmission of a bandwidth allocation map (“MAP”) 100 associated with the upstream channel from the CMTS 12. The MAP 100 is in the form of a MAC management message and contains information used by the CM 16 to determine the timing of its transmissions back to the CMTS 12. FIG. 4 illustrates a MAP 100. The MAP 100 includes a MAC management message header 102, an upstream channel ID field 104, a UCD count field 106, a number of elements field 108, a reserved field 110 for alignment, an allocation start time (“Alloc start time”) field 112, an acknowledge (“Ack”) time field 114, a ranging backoff start field 116, a ranging backoff end field 118, a data backoff start field 120, a data backoff end field 122, and one or more MAP information elements (“IE”) 124.


As illustrated in FIG. 4, the upstream channel ID field 104 is one byte and identifies the upstream channel referred to by MAP 100. The UCD Count 106 is one byte and is identical to the configuration change count described above with reference to the CD parameters 74. The number of elements field 108 is one byte and indicates the number of MAP IEs 124 in MAP 100. The alloc start time field 112 is four bytes and provides the start time, in mini-slots, for IE 124 assignments in MAP 100 with reference to the time of CMTS 12 initialization. The ack time field 114 is four bytes and is used by the CM 16 to detect collisions. The ack time 114 identifies the latest time in mini-slots of the upstream transmissions with reference to CMTS 12 initialization. Ranging backoff start field 116 is one byte and has a value of 0–15. This field provides the initial back-off window for contention ranging. Ranging backoff end field 118 is one byte and has a value of 0–15. This field provides the final back-off window for contention ranging. Data backoff start field 120 is one byte, has a value of 0–15, and provides the initial back-off window for contention data and requests. Data backoff end field 122 is one byte, has a value of 0–15, and provides the final back-off window for contention data and requests.


MAP IEs 124 are each four bytes. A series of MAP IEs 124 is illustrated in FIG. 5. Each MAP IE 124 comprises a 14-bit service identifier (“SID”) 126, a 4 bit opportunity usage code (“IUC”) 128, and a 14-bit mini-slot offset 130. A mini-slot offset is the time opportunity at which a given request may be transmitted by the CM 16 to the CMTS 12. As an example, in contention ranging, an IE for an initial maintenance request has an IUC 128 of 3, a broadcast or multicast SID 126, and a mini-slot offset 130 that indicates the start time of the mini-slot for transmitting initial ranging requests.


For non-contention ranging, the CMTS 12 uses unicast SIDs 126 in MAP IEs 124 for initial ranging. Under DOCSIS RFI Spec. 1.1, SIDs 126 for initial maintenance opportunities are broadcast or multicast. The preferred embodiments provide for the introduction of a initial maintenance opportunity having a unicast associated identifier SID 126, wherein the unicast SID 126 is used by the CM 16 to range on the cable television network following failure of a primary channel between the CM 16 and the CMTS 12.


In a preferred embodiment, the CMTS 12 maintains a pool of unicast SIDs 126 and a pool of broadcast or multicast SIDs 126. Using the known pool of unicast SIDs 126, the CMTS 12 sequentially schedules initial maintenance opportunities for the CMs 16. This method requires that each CM 16 have a unique SID 126, which the CM 16 obtains upon registration with the CMTS 12, and therefore the method is used primarily for reinitializing a pool of modems after a channel failure. Initial registration of the CM 16 with the CMTS 12 uses standard contention ranging procedures as described in DOCSIS RFI Spec 1.1. After initial registration with the CMTS 12, the CM 16 stores the unique SID 126 received from the CMTS 12 for use in non-contention ranging. In a preferred embodiment, the SID 126 is stored in a volatile memory component in the CM 16.


A preferred method for of non-contention ranging is illustrated in FIG. 6. Non-contention ranging, as such term is used herein, begins following a channel failure of sufficient duration that timeout periods for the CMs 16 have been exceeded. When the failed channel comes back on line, or when the CMs 16 attempt to use an alternate channel, the CMTS 12 determines, at step 200, which CMs 16 corresponding to the assigned unique SIDs 126 have been dropped from the network. At step 210, the CMTS 12 collects the SIDs 126 of the dropped CMs 16. CMTS 12 then, at step 220 transmits MAPs 100 containing initial maintenance opportunities containing the unique SIDs 126, as well as initial maintenance opportunities containing broadcast or multicast SIDs 126 usable by any CM 16 for standard contention ranging, thereby allowing new CMs 16, as well as CMs 16 with unique SIDs 126 that were not able to use their unicast opportunity, to register with the CMTS 12. After sending the MAPs 100, the CMTs proceeds in accordance with the standard ranging process at step 230.


Following the channel failure, the CM 16 determines, at step 240, that its timeout has been exceeded, and therefore that the channel has failed. The CM 16 proceeds to, stores the permanent SID 126 at step 250, reinitializes on the network and enters a waiting state at step 270. When the CM 16 receives MAP 100 at step 280, it proceeds to determine at step 290 whether the SID 126 in the MAP 100 is a unicast SID or a broadcast/multicast SID. In another embodiment, the CM 16 examines the IEs 124 in the MAP 100 sequentially and takes the first initial maintenance opportunity available, whether the opportunity contains a broadcast, multicast or unicast associated SID 126. In a further preferred embodiment, CM 16 reads all IEs 124 in MAP 100 to determine if one of the IEs 124 is directed to the last known unicast SID 126 of the CM 16. If the appropriate unicast SID 126 appears in the MAP 100 at step 300, the CM 16 proceeds to step 310, where it bypasses the backoff parameters contained in MAP 100, at steps 320 and 330, and attempts to range on the cable television network using the unicast SID 126 and the last known transmission parameters associated with that unicast SID 126. If the CM 16 determines at step 290 that the appropriate unicast SID 126 is not in the MAP 100, the CM 16 proceeds to step 340 and uses a broadcast or multicast SID in the MAP 100 and standard contention ranging to range on the cable television network.


It should be understood that the programs, processes, methods and apparatus described herein are not related or limited to any particular type of computer or network apparatus (hardware or software), unless indicated otherwise. Various types of general purpose or specialized computer apparatus may be used with or perform operations in accordance with the teachings described herein.


In view of the wide variety of embodiments to which the principles of the present invention can be applied, it should be understood that the illustrated embodiments are exemplary only, and should not be taken as limiting the scope of the present invention. For example, the steps of the flow diagrams may be taken in sequences other than those described, and more or fewer elements may be used in the block diagrams. The claims should not be read as limited to the described order or elements unless stated to that effect. Therefore, all embodiments that come within the scope and spirit of the following claims and equivalents thereto are claimed as the invention.

Claims
  • 1. A method of non-contention ranging for re-registering a cable modem with a cable modem termination system on a cable television network following the failure of a communications channel between the cable modem and the cable modem termination system, comprising the steps of: (a) storing in the cable modem a first identifier for the cable modem;(b) determining that a timeout value for the cable modem has been exceeded;(c) reinitializing the cable modem on the cable television network;(d) transmitting from the cable modem termination system to the cable modem a data packet containing at least one initial maintenance opportunity having an associated second identifier;(e) reading by the cable modem the first of the at least one initial maintenance opportunities;(f) determining by the cable modem if the first of the at least one initial maintenance opportunities contains a unicast associated second identifier;(g) determining whether the initial maintenance opportunity having the unicast associated second identifier is available for use by the cable modem; and(h) when the initial maintenance opportunity having the unicast associated second identifier is available for use by the cable modem, using the initial maintenance opportunity having the unicast associated second identifier for non-contention ranging by the cable modem;
  • 2. A method of non-contention ranging for re-registering a cable modem with a cable modem termination system on a cable television network following the failure of a communications channel between the cable modem and the cable modem termination system, comprising the steps of: (a) storing in the cable modem a first identifier for the cable modem;(b) determining that a timeout value for the cable modem has been exceeded;(c) reinitializing the cable modem on the cable television network;(d) transmitting from the cable modem termination system to the cable modem a data packet containing at least one initial maintenance opportunity having an associated second identifier;(e) reading by the cable modem an associated second identifier for the first of the at least one initial maintenance opportunities; and(f) determining by the cable modem if the associated second identifier for the first of the at least one initial maintenance opportunities is unicast;(g) determining whether the initial maintenance opportunity having the unicast associated second identifier is available for use by the cable modem; and(h) when the initial maintenance opportunity having the unicast associated second identifier is available for use by the cable modem, using the initial maintenance opportunity having the unicast associated second identifier for non-contention ranging by the cable modem;
  • 3. The method of claim 2 wherein the step of determining by the cable modem whether the initial maintenance opportunity having a unicast associated second identifier is available for use by the cable modem comprises the steps of: (a) if the associated second identifier for the initial maintenance opportunity is unicast, comparing the associated second identifier for the initial maintenance opportunity with the first identifier stored in the cable modem; and(b) if the associated second identifier for the initial maintenance opportunity matches the first identifier stored in the cable modem, determining that the initial maintenance opportunity is available for use by the cable modem.
  • 4. The method of claim 1 wherein if the first of the at least one initial maintenance opportunities is not unicast, repeating steps (e) and (f) for the next initial maintenance opportunity in the plurality of initial maintenance opportunities, wherein if the no initial maintenance opportunity of the at least one initial maintenance opportunities contains an initial maintenance opportunity having a unicast associated second identifier, the cable modem uses one of the at least one initial maintenance opportunities for standard contention ranging.
  • 5. The method of claim 4 wherein the step of reading by the cable modem the first of the at least one initial maintenance opportunities comprises reading by the cable modem an associated second identifier for the initial maintenance opportunity and wherein the step of determining by the cable modem if the first of the at least one initial maintenance opportunities contains a unicast associated second identifier comprises determining by the cable modem if the associated second identifier for the initial maintenance opportunity is unicast.
  • 6. The method of claim 5 wherein the step of determining by the cable modem whether the initial maintenance opportunity having a unicast associated second identifier is available for use by the cable modem comprises the steps of: (a) if the associated second identifier for the initial maintenance opportunity is unicast, comparing the associated second identifier for the initial maintenance opportunity with the first identifier stored in the cable modem; and(b) if the associated second identifier for the initial maintenance opportunity matches the first identifier stored in the cable modem, determining that the initial maintenance opportunity is available for use by the cable modem.
  • 7. A method of non-contention ranging for re-registering a cable modem with a cable modem termination system on a cable television network following the failure of a communications channel between the cable modem and the cable modem termination system, comprising the steps of: (a) storing in the cable modem a first identifier for the cable modem;(b) determining that a timeout value for the cable modem has been exceeded;(c) reinitializing the cable modem on the cable television network;(d) transmitting from the cable modem termination system to the cable modem a data packet containing at least one initial maintenance opportunity having an associated second identifier;(e) reading by the cable modem the first of the at least one initial maintenance opportunities;(f) determining by the cable modem if the first of the at least one initial maintenance opportunities contains a unicast associated second identifier;(g) determining whether the initial maintenance opportunity having the unicast associated second identifier is available for use by the cable modem; and(h) when the initial maintenance opportunity having the unicast associated second identifier is available for use by the cable modem, using the initial maintenance opportunity having the unicast associated second identifier for non-contention ranging by the cable modem;
  • 8. The method of claim 7 wherein the non-unicast initial maintenance opportunity is a multicast initial maintenance opportunity.
  • 9. The method of claim 7 wherein the non-unicast initial maintenance opportunity is a broadcast initial maintenance opportunity.
US Referenced Citations (157)
Number Name Date Kind
4644533 Braff et al. Feb 1987 A
4881263 Herbison et al. Nov 1989 A
4996685 Farese et al. Feb 1991 A
5014234 Edwards, Jr. May 1991 A
5138712 Corbin Aug 1992 A
5301273 Konishi Apr 1994 A
5347304 Moura et al. Sep 1994 A
5430727 Callon Jul 1995 A
5442749 Northcutt et al. Aug 1995 A
5488412 Majeti et al. Jan 1996 A
5489897 Inoue Feb 1996 A
5528595 Walsh et al. Jun 1996 A
5583931 Schneider et al. Dec 1996 A
5586121 Moura et al. Dec 1996 A
5598410 Stone Jan 1997 A
5600717 Schneider et al. Feb 1997 A
5606606 Schneider et al. Feb 1997 A
5608446 Carr et al. Mar 1997 A
5610910 Focsaneanu et al. Mar 1997 A
5623542 Schneider et al. Apr 1997 A
5623601 Vu Apr 1997 A
5636211 Newlin Jun 1997 A
5675732 Majeti et al. Oct 1997 A
5675742 Jain et al. Oct 1997 A
5678041 Baker et al. Oct 1997 A
5708654 Arndt et al. Jan 1998 A
5710885 Bondi Jan 1998 A
5724510 Arndt et al. Mar 1998 A
5761602 Wagner et al. Jun 1998 A
5778181 Hidary et al. Jul 1998 A
5784597 Chiu et al. Jul 1998 A
5790198 Roop et al. Aug 1998 A
5790548 Sistanizadeh et al. Aug 1998 A
5790677 Fox et al. Aug 1998 A
5790770 McClure et al. Aug 1998 A
5790806 Koperda Aug 1998 A
5793747 Kline Aug 1998 A
5799086 Sudia Aug 1998 A
5805804 Laursen et al. Sep 1998 A
5809252 Beighe et al. Sep 1998 A
5812819 Rodwin et al. Sep 1998 A
5815664 Asano Sep 1998 A
5818845 Moura et al. Oct 1998 A
5819028 Manghirmalani et al. Oct 1998 A
5819042 Hansen Oct 1998 A
5828655 Moura et al. Oct 1998 A
5828666 Focsaneanu et al. Oct 1998 A
5835720 Nelson et al. Nov 1998 A
5835727 Wong et al. Nov 1998 A
5841777 Cohen Nov 1998 A
5848233 Radia et al. Dec 1998 A
5852721 Dillon et al. Dec 1998 A
5854901 Cole et al. Dec 1998 A
5859852 Moura et al. Jan 1999 A
5864679 Kanai et al. Jan 1999 A
5870134 Laubach et al. Feb 1999 A
5872523 Dellaverson et al. Feb 1999 A
5884024 Lim et al. Mar 1999 A
5892754 Kompella et al. Apr 1999 A
5894479 Mohammed Apr 1999 A
5903558 Jones et al. May 1999 A
5909549 Compliment et al. Jun 1999 A
5913037 Spofford et al. Jun 1999 A
5915119 Cone Jun 1999 A
5922049 Radia et al. Jul 1999 A
5922051 Sidey Jul 1999 A
5923659 Curry et al. Jul 1999 A
5926458 Yin Jul 1999 A
5929850 Broadwin et al. Jul 1999 A
5941988 Bhagwat et al. Aug 1999 A
5943604 Chen et al. Aug 1999 A
5954797 Sidey Sep 1999 A
5958007 Lee et al. Sep 1999 A
5960177 Tanno Sep 1999 A
5974453 Andersen et al. Oct 1999 A
5982748 Yin et al. Nov 1999 A
5987524 Yoshida et al. Nov 1999 A
5991292 Focsaneanu et al. Nov 1999 A
5991306 Burns et al. Nov 1999 A
5996076 Rowney et al. Nov 1999 A
5999536 Kawafuji et al. Dec 1999 A
6003077 Bawden et al. Dec 1999 A
6005851 Craddock et al. Dec 1999 A
6006264 Colby et al. Dec 1999 A
6009103 Woundy Dec 1999 A
6012088 Li et al. Jan 2000 A
6013107 Blackshear et al. Jan 2000 A
6014545 Wu et al. Jan 2000 A
6018767 Fijolek et al. Jan 2000 A
6031841 Woundy Feb 2000 A
6032019 Chen et al. Feb 2000 A
6041041 Ramanathan et al. Mar 2000 A
6046979 Bauman Apr 2000 A
6049546 Ramakrishnan Apr 2000 A
6049825 Yamamoto Apr 2000 A
6049826 Beser Apr 2000 A
6052724 Willie et al. Apr 2000 A
6058421 Fijolek et al. May 2000 A
6061349 Coile et al. May 2000 A
6064372 Kahkoska May 2000 A
6065049 Beser May 2000 A
6070187 Subramaniam et al. May 2000 A
6070242 Wong et al. May 2000 A
6070246 Beser May 2000 A
6073178 Wong et al. Jun 2000 A
6075787 Bobeck et al. Jun 2000 A
6091709 Harrison et al. Jul 2000 A
6094431 Yamato et al. Jul 2000 A
6104700 Haddock et al. Aug 2000 A
6112258 Miller et al. Aug 2000 A
6114968 Ramakrishnan et al. Sep 2000 A
6122254 Aydemir et al. Sep 2000 A
6128298 Wootton et al. Oct 2000 A
6130879 Liu Oct 2000 A
6130880 Naudus et al. Oct 2000 A
6137792 Jonas et al. Oct 2000 A
6137793 Gorman et al. Oct 2000 A
6148410 Baskey et al. Nov 2000 A
6157965 Mohammed et al. Dec 2000 A
6170061 Beser Jan 2001 B1
6178455 Schutte et al. Jan 2001 B1
6185624 Fijolek et al. Feb 2001 B1
6189102 Beser Feb 2001 B1
6208656 Hrastar et al. Mar 2001 B1
6212563 Beser Apr 2001 B1
6216171 Isono et al. Apr 2001 B1
6223222 Fijolek et al. Apr 2001 B1
6230326 Unger et al. May 2001 B1
6240464 Fijolek et al. May 2001 B1
6243369 Grimwood et al. Jun 2001 B1
6260072 Rodriguez-Moral Jul 2001 B1
6269099 Borella et al. Jul 2001 B1
6272150 Hrastar Aug 2001 B1
6275853 Beser et al. Aug 2001 B1
6289377 Lalwaney et al. Sep 2001 B1
6295554 Karadogan Sep 2001 B1
6301223 Hrastar et al. Oct 2001 B1
6301618 Sitaraman et al. Oct 2001 B1
6308328 Bowcutt et al. Oct 2001 B1
6331987 Beser Dec 2001 B1
6332163 Bowman-Amuah Dec 2001 B1
6337858 Petty et al. Jan 2002 B1
6351773 Fijolek et al. Feb 2002 B1
6370147 Beser Apr 2002 B1
6393478 Bahlmann May 2002 B1
6442158 Beser Aug 2002 B1
6449291 Burns et al. Sep 2002 B1
6453472 Leano et al. Sep 2002 B1
6490727 Nazarathy et al. Dec 2002 B1
6510162 Fijolek et al. Jan 2003 B1
6546017 Khaunte Apr 2003 B1
6588016 Chen et al. Jul 2003 B1
6742186 Roeck May 2004 B1
20010055319 Quigley et al. Dec 2001 A1
20020122050 Sandberg Sep 2002 A1
20020136165 Ady et al. Sep 2002 A1
20030028891 Hardt et al. Feb 2003 A1
Foreign Referenced Citations (1)
Number Date Country
WO 0067385 Nov 2000 WO