METHOD FOR USING GENE EXPRESSION TO DETERMINE PROGNOSIS OF PROSTATE CANCER

Information

  • Patent Application
  • 20220396842
  • Publication Number
    20220396842
  • Date Filed
    August 19, 2022
    2 years ago
  • Date Published
    December 15, 2022
    2 years ago
Abstract
The present disclosure includes assays that involve measurement of expression levels of prognostic biomarkers, or co-expressed biomarkers, from a biological sample obtained from a prostate cancer patient, and analysis of the measured expression levels to provide information concerning the likely prognosis for the patient, and likelihood that the patient will have a recurrence of prostate cancer, or to classify the tumor by likelihood of clinical outcome or TMPRSS2 fusion status.
Description
TECHNICAL FIELD

The present disclosure relates to molecular diagnostic assays that provide information concerning methods to use gene expression profiles to determine prognostic information for cancer patients. Specifically, the present disclosure provides genes and microRNAs, the expression levels of which may be used to determine the likelihood that a prostate cancer patient will experience a local or distant cancer recurrence.


INTRODUCTION

Prostate cancer is the most common solid malignancy in men and the second most common cause of cancer-related death in men in North America and the European Union (EU). In 2008, over 180,000 patients will be diagnosed with prostate cancer in the United States alone and nearly 30,000 will die of this disease. Age is the single most important risk factor for the development of prostate cancer, and applies across all racial groups that have been studied. With the aging of the U.S. population, it is projected that the annual incidence of prostate cancer will double by 2025 to nearly 400,000 cases per year.


Since the introduction of prostate-specific antigen (PSA) screening in the 1990's, the proportion of patients presenting with clinically evident disease has fallen dramatically such that patients categorized as “low risk” now constitute half of new diagnoses today. PSA is used as a tumor marker to determine the presence of prostate cancer as high PSA levels are associated with prostate cancer. Despite a growing proportion of localized prostate cancer patients presenting with low-risk features such as low stage (T1) disease, greater than 90% of patients in the US still undergo definitive therapy, including prostatectomy or radiation. Only about 15% of these patients would develop metastatic disease and die from their prostate cancer, even in the absence of definitive therapy. A. Bill-Axelson, et al., J Nat'l Cancer Inst. 100(16):1144-1154 (2008). Therefore, the majority of prostate cancer patients are being over-treated.


Estimates of recurrence risk and treatment decisions in prostate cancer are currently based primarily on PSA levels and/or tumor stage. Although tumor stage has been demonstrated to have significant association with outcome sufficient to be included in pathology reports, the College of American Pathologists Consensus Statement noted that variations in approach to the acquisition, interpretation, reporting, and analysis of this information exist. C. Compton, et al., Arch Pathol Lab Med 124:979-992 (2000). As a consequence, existing pathologic staging methods have been criticized as lacking reproducibility and therefore may provide imprecise estimates of individual patient risk.


SUMMARY

This application discloses molecular assays that involve measurement of expression level(s) of one or more genes, gene subsets, microRNAs, or one or more microRNAs in combination with one or more genes or gene subsets, from a biological sample obtained from a prostate cancer patient, and analysis of the measured expression levels to provide information concerning the likelihood of cancer recurrence. For example, the likelihood of cancer recurrence could be described in terms of a score based on clinical or biochemical recurrence-free interval.


In addition, this application discloses molecular assays that involve measurement of expression level(s) of one or more genes, gene subsets, microRNAs, or one or more microRNAs in combination with one or more genes or gene subsets, from a biological sample obtained to identify a risk classification for a prostate cancer patient. For example, patients may be stratified using expression level(s) of one or more genes or microRNAs associated, positively or negatively, with cancer recurrence or death from cancer, or with a prognostic factor. In an exemplary embodiment, the prognostic factor is Gleason pattern.


The biological sample may be obtained from standard methods, including surgery, biopsy, or bodily fluids. It may comprise tumor tissue or cancer cells, and, in some cases, histologically normal tissue, e.g., histologically normal tissue adjacent the tumor tissue. In exemplary embodiments, the biological sample is positive or negative for a TMPRSS2 fusion.


In exemplary embodiments, expression level(s) of one or more genes and/or microRNAs that are associated, positively or negatively, with a particular clinical outcome in prostate cancer are used to determine prognosis and appropriate therapy. The genes disclosed herein may be used alone or arranged in functional gene subsets, such as cell adhesion/migration, immediate-early stress response, and extracellular matrix-associated. Each gene subset comprises the genes disclosed herein, as well as genes that are co-expressed with one or more of the disclosed genes. The calculation may be performed on a computer, programmed to execute the gene expression analysis. The microRNAs disclosed herein may also be used alone or in combination with any one or more of the microRNAs and/or genes disclosed.


In exemplary embodiments, the molecular assay may involve expression levels for at least two genes. The genes, or gene subsets, may be weighted according to strength of association with prognosis or tumor microenvironment. In another exemplary embodiment, the molecular assay may involve expression levels of at least one gene and at least one microRNA. The gene-microRNA combination may be selected based on the likelihood that the gene-microRNA combination functionally interact.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 shows the distribution of clinical and pathology assessments of biopsy Gleason score, baseline PSA level, and clinical T-stage.





DEFINITIONS

Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, N.Y. 1994), and March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, N.Y. 1992), provide one skilled in the art with a general guide to many of the terms used in the present application.


One skilled in the art will recognize many methods and materials similar or equivalent to those described herein, which could be used in the practice of the present invention. Indeed, the present invention is in no way limited to the methods and materials described herein. For purposes of the invention, the following terms are defined below.


The terms “tumor” and “lesion” as used herein, refer to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues. Those skilled in the art will realize that a tumor tissue sample may comprise multiple biological elements, such as one or more cancer cells, partial or fragmented cells, tumors in various stages, surrounding histologically normal-appearing tissue, and/or macro or micro-dissected tissue.


The terms “cancer” and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer in the present disclosure include cancer of the urogenital tract, such as prostate cancer.


The “pathology” of cancer includes all phenomena that compromise the well-being of the patient. This includes, without limitation, abnormal or uncontrollable cell growth, metastasis, interference with the normal functioning of neighboring cells, release of cytokines or other secretory products at abnormal levels, suppression or aggravation of inflammatory or immunological response, neoplasia, premalignancy, malignancy, invasion of surrounding or distant tissues or organs, such as lymph nodes, etc.


As used herein, the term “prostate cancer” is used interchangeably and in the broadest sense refers to all stages and all forms of cancer arising from the tissue of the prostate gland.


According to the tumor, node, metastasis (TNM) staging system of the American Joint Committee on Cancer (AJCC), AJCC Cancer Staging Manual (7th Ed., 2010), the various stages of prostate cancer are defined as follows: Tumor: T1: clinically inapparent tumor not palpable or visible by imaging, T1a: tumor incidental histological finding in 5% or less of tissue resected, T1b: tumor incidental histological finding in more than 5% of tissue resected, T1c: tumor identified by needle biopsy; T2: tumor confined within prostate, T2a: tumor involves one half of one lobe or less, T2b: tumor involves more than half of one lobe, but not both lobes, T2c: tumor involves both lobes; T3: tumor extends through the prostatic capsule, T3a: extracapsular extension (unilateral or bilateral), T3b: tumor invades seminal vesicle(s); T4: tumor is fixed or invades adjacent structures other than seminal vesicles (bladder neck, external sphincter, rectum, levator muscles, or pelvic wall). Node: NO: no regional lymph node metastasis; N1: metastasis in regional lymph nodes. Metastasis: M0: no distant metastasis; M1: distant metastasis present.


The Gleason Grading system is used to help evaluate the prognosis of men with prostate cancer. Together with other parameters, it is incorporated into a strategy of prostate cancer staging, which predicts prognosis and helps guide therapy. A Gleason “score” or “grade” is given to prostate cancer based upon its microscopic appearance. Tumors with a low Gleason score typically grow slowly enough that they may not pose a significant threat to the patients in their lifetimes. These patients are monitored (“watchful waiting” or “active surveillance”) over time. Cancers with a higher Gleason score are more aggressive and have a worse prognosis, and these patients are generally treated with surgery (e.g., radical prostectomy) and, in some cases, therapy (e.g., radiation, hormone, ultrasound, chemotherapy). Gleason scores (or sums) comprise grades of the two most common tumor patterns. These patterns are referred to as Gleason patterns 1-5, with pattern 1 being the most well-differentiated. Most have a mixture of patterns. To obtain a Gleason score or grade, the dominant pattern is added to the second most prevalent pattern to obtain a number between 2 and 10. The Gleason Grades include: G1: well differentiated (slight anaplasia) (Gleason 2-4); G2: moderately differentiated (moderate anaplasia) (Gleason 5-6); G3-4: poorly differentiated/undifferentiated (marked anaplasia) (Gleason 7-10).


Stage groupings: Stage I: T1a N0 M0 G1; Stage II: (T1a N0 M0 G2-4) or (T1b, c, T1, T2, N0 M0 Any G); Stage III: T3 N0 M0 Any G; Stage IV: (T4 N0 M0 Any G) or (Any T N1 M0 Any G) or (Any T Any N M1 Any G).


As used herein, the term “tumor tissue” refers to a biological sample containing one or more cancer cells, or a fraction of one or more cancer cells. Those skilled in the art will recognize that such biological sample may additionally comprise other biological components, such as histologically appearing normal cells (e.g., adjacent the tumor), depending upon the method used to obtain the tumor tissue, such as surgical resection, biopsy, or bodily fluids.


As used herein, the term “AUA risk group” refers to the 2007 updated American Urological Association (AUA) guidelines for management of clinically localized prostate cancer, which clinicians use to determine whether a patient is at low, intermediate, or high risk of biochemical (PSA) relapse after local therapy.


As used herein, the term “adjacent tissue (AT)” refers to histologically “normal” cells that are adjacent a tumor. For example, the AT expression profile may be associated with disease recurrence and survival.


As used herein “non-tumor prostate tissue” refers to histologically normal-appearing tissue adjacent a prostate tumor.


Prognostic factors are those variables related to the natural history of cancer, which influence the recurrence rates and outcome of patients once they have developed cancer. Clinical parameters that have been associated with a worse prognosis include, for example, increased tumor stage, PSA level at presentation, and Gleason grade or pattern. Prognostic factors are frequently used to categorize patients into subgroups with different baseline relapse risks.


The term “prognosis” is used herein to refer to the likelihood that a cancer patient will have a cancer-attributable death or progression, including recurrence, metastatic spread, and drug resistance, of a neoplastic disease, such as prostate cancer. For example, a “good prognosis” would include long term survival without recurrence and a “bad prognosis” would include cancer recurrence.


As used herein, the term “expression level” as applied to a gene refers to the normalized level of a gene product, e.g. the normalized value determined for the RNA expression level of a gene or for the polypeptide expression level of a gene.


The term “gene product” or “expression product” are used herein to refer to the RNA (ribonucleic acid) transcription products (transcripts) of the gene, including mRNA, and the polypeptide translation products of such RNA transcripts. A gene product can be, for example, an unspliced RNA, an mRNA, a splice variant mRNA, a microRNA, a fragmented RNA, a polypeptide, a post-translationally modified polypeptide, a splice variant polypeptide, etc.


The term “RNA transcript” as used herein refers to the RNA transcription products of a gene, including, for example, mRNA, an unspliced RNA, a splice variant mRNA, a microRNA, and a fragmented RNA.


The term “microRNA” is used herein to refer to a small, non-coding, single-stranded RNA of ˜18-25 nucleotides that may regulate gene expression. For example, when associated with the RNA-induced silencing complex (RISC), the complex binds to specific mRNA targets and causes translation repression or cleavage of these mRNA sequences.


Unless indicated otherwise, each gene name used herein corresponds to the Official Symbol assigned to the gene and provided by Entrez Gene (URL: www.ncbi.nlm.nih.gov/sites/entrez) as of the filing date of this application.


The terms “correlated” and “associated” are used interchangeably herein to refer to the association between two measurements (or measured entities). The disclosure provides genes, gene subsets, microRNAs, or microRNAs in combination with genes or gene subsets, the expression levels of which are associated with tumor stage. For example, the increased expression level of a gene or microRNA may be positively correlated (positively associated) with a good or positive prognosis. Such a positive correlation may be demonstrated statistically in various ways, e.g. by a cancer recurrence hazard ratio less than one. In another example, the increased expression level of a gene or microRNA may be negatively correlated (negatively associated) with a good or positive prognosis. In that case, for example, the patient may experience a cancer recurrence.


The terms “good prognosis” or “positive prognosis” as used herein refer to a beneficial clinical outcome, such as long-term survival without recurrence. The terms “bad prognosis” or “negative prognosis” as used herein refer to a negative clinical outcome, such as cancer recurrence.


The term “risk classification” means a grouping of subjects by the level of risk (or likelihood) that the subject will experience a particular clinical outcome. A subject may be classified into a risk group or classified at a level of risk based on the methods of the present disclosure, e.g. high, medium, or low risk. A “risk group” is a group of subjects or individuals with a similar level of risk for a particular clinical outcome.


The term “long-term” survival is used herein to refer to survival for a particular time period, e.g., for at least 5 years, or for at least 10 years.


The term “recurrence” is used herein to refer to local or distant recurrence (i.e., metastasis) of cancer. For example, prostate cancer can recur locally in the tissue next to the prostate or in the seminal vesicles. The cancer may also affect the surrounding lymph nodes in the pelvis or lymph nodes outside this area. Prostate cancer can also spread to tissues next to the prostate, such as pelvic muscles, bones, or other organs. Recurrence can be determined by clinical recurrence detected by, for example, imaging study or biopsy, or biochemical recurrence detected by, for example, sustained follow-up prostate-specific antigen (PSA) levels≥0.4 ng/mL or the initiation of salvage therapy as a result of a rising PSA level.


The term “clinical recurrence-free interval (cRFI)” is used herein as time (in months) from surgery to first clinical recurrence or death due to clinical recurrence of prostate cancer. Losses due to incomplete follow-up, other primary cancers or death prior to clinical recurrence are considered censoring events; when these occur, the only information known is that up through the censoring time, clinical recurrence has not occurred in this subject. Biochemical recurrences are ignored for the purposes of calculating cRFI.


The term “biochemical recurrence-free interval (bRFI)” is used herein to mean the time (in months) from surgery to first biochemical recurrence of prostate cancer. Clinical recurrences, losses due to incomplete follow-up, other primary cancers, or death prior to biochemical recurrence are considered censoring events.


The term “Overall Survival (OS)” is used herein to refer to the time (in months) from surgery to death from any cause. Losses due to incomplete follow-up are considered censoring events. Biochemical recurrence and clinical recurrence are ignored for the purposes of calculating OS.


The term “Prostate Cancer-Specific Survival (PCSS)” is used herein to describe the time (in years) from surgery to death from prostate cancer. Losses due to incomplete follow-up or deaths from other causes are considered censoring events. Clinical recurrence and biochemical recurrence are ignored for the purposes of calculating PCSS.


The term “upgrading” or “upstaging” as used herein refers to a change in Gleason grade from 3+3 at the time of biopsy to 3+4 or greater at the time of radical prostatectomy (RP), or Gleason grade 3+4 at the time of biopsy to 4+3 or greater at the time of RP, or seminal vessical involvement (SVI), or extracapsular involvement (ECE) at the time of RP.


In practice, the calculation of the measures listed above may vary from study to study depending on the definition of events to be considered censored.


The term “microarray” refers to an ordered arrangement of hybridizable array elements, e.g. oligonucleotide or polynucleotide probes, on a substrate.


The term “polynucleotide” generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. Thus, for instance, polynucleotides as defined herein include, without limitation, single- and double-stranded DNA, DNA including single- and double-stranded regions, single- and double-stranded RNA, and RNA including single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or include single- and double-stranded regions. In addition, the term “polynucleotide” as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. The term “polynucleotide” specifically includes cDNAs. The term includes DNAs (including cDNAs) and RNAs that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons, are “polynucleotides” as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritiated bases, are included within the term “polynucleotides” as defined herein. In general, the term “polynucleotide” embraces all chemically, enzymatically and/or metabolically modified forms of unmodified polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including simple and complex cells.


The term “oligonucleotide” refers to a relatively short polynucleotide, including, without limitation, single-stranded deoxyribonucleotides, single- or double-stranded ribonucleotides, RNArDNA hybrids and double-stranded DNAs. Oligonucleotides, such as single-stranded DNA probe oligonucleotides, are often synthesized by chemical methods, for example using automated oligonucleotide synthesizers that are commercially available. However, oligonucleotides can be made by a variety of other methods, including in vitro recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms.


The term “Ct” as used herein refers to threshold cycle, the cycle number in quantitative polymerase chain reaction (qPCR) at which the fluorescence generated within a reaction well exceeds the defined threshold, i.e. the point during the reaction at which a sufficient number of amplicons have accumulated to meet the defined threshold.


The term “Cp” as used herein refers to “crossing point.” The Cp value is calculated by determining the second derivatives of entire qPCR amplification curves and their maximum value. The Cp value represents the cycle at which the increase of fluorescence is highest and where the logarithmic phase of a PCR begins.


The terms “threshold” or “thresholding” refer to a procedure used to account for non-linear relationships between gene expression measurements and clinical response as well as to further reduce variation in reported patient scores. When thresholding is applied, all measurements below or above a threshold are set to that threshold value. Non-linear relationship between gene expression and outcome could be examined using smoothers or cubic splines to model gene expression in Cox PH regression on recurrence free interval or logistic regression on recurrence status. D. Cox, Journal of the Royal Statistical Society, Series B 34:187-220 (1972). Variation in reported patient scores could be examined as a function of variability in gene expression at the limit of quantitation and/or detection for a particular gene.


As used herein, the term “amplicon,” refers to pieces of DNA that have been synthesized using amplification techniques, such as polymerase chain reactions (PCR) and ligase chain reactions.


“Stringency” of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to re-anneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology (Wiley Interscience Publishers, 1995).


“Stringent conditions” or “high stringency conditions”, as defined herein, typically: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50° C.; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42° C.; or (3) employ 50% formamide, 5×SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5×Denhardt's solution, sonicated salmon sperm DNA (50 μg/ml), 0.1% SDS, and 10% dextran sulfate at 42° C., with washes at 42° C. in 0.2×SSC (sodium chloride/sodium citrate) and 50% formamide, followed by a high-stringency wash consisting of 0.1×SSC containing EDTA at 55° C.


“Moderately stringent conditions” may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and % SDS) less stringent that those described above. An example of moderately stringent conditions is overnight incubation at 37° C. in a solution comprising: 20% formamide, 5×SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5×Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1×SSC at about 37-500 C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.


The terms “splicing” and “RNA splicing” are used interchangeably and refer to RNA processing that removes introns and joins exons to produce mature mRNA with continuous coding sequence that moves into the cytoplasm of an eukaryotic cell.


The terms “co-express” and “co-expressed”, as used herein, refer to a statistical correlation between the amounts of different transcript sequences across a population of different patients. Pairwise co-expression may be calculated by various methods known in the art, e.g., by calculating Pearson correlation coefficients or Spearman correlation coefficients. Co-expressed gene cliques may also be identified using graph theory. An analysis of co-expression may be calculated using normalized expression data. A gene is said to be co-expressed with a particular disclosed gene when the expression level of the gene exhibits a Pearson correlation coefficient greater than or equal to 0.6.


A “computer-based system” refers to a system of hardware, software, and data storage medium used to analyze information. The minimum hardware of a patient computer-based system comprises a central processing unit (CPU), and hardware for data input, data output (e.g., display), and data storage. An ordinarily skilled artisan can readily appreciate that any currently available computer-based systems and/or components thereof are suitable for use in connection with the methods of the present disclosure. The data storage medium may comprise any manufacture comprising a recording of the present information as described above, or a memory access device that can access such a manufacture.


To “record” data, programming or other information on a computer readable medium refers to a process for storing information, using any such methods as known in the art. Any convenient data storage structure may be chosen, based on the means used to access the stored information. A variety of data processor programs and formats can be used for storage, e.g. word processing text file, database format, etc.


A “processor” or “computing means” references any hardware and/or software combination that will perform the functions required of it. For example, a suitable processor may be a programmable digital microprocessor such as available in the form of an electronic controller, mainframe, server or personal computer (desktop or portable). Where the processor is programmable, suitable programming can be communicated from a remote location to the processor, or previously saved in a computer program product (such as a portable or fixed computer readable storage medium, whether magnetic, optical or solid state device based). For example, a magnetic medium or optical disk may carry the programming, and can be read by a suitable reader communicating with each processor at its corresponding station.


As used herein, the terms “active surveillance” and “watchful waiting” mean closely monitoring a patient's condition without giving any treatment until symptoms appear or change. For example, in prostate cancer, watchful waiting is usually used in older men with other medical problems and early-stage disease.


As used herein, the term “surgery” applies to surgical methods undertaken for removal of cancerous tissue, including pelvic lymphadenectomy, radical prostatectomy, transurethral resection of the prostate (TURP), excision, dissection, and tumor biopsy/removal. The tumor tissue or sections used for gene expression analysis may have been obtained from any of these methods.


As used herein, the term “therapy” includes radiation, hormonal therapy, cryosurgery, chemotherapy, biologic therapy, and high-intensity focused ultrasound.


As used herein, the term “TMPRSS fusion” and “TMPRSS2 fusion” are used interchangeably and refer to a fusion of the androgen-driven TMPRSS2 gene with the ERG oncogene, which has been demonstrated to have a significant association with prostate cancer. S. Perner, et al., Urologe A. 46(7):754-760 (2007); S. A. Narod, et al., Br J Cancer 99(6):847-851 (2008). As used herein, positive TMPRSS fusion status indicates that the TMPRSS fusion is present in a tissue sample, whereas negative TMPRSS fusion status indicates that the TMPRSS fusion is not present in a tissue sample. Experts skilled in the art will recognize that there are numerous ways to determine TMPRSS fusion status, such as real-time, quantitative PCR or high-throughput sequencing. See, e.g., K. Mertz, et al., Neoplasis 9(3):200-206 (2007); C. Maher, Nature 458(7234):97-101 (2009).


Gene Expression Methods Using Genes, Gene Subsets, and MicroRNAs

The present disclosure provides molecular assays that involve measurement of expression level(s) of one or more genes, gene subsets, microRNAs, or one or more microRNAs in combination with one or more genes or gene subsets, from a biological sample obtained from a prostate cancer patient, and analysis of the measured expression levels to provide information concerning the likelihood of cancer recurrence.


The present disclosure further provides methods to classify a prostate tumor based on expression level(s) of one or more genes and/or microRNAs. The disclosure further provides genes and/or microRNAs that are associated, positively or negatively, with a particular prognostic outcome. In exemplary embodiments, the clinical outcomes include cRFI and bRFI. In another embodiment, patients may be classified in risk groups based on the expression level(s) of one or more genes and/or microRNAs that are associated, positively or negatively, with a prognostic factor. In an exemplary embodiment, that prognostic factor is Gleason pattern.


Various technological approaches for determination of expression levels of the disclosed genes and microRNAs are set forth in this specification, including, without limitation, RT-PCR, microarrays, high-throughput sequencing, serial analysis of gene expression (SAGE) and Digital Gene Expression (DGE), which will be discussed in detail below. In particular aspects, the expression level of each gene or microRNA may be determined in relation to various features of the expression products of the gene including exons, introns, protein epitopes and protein activity.


The expression level(s) of one or more genes and/or microRNAs may be measured in tumor tissue. For example, the tumor tissue may obtained upon surgical removal or resection of the tumor, or by tumor biopsy. The tumor tissue may be or include histologically “normal” tissue, for example histologically “normal” tissue adjacent to a tumor. The expression level of genes and/or microRNAs may also be measured in tumor cells recovered from sites distant from the tumor, for example circulating tumor cells, body fluid (e.g., urine, blood, blood fraction, etc.).


The expression product that is assayed can be, for example, RNA or a polypeptide. The expression product may be fragmented. For example, the assay may use primers that are complementary to target sequences of an expression product and could thus measure full transcripts as well as those fragmented expression products containing the target sequence. Further information is provided in Table A (inserted in specification prior to claims).


The RNA expression product may be assayed directly or by detection of a cDNA product resulting from a PCR-based amplification method, e.g., quantitative reverse transcription polymerase chain reaction (qRT-PCR). (See e.g., U.S. Pat. No. 7,587,279). Polypeptide expression product may be assayed using immunohistochemistry (IHC). Further, both RNA and polypeptide expression products may also be is assayed using microarrays.


Clinical Utility

Prostate cancer is currently diagnosed using a digital rectal exam (DRE) and Prostate-specific antigen (PSA) test. If PSA results are high, patients will generally undergo a prostate tissue biopsy. The pathologist will review the biopsy samples to check for cancer cells and determine a Gleason score. Based on the Gleason score, PSA, clinical stage, and other factors, the physician must make a decision whether to monitor the patient, or treat the patient with surgery and therapy.


At present, clinical decision-making in early stage prostate cancer is governed by certain histopathologic and clinical factors. These include: (1) tumor factors, such as clinical stage (e.g. T1, T2), PSA level at presentation, and Gleason grade, that are very strong prognostic factors in determining outcome; and (2) host factors, such as age at diagnosis and co-morbidity. Because of these factors, the most clinically useful means of stratifying patients with localized disease according to prognosis has been through multifactorial staging, using the clinical stage, the serum PSA level, and tumor grade (Gleason grade) together. In the 2007 updated American Urological Association (AUA) guidelines for management of clinically localized prostate cancer, these parameters have been grouped to determine whether a patient is at low, intermediate, or high risk of biochemical (PSA) relapse after local therapy. I. Thompson, et al., Guideline for the management of clinically localized prostate cancer, J Urol. 177(6):2106-31 (2007).


Although such classifications have proven to be helpful in distinguishing patients with localized disease who may need adjuvant therapy after surgery/radiation, they have less ability to discriminate between indolent cancers, which do not need to be treated with local therapy, and aggressive tumors, which require local therapy. In fact, these algorithms are of increasingly limited use for deciding between conservative management and definitive therapy because the bulk of prostate cancers diagnosed in the PSA screening era now present with clinical stage T1c and PSA≤10 ng/mL.


Patients with T1 prostate cancer have disease that is not clinically apparent but is discovered either at transurethral resection of the prostate (TURP, T1a, T1b) or at biopsy performed because of an elevated PSA (>4 ng/mL, T1c). Approximately 80% of the cases presenting in 2007 are clinical T1 at diagnosis. In a Scandinavian trial, OS at 10 years was 85% for patients with early stage prostate cancer (T1/T2) and Gleason score≤7, after radical prostatectomy.


Patients with T2 prostate cancer have disease that is clinically evident and is organ confined; patients with T3 tumors have disease that has penetrated the prostatic capsule and/or has invaded the seminal vesicles. It is known from surgical series that clinical staging underestimates pathological stage, so that about 20% of patients who are clinically T2 will be pT3 after prostatectomy. Most of patients with T2 or T3 prostate cancer are treated with local therapy, either prostatectomy or radiation. The data from the Scandinavian trial suggest that for T2 patients with Gleason grade≤7, the effect of prostatectomy on survival is at most 5% at 10 years; the majority of patients do not benefit from surgical treatment at the time of diagnosis. For T2 patients with Gleason≥7 or for T3 patients, the treatment effect of prostatectomy is assumed to be significant but has not been determined in randomized trials. It is known that these patients have a significant risk (10-30%) of recurrence at 10 years after local treatment, however, there are no prospective randomized trials that define the optimal local treatment (radical prostatectomy, radiation) at diagnosis, which patients are likely to benefit from neo-adjuvant/adjuvant androgen deprivation therapy, and whether treatment (androgen deprivation, chemotherapy) at the time of biochemical failure (elevated PSA) has any clinical benefit.


Accurately determining Gleason scores from needle biopsies presents several technical challenges. First, interpreting histology that is “borderline” between Gleason pattern is highly subjective, even for urologic pathologists. Second, incomplete biopsy sampling is yet another reason why the “predicted” Gleason score on biopsy does not always correlate with the actual “observed” Gleason score of the prostate cancer in the gland itself. Hence, the accuracy of Gleason scoring is dependent upon not only the expertise of the pathologist reading the slides, but also on the completeness and adequacy of the prostate biopsy sampling strategy. T. Stamey, Urology 45:2-12 (1995). The gene/microRNA expression assay and associated information provided by the practice of the methods disclosed herein provide a molecular assay method to facilitate optimal treatment decision-making in early stage prostate cancer. An exemplary embodiment provides genes and microRNAs, the expression levels of which are associated (positively or negatively) with prostate cancer recurrence. For example, such a clinical tool would enable physicians to identify T2/T3 patients who are likely to recur following definitive therapy and need adjuvant treatment.


In addition, the methods disclosed herein may allow physicians to classify tumors, at a molecular level, based on expression level(s) of one or more genes and/or microRNAs that are significantly associated with prognostic factors, such as Gleason pattern and TMPRSS fusion status. These methods would not be impacted by the technical difficulties of intra-patient variability, histologically determining Gleason pattern in biopsy samples, or inclusion of histologically normal appearing tissue adjacent to tumor tissue. Multi-analyte gene/microRNA expression tests can be used to measure the expression level of one or more genes and/or microRNAs involved in each of several relevant physiologic processes or component cellular characteristics. The methods disclosed herein may group the genes and/or microRNAs. The grouping of genes and microRNAs may be performed at least in part based on knowledge of the contribution of those genes and/or microRNAs according to physiologic functions or component cellular characteristics, such as in the groups discussed above. Furthermore, one or more microRNAs may be combined with one or moregenes. The gene-microRNA combination may be selected based on the likelihood that the gene-microRNA combination functionally interact. The formation of groups (or gene subsets), in addition, can facilitate the mathematical weighting of the contribution of various expression levels to cancer recurrence. The weighting of a gene/microRNA group representing a physiological process or component cellular characteristic can reflect the contribution of that process or characteristic to the pathology of the cancer and clinical outcome.


Optionally, the methods disclosed may be used to classify patients by risk, for example risk of recurrence. Patients can be partitioned into subgroups (e.g., tertiles or quartiles) and the values chosen will define subgroups of patients with respectively greater or lesser risk.


The utility of a disclosed gene marker in predicting prognosis may not be unique to that marker. An alternative marker having an expression pattern that is parallel to that of a disclosed gene may be substituted for, or used in addition to, that co-expressed gene or microRNA. Due to the co-expression of such genes or microRNAs, substitution of expression level values should have little impact on the overall utility of the test. The closely similar expression patterns of two genes or microRNAs may result from involvement of both genes or microRNAs in the same process and/or being under common regulatory control in prostate tumor cells. The present disclosure thus contemplates the use of such co-expressed genes, gene subsets, or microRNAs as substitutes for, or in addition to, genes of the present disclosure.


Methods of Assaying Expression Levels of a Gene Product

The methods and compositions of the present disclosure will employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, and biochemistry, which are within the skill of the art. Exemplary techniques are explained fully in the literature, such as, “Molecular Cloning: A Laboratory Manual”, 2nd edition (Sambrook et al., 1989); “Oligonucleotide Synthesis” (M. J. Gait, ed., 1984); “Animal Cell Culture” (R. I. Freshney, ed., 1987); “Methods in Enzymology” (Academic Press, Inc.); “Handbook of Experimental Immunology”, 4th edition (D. M. Weir & C. C. Blackwell, eds., Blackwell Science Inc., 1987); “Gene Transfer Vectors for Mammalian Cells” (J. M. Miller & M. P. Calos, eds., 1987); “Current Protocols in Molecular Biology” (F. M. Ausubel et al., eds., 1987); and “PCR: The Polymerase Chain Reaction”, (Mullis et al., eds., 1994).


Methods of gene expression profiling include methods based on hybridization analysis of polynucleotides, methods based on sequencing of polynucleotides, and proteomics-based methods. Exemplary methods known in the art for the quantification of RNA expression in a sample include northern blotting and in situ hybridization (Parker & Barnes, Methods in Molecular Biology 106:247-283 (1999)); RNAse protection assays (Hod, Biotechniques 13:852-854 (1992)); and PCR-based methods, such as reverse transcription PCT (RT-PCR) (Weis et al., Trends in Genetics 8:263-264 (1992)). Antibodies may be employed that can recognize sequence-specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. Representative methods for sequencing-based gene expression analysis include Serial Analysis of Gene Expression (SAGE), and gene expression analysis by massively parallel signature sequencing (MPSS).


Reverse Transcriptase PCR (RT-PCR)


Typically, mRNA or microRNA is isolated from a test sample. The starting material is typically total RNA isolated from a human tumor, usually from a primary tumor. Optionally, normal tissues from the same patient can be used as an internal control. Such normal tissue can be histologically-appearing normal tissue adjacent a tumor. mRNA or microRNA can be extracted from a tissue sample, e.g., from a sample that is fresh, frozen (e.g. fresh frozen), or paraffin-embedded and fixed (e.g. formalin-fixed).


General methods for mRNA and microRNA extraction are well known in the art and are disclosed in standard textbooks of molecular biology, including Ausubel et al., Current Protocols of Molecular Biology, John Wiley and Sons (1997). Methods for RNA extraction from paraffin embedded tissues are disclosed, for example, in Rupp and Locker, Lab Invest. 56:A67 (1987), and De Andrés et al., BioTechniques 18:42044 (1995). In particular, RNA isolation can be performed using a purification kit, buffer set and protease from commercial manufacturers, such as Qiagen, according to the manufacturer's instructions. For example, total RNA from cells in culture can be isolated using Qiagen RNeasy mini-columns. Other commercially available RNA isolation kits include MasterPure™ Complete DNA and RNA Purification Kit (EPICENTRE®, Madison, Wis.), and Paraffin Block RNA Isolation Kit (Ambion, Inc.). Total RNA from tissue samples can be isolated using RNA Stat-60 (Tel-Test). RNA prepared from tumor can be isolated, for example, by cesium chloride density gradient centrifugation.


The sample containing the RNA is then subjected to reverse transcription to produce cDNA from the RNA template, followed by exponential amplification in a PCR reaction. The two most commonly used reverse transcriptases are avilo myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney murine leukemia virus reverse transcriptase (MMLV-RT). The reverse transcription step is typically primed using specific primers, random hexamers, or oligo-dT primers, depending on the circumstances and the goal of expression profiling. For example, extracted RNA can be reverse-transcribed using a GeneAmp RNA PCR kit (Perkin Elmer, Calif., USA), following the manufacturer's instructions. The derived cDNA can then be used as a template in the subsequent PCR reaction.


PCR-based methods use a thermostable DNA-dependent DNA polymerase, such as a Taq DNA polymerase. For example, TaqMan® PCR typically utilizes the 5′-nuclease activity of Taq or Tth polymerase to hydrolyze a hybridization probe bound to its target amplicon, but any enzyme with equivalent 5′ nuclease activity can be used. Two oligonucleotide primers are used to generate an amplicon typical of a PCR reaction product. A third oligonucleotide, or probe, can be designed to facilitate detection of a nucleotide sequence of the amplicon located between the hybridization sites the two PCR primers. The probe can be detectably labeled, e.g., with a reporter dye, and can further be provided with both a fluorescent dye, and a quencher fluorescent dye, as in a Taqman® probe configuration. Where a Taqman® probe is used, during the amplification reaction, the Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner. The resultant probe fragments disassociate in solution, and signal from the released reporter dye is free from the quenching effect of the second fluorophore. One molecule of reporter dye is liberated for each new molecule synthesized, and detection of the unquenched reporter dye provides the basis for quantitative interpretation of the data.


TaqMan® RT-PCR can be performed using commercially available equipment, such as, for example, high-throughput platforms such as the ABI PRISM 7700 Sequence Detection System® (Perkin-Elmer-Applied Biosystems, Foster City, Calif., USA), or Lightcycler (Roche Molecular Biochemicals, Mannheim, Germany). In a preferred embodiment, the procedure is run on a LightCycler® 480 (Roche Diagnostics) real-time PCR system, which is a microwell plate-based cycler platform.


5′-Nuclease assay data are commonly initially expressed as a threshold cycle (“CT”). Fluorescence values are recorded during every cycle and represent the amount of product amplified to that point in the amplification reaction. The threshold cycle (CT) is generally described as the point when the fluorescent signal is first recorded as statistically significant. Alternatively, data may be expressed as a crossing point (“Cp”). The Cp value is calculated by determining the second derivatives of entire qPCR amplification curves and their maximum value. The Cp value represents the cycle at which the increase of fluorescence is highest and where the logarithmic phase of a PCR begins.


To minimize errors and the effect of sample-to-sample variation, RT-PCR is usually performed using an internal standard. The ideal internal standard gene (also referred to as a reference gene) is expressed at a quite constant level among cancerous and non-cancerous tissue of the same origin (i.e., a level that is not significantly different among normal and cancerous tissues), and is not significantly affected by the experimental treatment (i.e., does not exhibit a significant difference in expression level in the relevant tissue as a result of exposure to chemotherapy), and expressed at a quite constant level among the same tissue taken from different patients. For example, reference genes useful in the methods disclosed herein should not exhibit significantly different expression levels in cancerous prostate as compared to normal prostate tissue. RNAs frequently used to normalize patterns of gene expression are mRNAs for the housekeeping genes glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) and β-actin. Exemplary reference genes used for normalization comprise one or more of the following genes: AAMP, ARF1, ATP5E, CLTC, GPS1, and PGK1. Gene expression measurements can be normalized relative to the mean of one or more (e.g., 2, 3, 4, 5, or more) reference genes. Reference-normalized expression measurements can range from 2 to 15, where a one unit increase generally reflects a 2-fold increase in RNA quantity.


Real time PCR is compatible both with quantitative competitive PCR, where internal competitor for each target sequence is used for normalization, and with quantitative comparative PCR using a normalization gene contained within the sample, or a housekeeping gene for RT-PCR. For further details see, e.g. Held et al., Genome Research 6:986-994 (1996).


The steps of a representative protocol for use in the methods of the present disclosure use fixed, paraffin-embedded tissues as the RNA source. For example, mRNA isolation, purification, primer extension and amplification can be performed according to methods available in the art. (see, e.g., Godfrey et al. J. Molec. Diagnostics 2: 84-91 (2000); Specht et al., Am. J. Pathol. 158: 419-29 (2001)). Briefly, a representative process starts with cutting about 10 μm thick sections of paraffin-embedded tumor tissue samples. The RNA is then extracted, and protein and DNA depleted from the RNA-containing sample. After analysis of the RNA concentration, RNA is reverse transcribed using gene specific primers followed by RT-PCR to provide for cDNA amplification products.


Design of Intron-Based PCR Primers and Probes


PCR primers and probes can be designed based upon exon or intron sequences present in the mRNA transcript of the gene of interest. Primer/probe design can be performed using publicly available software, such as the DNA BLAT software developed by Kent, W. J., Genome Res. 12(4):656-64 (2002), or by the BLAST software including its variations.


Where necessary or desired, repetitive sequences of the target sequence can be masked to mitigate non-specific signals. Exemplary tools to accomplish this include the Repeat Masker program available on-line through the Baylor College of Medicine, which screens DNA sequences against a library of repetitive elements and returns a query sequence in which the repetitive elements are masked. The masked intron sequences can then be used to design primer and probe sequences using any commercially or otherwise publicly available primer/probe design packages, such as Primer Express (Applied Biosystems); MGB assay-by-design (Applied Biosystems); Primer3 (Steve Rozen and Helen J. Skaletsky (2000) Primer3 on the WWW for general users and for biologist programmers. See S. Rrawetz, S. Misener, Bioinformatics Methods and Protocols: Methods in Molecular Biology, pp. 365-386 (Humana Press).


Other factors that can influence PCR primer design include primer length, melting temperature (Tm), and G/C content, specificity, complementary primer sequences, and 3′-end sequence. In general, optimal PCR primers are generally 17-30 bases in length, and contain about 20-80%, such as, for example, about 50-60% G+C bases, and exhibit Tm's between 50 and 80 OC, e.g. about 50 to 70° C.


For further guidelines for PCR primer and probe design see, e.g. Dieffenbach, C W. et al, “General Concepts for PCR Primer Design” in: PCR Primer, A Laboratory Manual, Cold Spring Harbor Laboratory Press. New York, 1995, pp. 133-155; Innis and Gelfand, “Optimization of PCRs” in: PCR Protocols, A Guide to Methods and Applications, CRC Press, London, 1994, pp. 5-11; and Plasterer, T. N. Primerselect: Primer and probe design. Methods Mol. Biol. 70:520-527 (1997), the entire disclosures of which are hereby expressly incorporated by reference.


Table A provides further information concerning the primer, probe, and amplicon sequences associated with the Examples disclosed herein.


MassARRAY® System


In MassARRAY-based methods, such as the exemplary method developed by Sequenom, Inc. (San Diego, Calif.) following the isolation of RNA and reverse transcription, the obtained cDNA is spiked with a synthetic DNA molecule (competitor), which matches the targeted cDNA region in all positions, except a single base, and serves as an internal standard. The cDNA/competitor mixture is PCR amplified and is subjected to a post-PCR shrimp alkaline phosphatase (SAP) enzyme treatment, which results in the dephosphorylation of the remaining nucleotides. After inactivarion of the alkaline phosphatase, the PCR products from the competitor and cDNA are subjected to primer extension, which generates distinct mass signals for the competitor- and cDNA-derives PCR products. After purification, these products are dispensed on a chip array, which is pre-loaded with components needed for analysis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The cDNA present in the reaction is then quantified by analyzing the ratios of the peak areas in the mass spectrum generated. For further details see, e.g. Ding and Cantor, Proc. Natl. Acad. Sci. USA 100:3059-3064 (2003).


Other PCR-Based Methods


Further PCR-based techniques that can find use in the methods disclosed herein include, for example, BeadArray® technology (Illumina, San Diego, Calif.; Oliphant et al., Discovery of Markers for Disease (Supplement to Biotechniques), June 2002; Ferguson et al., Analytical Chemistry 72:5618 (2000)); BeadsArray for Detection of Gene Expression® (BADGE), using the commercially available LuminexlOO LabMAP® system and multiple color-coded microspheres (Luminex Corp., Austin, Tex.) in a rapid assay for gene expression (Yang et al., Genome Res. 11:1888-1898 (2001)); and high coverage expression profiling (HiCEP) analysis (Fukumura et al., Nucl. Acids. Res. 31(16) e94 (2003).


Microarrays


Expression levels of a gene or microArray of interest can also be assessed using the microarray technique. In this method, polynucleotide sequences of interest (including cDNAs and oligonucleotides) are arrayed on a substrate. The arrayed sequences are then contacted under conditions suitable for specific hybridization with detectably labeled cDNA generated from RNA of a test sample. As in the RT-PCR method, the source of RNA typically is total RNA isolated from a tumor sample, and optionally from normal tissue of the same patient as an internal control or cell lines. RNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin-fixed) tissue samples.


For example, PCR amplified inserts of cDNA clones of a gene to be assayed are applied to a substrate in a dense array. Usually at least 10,000 nucleotide sequences are applied to the substrate. For example, the microarrayed genes, immobilized on the microchip at 10,000 elements each, are suitable for hybridization under stringent conditions. Fluorescently labeled cDNA probes may be generated through incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from tissues of interest. Labeled cDNA probes applied to the chip hybridize with specificity to each spot of DNA on the array. After washing under stringent conditions to remove non-specifically bound probes, the chip is scanned by confocal laser microscopy or by another detection method, such as a CCD camera. Quantitation of hybridization of each arrayed element allows for assessment of corresponding RNA abundance.


With dual color fluorescence, separately labeled cDNA probes generated from two sources of RNA are hybridized pair wise to the array. The relative abundance of the transcripts from the two sources corresponding to each specified gene is thus determined simultaneously. The miniaturized scale of the hybridization affords a convenient and rapid evaluation of the expression pattern for large numbers of genes. Such methods have been shown to have the sensitivity required to detect rare transcripts, which are expressed at a few copies per cell, and to reproducibly detect at least approximately two-fold differences in the expression levels (Schena et at, Proc. Natl. Acad. ScL USA 93(2):106-149 (1996)). Microarray analysis can be performed by commercially available equipment, following manufacturer's protocols, such as by using the Affymetrix GenChip® technology, or Incyte's microarray technology.


Serial Analysis of Gene Expression (SAGE)


Serial analysis of gene expression (SAGE) is a method that allows the simultaneous and quantitative analysis of a large number of gene transcripts, without the need of providing an individual hybridization probe for each transcript. First, a short sequence tag (about 10-14 bp) is generated that contains sufficient information to uniquely identify a transcript, provided that the tag is obtained from a unique position within each transcript. Then, many transcripts are linked together to form long serial molecules, that can be sequenced, revealing the identity of the multiple tags simultaneously. The expression pattern of any population of transcripts can be quantitatively evaluated by determining the abundance of individual tags, and identifying the gene corresponding to each tag. For more details see, e.g. Velculescu et al., Science 270:484-487 (1995); and Velculescu et al., Cell 88:243-51 (1997).


Gene Expression Analysis by Nucleic Acid Sequencing


Nucleic acid sequencing technologies are suitable methods for analysis of gene expression. The principle underlying these methods is that the number of times a cDNA sequence is detected in a sample is directly related to the relative expression of the RNA corresponding to that sequence. These methods are sometimes referred to by the term Digital Gene Expression (DGE) to reflect the discrete numeric property of the resulting data. Early methods applying this principle were Serial Analysis of Gene Expression (SAGE) and Massively Parallel Signature Sequencing (MPSS). See, e.g., S. Brenner, et al., Nature Biotechnology 18(6):630-634 (2000). More recently, the advent of “next-generation” sequencing technologies has made DGE simpler, higher throughput, and more affordable. As a result, more laboratories are able to utilize DGE to screen the expression of more genes in more individual patient samples than previously possible. See, e.g., J. Marioni, Genome Research 18(9):1509-1517 (2008); R. Morin, Genome Research 18(4):610-621 (2008); A. Mortazavi, Nature Methods 5(7):621-628 (2008); N. Cloonan, Nature Methods 5(7):613-619 (2008).


Isolating RNA from Body Fluids


Methods of isolating RNA for expression analysis from blood, plasma and serum (see, e.g., K. Enders, et al., Clin Chem 48, 1647-53 (2002) (and references cited therein) and from urine (see, e.g., R. Boom, et al., J Clin Microbiol. 28, 495-503 (1990) and references cited therein) have been described.


Immunohistochemistry


Immunohistochemistry methods are also suitable for detecting the expression levels of genes and applied to the method disclosed herein. Antibodies (e.g., monoclonal antibodies) that specifically bind a gene product of a gene of interest can be used in such methods. The antibodies can be detected by direct labeling of the antibodies themselves, for example, with radioactive labels, fluorescent labels, hapten' labels such as, biotin, or an enzyme such as horse radish peroxidase or alkaline phosphatase. Alternatively, unlabeled primary antibody can be used in conjunction with a labeled secondary antibody specific for the primary antibody. Immunohistochemistry protocols and kits are well known in the art and are commercially available.


Proteomics


The term “proteome” is defined as the totality of the proteins present in a sample (e.g. tissue, organism, or cell culture) at a certain point of time. Proteomics includes, among other things, study of the global changes of protein expression in a sample (also referred to as “expression proteomics”). Proteomics typically includes the following steps: (1) separation of individual proteins in a sample by 2-D gel electrophoresis (2-D PAGE); (2) identification of the individual proteins recovered from the gel, e.g. my mass spectrometry or N-terminal sequencing, and (3) analysis of the data using bioinformatics.


General Description of the mRNA/microRNA Isolation, Purification and Amplification


The steps of a representative protocol for profiling gene expression using fixed, paraffin-embedded tissues as the RNA source, including mRNA or microRNA isolation, purification, primer extension and amplification are provided in various published journal articles. (See, e.g., T. E. Godfrey, et al. J. Molec. Diagnostics 2: 84-91 (2000); K. Specht et al., Am. J. Pathol. 158: 419-29 (2001), M. Cronin, et al., Am J Pathol 164:35-42 (2004)). Briefly, a representative process starts with cutting a tissue sample section (e.g. about 10 μm thick sections of a paraffin-embedded tumor tissue sample). The RNA is then extracted, and protein and DNA are removed. After analysis of the RNA concentration, RNA repair is performed if desired. The sample can then be subjected to analysis, e.g., by reverse transcribed using gene specific promoters followed by RT-PCR.


Statistical Analysis of Expression Levels in Identification of Genes and MicroRNAs

One skilled in the art will recognize that there are many statistical methods that may be used to determine whether there is a significant relationship between a parameter of interest (e.g., recurrence) and expression levels of a marker gene/microRNA as described here. In an exemplary embodiment, the present invention provides a stratified cohort sampling design (a form of case-control sampling) using tissue and data from prostate cancer patients. Selection of specimens was stratified by T stage (T1, T2), year cohort (<1993, ≥1993), and prostatectomy Gleason Score (low/intermediate, high). All patients with clinical recurrence were selected and a sample of patients who did not experience a clinical recurrence was selected. For each patient, up to two enriched tumor specimens and one normal-appearing tissue sample was assayed.


All hypothesis tests were reported using two-sided p-values. To investigate if there is a significant relationship of outcomes (clinical recurrence-free interval (cRFI), biochemical recurrence-free interval (bRFI), prostate cancer-specific survival (PCSS), and overall survival (OS)) with individual genes and/or microRNAs, demographic or clinical covariates Cox Proportional Hazards (PH) models using maximum weighted pseudo partial-likelihood estimators were used and p-values from Wald tests of the null hypothesis that the hazard ratio (HR) is one are reported. To investigate if there is a significant relationship between individual genes and/or microRNAs and Gleason pattern of a particular sample, ordinal logistic regression models using maximum weighted likelihood methods were used and p-values from Wald tests of the null hypothesis that the odds ratio (OR) is one are reported.


Coexpression Analysis

The present disclosure provides a method to determine tumor stage based on the expression of staging genes, or genes that co-express with particular staging genes. To perform particular biological processes, genes often work together in a concerted way, i.e. they are co-expressed. Co-expressed gene groups identified for a disease process like cancer can serve as biomarkers for tumor status and disease progression. Such co-expressed genes can be assayed in lieu of, or in addition to, assaying of the staging gene with which they are co-expressed.


In an exemplary embodiment, the joint correlation of gene expression levels among prostate cancer specimens under study may be assessed. For this purpose, the correlation structures among genes and specimens may be examined through hierarchical cluster methods. This information may be used to confirm that genes that are known to be highly correlated in prostate cancer specimens cluster together as expected. Only genes exhibiting a nominally significant (unadjusted p<0.05) relationship with cRFI in the univariate Cox PH regression analysis will be included in these analyses.


One skilled in the art will recognize that many co-expression analysis methods now known or later developed will fall within the scope and spirit of the present invention. These methods may incorporate, for example, correlation coefficients, co-expression network analysis, clique analysis, etc., and may be based on expression data from RT-PCR, microarrays, sequencing, and other similar technologies. For example, gene expression clusters can be identified using pair-wise analysis of correlation based on Pearson or Spearman correlation coefficients. (See, e.g., Pearson K. and Lee A., Biometrika 2, 357 (1902); C. Spearman, Amer. J. Psychol 15:72-101 (1904); J. Myers, A. Well, Research Design and Statistical Analysis, p. 508 (2nd Ed., 2003).)


Normalization of Expression Levels

The expression data used in the methods disclosed herein can be normalized. Normalization refers to a process to correct for (normalize away), for example, differences in the amount of RNA assayed and variability in the quality of the RNA used, to remove unwanted sources of systematic variation in Ct or Cp measurements, and the like. With respect to RT-PCR experiments involving archived fixed paraffin embedded tissue samples, sources of systematic variation are known to include the degree of RNA degradation relative to the age of the patient sample and the type of fixative used to store the sample. Other sources of systematic variation are attributable to laboratory processing conditions.


Assays can provide for normalization by incorporating the expression of certain normalizing genes, which do not significantly differ in expression levels under the relevant conditions. Exemplary normalization genes disclosed herein include housekeeping genes. (See, e.g., E. Eisenberg, et al., Trends in Genetics 19(7):362-365 (2003).) Normalization can be based on the mean or median signal (Ct or Cp) of all of the assayed genes or a large subset thereof (global normalization approach). In general, the normalizing genes, also referred to as reference genes should be genes that are known not to exhibit significantly different expression in prostate cancer as compared to non-cancerous prostate tissue, and are not significantly affected by various sample and process conditions, thus provide for normalizing away extraneous effects.


In exemplary embodiments, one or more of the following genes are used as references by which the mRNA or microRNA expression data is normalized: AAMP, ARF1, ATP5E, CLTC, GPS1, and PGK1. In another exemplary embodiment, one or more of the following microRNAs are used as references by which the expression data of microRNAs are normalized: hsa-miR-106a; hsa-miR-146b-5p; hsa-miR-191; hsa-miR-19b; and hsa-miR-92a. The calibrated weighted average CT or Cp measurements for each of the prognostic and predictive genes or microRNAs may be normalized relative to the mean of five or more reference genes or microRNAs.


Those skilled in the art will recognize that normalization may be achieved in numerous ways, and the techniques described above are intended only to be exemplary, not exhaustive.


Standardization of Expression Levels

The expression data used in the methods disclosed herein can be standardized. Standardization refers to a process to effectively put all the genes or microRNAs on a comparable scale. This is performed because some genes or microRNAs will exhibit more variation (a broader range of expression) than others. Standardization is performed by dividing each expression value by its standard deviation across all samples for that gene or microRNA. Hazard ratios are then interpreted as the relative risk of recurrence per 1 standard deviation increase in expression.


Kits of the Invention

The materials for use in the methods of the present invention are suited for preparation of kits produced in accordance with well-known procedures. The present disclosure thus provides kits comprising agents, which may include gene (or microRNA)-specific or gene (or microRNA)-selective probes and/or primers, for quantifying the expression of the disclosed genes or microRNAs for predicting prognostic outcome or response to treatment. Such kits may optionally contain reagents for the extraction of RNA from tumor samples, in particular fixed paraffin-embedded tissue samples and/or reagents for RNA amplification. In addition, the kits may optionally comprise the reagent(s) with an identifying description or label or instructions relating to their use in the methods of the present invention. The kits may comprise containers (including microliter plates suitable for use in an automated implementation of the method), each with one or more of the various materials or reagents (typically in concentrated form) utilized in the methods, including, for example, chromatographic columns, pre-fabricated microarrays, buffers, the appropriate nucleotide triphosphates (e.g., dATP, dCTP, dGTP and dTTP; or rATP, rCTP, rGTP and UTP), reverse transcriptase, DNA polymerase, RNA polymerase, and one or more probes and primers of the present invention (e.g., appropriate length poly(T) or random primers linked to a promoter reactive with the RNA polymerase). Mathematical algorithms used to estimate or quantify prognostic or predictive information are also properly potential components of kits.


Reports

The methods of this invention, when practiced for commercial diagnostic purposes, generally produce a report or summary of information obtained from the herein-described methods. For example, a report may include information concerning expression levels of one or more genes and/or microRNAs, classification of the tumor or the patient's risk of recurrence, the patient's likely prognosis or risk classification, clinical and pathologic factors, and/or other information. The methods and reports of this invention can further include storing the report in a database. The method can create a record in a database for the subject and populate the record with data. The report may be a paper report, an auditory report, or an electronic record. The report may be displayed and/or stored on a computing device (e.g., handheld device, desktop computer, smart device, website, etc.). It is contemplated that the report is provided to a physician and/or the patient. The receiving of the report can further include establishing a network connection to a server computer that includes the data and report and requesting the data and report from the server computer.


Computer Program

The values from the assays described above, such as expression data, can be calculated and stored manually. Alternatively, the above-described steps can be completely or partially performed by a computer program product. The present invention thus provides a computer program product including a computer readable storage medium having a computer program stored on it. The program can, when read by a computer, execute relevant calculations based on values obtained from analysis of one or more biological sample from an individual (e.g., gene expression levels, normalization, standardization, thresholding, and conversion of values from assays to a score and/or text or graphical depiction of tumor stage and related information). The computer program product has stored therein a computer program for performing the calculation.


The present disclosure provides systems for executing the program described above, which system generally includes: a) a central computing environment; b) an input device, operatively connected to the computing environment, to receive patient data, wherein the patient data can include, for example, expression level or other value obtained from an assay using a biological sample from the patient, or microarray data, as described in detail above; c) an output device, connected to the computing environment, to provide information to a user (e.g., medical personnel); and d) an algorithm executed by the central computing environment (e.g., a processor), where the algorithm is executed based on the data received by the input device, and wherein the algorithm calculates an expression score, thresholding, or other functions described herein. The methods provided by the present invention may also be automated in whole or in part.


All aspects of the present invention may also be practiced such that a limited number of additional genes and/or microRNAs that are co-expressed or functionally related with the disclosed genes, for example as evidenced by statistically meaningful Pearson and/or Spearman correlation coefficients, are included in a test in addition to and/or in place of disclosed genes.


Having described the invention, the same will be more readily understood through reference to the following Examples, which are provided by way of illustration, and are not intended to limit the invention in any way.


EXAMPLES
Example 1: RNA Yield and Gene Expression Profiles in Prostate Cancer Biopsy Cores

Clinical tools based on prostate needle core biopsies are needed to guide treatment planning at diagnosis for men with localized prostate cancer. Limiting tissue in needle core biopsy specimens poses significant challenges to the development of molecular diagnostic tests. This study examined RNA extraction yields and gene expression profiles using an RT-PCR assay to characterize RNA from manually micro-dissected fixed paraffin embedded (FPE) prostate cancer needle biopsy cores. It also investigated the association of RNA yields and gene expression profiles with Gleason score in these specimens.


Patients and Samples


This study determined the feasibility of gene expression profile analysis in prostate cancer needle core biopsies by evaluating the quantity and quality of RNA extracted from fixed paraffin-embedded (FPE) prostate cancer needle core biopsy specimens. Forty-eight (48) formalin-fixed blocks from prostate needle core biopsy specimens were used for this study. Classification of specimens was based on interpretation of the Gleason score (2005 Int'l Society of Urological Pathology Consensus Conference) and percentage tumor (<33%, 33-66%, >66%) involvement as assessed by pathologists.









TABLE 1







Distribution of cases












Gleason score
~<33%
~33-66%
~>66%



Category
Tumor
Tumor
Tumor
















Low (≤6)
5
5
6



Intermediate (7)
5
5
6



High (8, 9, 10)
5
5
6



Total
15
15
18










Assay Methods


Fourteen (14) serial 5 μm unstained sections from each FPE tissue block were included in the study. The first and last sections for each case were H&E stained and histologically reviewed to confirm the presence of tumor and for tumor enrichment by manual micro-dissection.


RNA from enriched tumor samples was extracted using a manual RNA extraction process. RNA was quantitated using the RiboGreen® assay and tested for the presence of genomic DNA contamination. Samples with sufficient RNA yield and free of genomic DNA tested for gene expression levels of a 24-gene panel of reference and cancer-related genes using quantitative RT-PCR. The expression was normalized to the average of 6 reference genes (AAMP, ARF1, ATP5E, CLTC, EEF1A1, and GPX1).


Statistical Methods


Descriptive statistics and graphical displays were used to summarize standard pathology metrics and gene expression, with stratification for Gleason Score category and percentage tumor involvement category. Ordinal logistic regression was used to evaluate the relationship between gene expression and Gleason Score category.


Results


The RNA yield per unit surface area ranged from 16 to 2406 ng/mm2. Higher RNA yield was observed in samples with higher percent tumor involvement (p=0.02) and higher Gleason score (p=0.01). RNA yield was sufficient (>200 ng) in 71% of cases to permit 96-well RT-PCR, with 87% of cases having >100 ng RNA yield. The study confirmed that gene expression from prostate biopsies, as measured by qRT-PCR, was comparable to FPET samples used in commercial molecular assays for breast cancer. In addition, it was observed that greater biopsy RNA yields are found with higher Gleason score and higher percent tumor involvement. Nine genes were identified as significantly associated with Gleason score (p<0.05) and there was a large dynamic range observed for many test genes.


Example 2: Gene Expression Analysis for Genes Associated with Prognosis in Prostate Cancer

Patients and Samples


Approximately 2600 patients with clinical stage T1/T2 prostate cancer treated with radical prostatectomy (RP) at the Cleveland Clinic between 1987 and 2004 were identified. Patients were excluded from the study design if they received neo-adjuvant and/or adjuvant therapy, if pre-surgical PSA levels were missing, or if no tumor block was available from initial diagnosis. 127 patients with clinical recurrence and 374 patients without clinical recurrence after radical prostatectomy were randomly selected using a cohort sampling design. The specimens were stratified by T stage (T1, T2), year cohort (<1993, ≥1993), and prostatectomy Gleason score (low/intermediate, high). Of the 501 sampled patients, 51 were excluded for insufficient tumor; 7 were excluded due to clinical ineligibility; 2 were excluded due to poor quality of gene expression data; and 10 were excluded because primary Gleason pattern was unavailable. Thus, this gene expression study included tissue and data from 111 patients with clinical recurrence and 330 patients without clinical recurrence after radical prostatectomies performed between 1987 and 2004 for treatment of early stage (T1, T2) prostate cancer.


Two fixed paraffin embedded (FPE) tissue specimens were obtained from prostate tumor specimens in each patient. The sampling method (sampling method A or B) depended on whether the highest Gleason pattern is also the primary Gleason pattern. For each specimen selected, the invasive cancer cells were at least 5.0 mm in dimension, except in the instances of pattern 5, where 2.2 mm was accepted. Specimens were spatially distinct where possible.









TABLE 2







Sampling Methods








Sampling Method A
Sampling Method B





For patients whose prostatectomy primary
For patients whose prostatectomy primary


Gleason pattern is also the highest Gleason
Gleason pattern is not the highest Gleason


pattern
pattern


Specimen 1 (A1) = primary Gleason pattern
Specimen 1 (B1) = highest Gleason pattern


Select and mark largest focus (greatest cross-
Select highest Gleason pattern tissue from


sectional area) of primary Gleason pattern
spatially distinct area from specimen B2, if


tissue. Invasive cancer area ≥5.0 mm.
possible. Invasive cancer area at least 5.0



mm if selecting secondary pattern, at least



2.2 mm if selecting Gleason pattern 5.


Specimen 2 (A2) = secondary Gleason pattern
Specimen 2 (B2) = primary Gleason pattern


Select and mark secondary Gleason pattern
Select largest focus (greatest cross-sectional


tissue from spatially distinct area from
area) of primary Gleason pattern tissue.


specimen A1. Invasive cancer area ≥5.0 mm.
Invasive cancer area ≥5.0 mm.









Histologically normal appearing tissue (NAT) adjacent to the tumor specimen (also referred to in these Examples as “non-tumor tissue”) was also evaluated. Adjacent tissue was collected 3 mm from the tumor to 3 mm from the edge of the FPET block. NAT was preferentially sampled adjacent to the primary Gleason pattern. In cases where there was insufficient NAT adjacent to the primary Gleason pattern, then NAT was sampled adjacent to the secondary or highest Gleason pattern (A2 or B 1) per the method set forth in Table 2. Six (6) 10 μm sections with beginning H&E at 5 μm and ending unstained slide at 5 μm were prepared from each fixed paraffin-embedded tumor (FPET) block included in the study. All cases were histologically reviewed and manually micro-dissected to yield two enriched tumor samples and, where possible, one normal tissue sample adjacent to the tumor specimen.


Assay Method


In this study, RT-PCR analysis was used to determine RNA expression levels for 738 genes and chromosomal rearrangements (e.g., TMPRSS2-ERG fusion or other ETS family genes) in prostate cancer tissue and surrounding NAT in patients with early-stage prostate cancer treated with radical prostatectomy.


The samples were quantified using the RiboGreen assay and a subset tested for presence of genomic DNA contamination. Samples were taken into reverse transcription (RT) and quantitative polymerase chain reaction (qPCR). All analyses were conducted on reference-normalized gene expression levels using the average of the of replicate well crossing point (CP) values for the 6 reference genes (AAMP, ARF1, ATP5E, CLTC, GPS1, PGK1).


Statistical Analysis and Results


Primary statistical analyses involved 111 patients with clinical recurrence and 330 patients without clinical recurrence after radical prostatectomy for early-stage prostate cancer stratified by T-stage (T1, T2), year cohort (<1993, ≥1993), and prostatectomy Gleason score (low/intermediate, high). Gleason score categories are defined as follows: low (Gleason score≤6), intermediate (Gleason score=7), and high (Gleason score≥8). A patient was included in a specified analysis if at least one sample for that patient was evaluable. Unless otherwise stated, all hypothesis tests were reported using two-sided p-values. The method of Storey was applied to the resulting set of p-values to control the false discovery rate (FDR) at 20%. J. Storey, R. Tibshirani, Estimating the Positive False Discovery Rate Under Dependence, with Applications to DNA Microarrays, Dept. of Statistics, Stanford Univ. (2001).


Analysis of gene expression and recurrence-free interval was based on univariate Cox Proportional Hazards (PH) models using maximum weighted pseudo-partial-likelihood estimators for each evaluable gene in the gene list (727 test genes and 5 reference genes). P-values were generated using Wald tests of the null hypothesis that the hazard ratio (HR) is one. Both unadjusted p-values and the q-value (smallest FDR at which the hypothesis test in question is rejected) were reported. Un-adjusted p-values<0.05 were considered statistically significant. Since two tumor specimens were selected for each patient, this analysis was performed using the 2 specimens from each patient as follows: (1) analysis using the primary Gleason pattern specimen from each patient (Specimens A1 and B2 as described in Table 2); (2) analysis using the highest Gleason pattern specimen from each patient (Specimens A1 and B1 as described in Table 2).


Analysis of gene expression and Gleason pattern (3, 4, 5) was based on univariate ordinal logistic regression models using weighted maximum likelihood estimators for each gene in the gene list (727 test genes and 5 reference genes). P-values were generated using a Wald test of the null hypothesis that the odds ratio (OR) is one. Both unadjusted p-values and the q-value (smallest FDR at which the hypothesis test in question is rejected) were reported. Un-adjusted p-values<0.05 were considered statistically significant. Since two tumor specimens were selected for each patient, this analysis was performed using the 2 specimens from each patient as follows: (1) analysis using the primary Gleason pattern specimen from each patient (Specimens A1 and B2 as described in Table 2); (2) analysis using the highest Gleason pattern specimen from each patient (Specimens A1 and B1 as described in Table 2).


It was determined whether there is a significant relationship between cRFI and selected demographic, clinical, and pathology variables, including age, race, clinical tumor stage, pathologic tumor stage, location of selected tumor specimens within the prostate (peripheral versus transitional zone), PSA at the time of surgery, overall Gleason score from the radical prostatectomy, year of surgery, and specimen Gleason pattern. Separately for each demographic or clinical variable, the relationship between the clinical covariate and cRFI was modeled using univariate Cox PH regression using weighted pseudo partial-likelihood estimators and a p-value was generated using Wald's test of the null hypothesis that the hazard ratio (HR) is one. Covariates with unadjusted p-values<0.2 may have been included in the covariate-adjusted analyses.


It was determined whether there was a significant relationship between each of the individual cancer-related genes and cRFI after controlling for important demographic and clinical covariates. Separately for each gene, the relationship between gene expression and cRFI was modeled using multivariate Cox PH regression using weighted pseudo partial-likelihood estimators including important demographic and clinical variables as covariates. The independent contribution of gene expression to the prediction of cRFI was tested by generating a p-value from a Wald test using a model that included clinical covariates for each nodule (specimens as defined in Table 2). Un-adjusted p-values<0.05 were considered statistically significant.


Tables 3A and 3B provide genes significantly associated (p<0.05), positively or negatively, with Gleason pattern in the primary and/or highest Gleason pattern. Increased expression of genes in Table 3A is positively associated with higher Gleason score, while increased expression of genes in Table 3B are negatively associated with higher Gleason score.









TABLE 3A







Gene significantly (p < 0.05) associated with Gleason


pattern for all specimens in the primary Gleason pattern


or highest Gleason pattern odds ratio (OR) >1.0 (Increased


expression is positively associated with higher Gleason Score)













Official
Primary Pattern

Highest Pattern














Symbol
OR
p-value
OR
p-value

















ALCAM
1.73
<.001
1.36
0.009



ANLN
1.35
0.027



APOC1
1.47
0.005
1.61
<.001



APOE
1.87
<.001
2.15
<.001



ASAP2
1.53
0.005



ASPN
2.62
<.001
2.13
<.001



ATP5E
1.35
0.035



AURKA
1.44
0.010



AURKB
1.59
<.001
1.56
<.001



BAX
1.43
0.006



BGN
2.58
<.001
2.82
<.001



BIRC5
1.45
0.003
1.79
<.001



BMP6
2.37
<.001
1.68
<.001



BMPR1B
1.58
0.002



BRCA2


1.45
0.013



BUB1
1.73
<.001
1.57
<.001



CACNA1D
1.31
0.045
1.31
0.033



CADPS


1.30
0.023



CCNB1
1.43
0.023



CCNE2
1.52
0.003
1.32
0.035



CD276
2.20
<.001
1.83
<.001



CD68


1.36
0.022



CDC20
1.69
<.001
1.95
<.001



CDC6
1.38
0.024
1.46
<.001



CDH11


1.30
0.029



CDKN2B
1.55
0.001
1.33
0.023



CDKN2C
1.62
<.001
1.52
<.001



CDKN3
1.39
0.010
1.50
0.002



CENPF
1.96
<.001
1.71
<.001



CHRAC1


1.34
0.022



CLDN3


1.37
0.029



COL1A1
2.23
<.001
2.22
<.001



COL1A2


1.42
0.005



COL3A1
1.90
<.001
2.13
<.001



COL8A1
1.88
<.001
2.35
<.001



CRISP3
1.33
0.040
1.26
0.050



CTHRC1
2.01
<.001
1.61
<.001



CTNND2
1.48
0.007
1.37
0.011



DAPK1
1.44
0.014



DIAPH1
1.34
0.032
1.79
<.001



DIO2


1.56
0.001



DLL4
1.38
0.026
1.53
<.001



ECE1
1.54
0.012
1.40
0.012



ENY2
1.35
0.046
1.35
0.012



EZH2
1.39
0.040



F2R
2.37
<.001
2.60
<.001



FAM49B
1.57
0.002
1.33
0.025



FAP
2.36
<.001
1.89
<.001



FCGR3A
2.10
<.001
1.83
<.001



GNPTAB
1.78
<.001
1.54
<.001



GSK3B


1.39
0.018



HRAS
1.62
0.003



HSD17B4
2.91
<.001
1.57
<.001



HSPA8
1.48
0.012
1.34
0.023



IFI30
1.64
<.001
1.45
0.013



IGFBP3


1.29
0.037



IL11
1.52
0.001
1.31
0.036



INHBA
2.55
<.001
2.30
<.001



ITGA4


1.35
0.028



JAG1
1.68
<.001
1.40
0.005



KCNN2
1.50
0.004



KCTD12


1.38
0.012



KHDRBS3
1.85
<.001
1.72
<.001



KIF4A
1.50
0.010
1.50
<.001



KLK14
1.49
0.001
1.35
<.001



KPNA2
1.68
0.004
1.65
0.001



KRT2


1.33
0.022



KRT75


1.27
0.028



LAMC1
1.44
0.029



LAPTM5
1.36
0.025
1.31
0.042



LTBP2
1.42
0.023
1.66
<.001



MANF


1.34
0.019



MAOA
1.55
0.003
1.50
<.001



MAP3K5
1.55
0.006
1.44
0.001



MDK
1.47
0.013
1.29
0.041



MDM2


1.31
0.026



MELK
1.64
<.001
1.64
<.001



MMP11
2.33
<.001
1.66
<.001



MYBL2
1.41
0.007
1.54
<.001



MYO6


1.32
0.017



NETO2


1.36
0.018



NOX4
1.84
<.001
1.73
<.001



NPM1
1.68
0.001



NRIP3


1.36
0.009



NRP1
1.80
0.001
1.36
0.019



OSM
1.33
0.046



PATE1
1.38
0.032



PECAM1
1.38
0.021
1.31
0.035



PGD
1.56
0.010



PLK1
1.51
0.004
1.49
0.002



PLOD2


1.29
0.027



POSTN
1.70
0.047
1.55
0.006



PPP3CA
1.38
0.037
1.37
0.006



PTK6
1.45
0.007
1.53
<.001



PTTG1


1.51
<.001



RAB31


1.31
0.030



RAD21
2.05
<.001
1.38
0.020



RAD51
1.46
0.002
1.26
0.035



RAF1
1.46
0.017



RALBP1
1.37
0.043



RHOC


1.33
0.021



ROBO2
1.52
0.003
1.41
0.006



RRM2
1.77
<.001
1.50
<.001



SAT1
1.67
0.002
1.61
<.001



SDC1
1.66
0.001
1.46
0.014



SEC14L1
1.53
0.003
1.62
<.001



SESN3
1.76
<.001
1.45
<.001



SFRP4
2.69
<.001
2.03
<.001



SHMT2
1.69
0.007
1.45
0.003



SKIL


1.46
0.005



SOX4
1.42
0.016
1.27
0.031



SPARC
1.40
0.024
1.55
<.001



SPINK1


1.29
0.002



SPP1
1.51
0.002
1.80
<.001



TFDP1
1.48
0.014



THBS2
1.87
<.001
1.65
<.001



THY1
1.58
0.003
1.64
<.001



TK1
1.79
<.001
1.42
0.001



TOP2A
2.30
<.001
2.01
<.001



TPD52
1.95
<.001
1.30
0.037



TPX2
2.12
<.001
1.86
<.001



TYMP
1.36
0.020



TYMS
1.39
0.012
1.31
0.036



UBE2C
1.66
<.001
1.65
<.001



UBE2T
1.59
<.001
1.33
0.017



UGDH


1.28
0.049



UGT2B15
1.46
0.001
1.25
0.045



UHRF1
1.95
<.001
1.62
<.001



VDR
1.43
0.010
1.39
0.018



WNT5A
1.54
0.001
1.44
0.013

















TABLE 3B







Gene significantly (p < 0.05) associated with Gleason


pattern for all specimens in the primary Gleason pattern


or highest Gleason pattern odds ratio (OR) <1.0 (Increased


expression is negatively associated with higher Gleason score)













Official
Primary Pattern

Highest Pattern














Symbol
OR
p-value
OR
p-value

















ABCA5
0.78
0.041





ABCG2
0.65
0.001
0.72
0.012



ACOX2
0.44
<.001
0.53
<.001



ADH5
0.45
<.001
0.42
<.001



AFAP1


0.79
0.038



AIG1


0.77
0.024



AKAP1
0.63
0.002



AKR1C1
0.66
0.003
0.63
<.001



AKT3
0.68
0.006
0.77
0.010



ALDH1A2
0.28
<.001
0.33
<.001



ALKBH3
0.77
0.040
0.77
0.029



AMPD3
0.67
0.007



ANPEP
0.68
0.008
0.59
<.001



ANXA2
0.72
0.018



APC


0.69
0.002



AXIN2
0.46
<.001
0.54
<.001



AZGP1
0.52
<.001
0.53
<.001



BIK
0.69
0.006
0.73
0.003



BIN1
0.43
<.001
0.61
<.001



BTG3


0.79
0.030



BTRC
0.48
<.001
0.62
<.001



C7
0.37
<.001
0.55
<.001



CADM1
0.56
<.001
0.69
0.001



CAV1
0.58
0.002
0.70
0.009



CAV2
0.65
0.029



CCNH
0.67
0.006
0.77
0.048



CD164
0.59
0.003
0.57
<.001



CDC25B
0.77
0.035



CDH1


0.66
<.001



CDK2


0.71
0.003



CDKN1C
0.58
<.001
0.57
<.001



CDS2


0.69
0.002



CHN1
0.66
0.002



COL6A1
0.44
<.001
0.66
<.001



COL6A3
0.66
0.006



CSRP1
0.42
0.006



CTGF
0.74
0.043



CTNNA1
0.70
<.001
0.83
0.018



CTNNB1
0.70
0.019



CTNND1


0.75
0.028



CUL1


0.74
0.011



CXCL12
0.54
<.001
0.74
0.006



CYP3A5
0.52
<.001
0.66
0.003



CYR61
0.64
0.004
0.68
0.005



DDR2
0.57
0.002
0.73
0.004



DES
0.34
<.001
0.58
<.001



DLGAP1
0.54
<.001
0.62
<.001



DNM3
0.67
0.004



DPP4
0.41
<.001
0.53
<.001



DPT
0.28
<.001
0.48
<.001



DUSP1
0.59
<.001
0.63
<.001



EDNRA
0.64
0.004
0.74
0.008



EGF


0.71
0.012



EGR1
0.59
<.001
0.67
0.009



EGR3
0.72
0.026
0.71
0.025



EIF5


0.76
0.025



ELK4
0.58
0.001
0.70
0.008



ENPP2
0.66
0.002
0.70
0.005



EPHA3
0.65
0.006



EPHB2
0.60
<.001
0.78
0.023



EPHB4
0.75
0.046
0.73
0.006



ERBB3
0.76
0.040
0.75
0.013



ERBB4


0.74
0.023



ERCC1
0.63
<.001
0.77
0.016



FAAH
0.67
0.003
0.71
0.010



FAM107A
0.35
<.001
0.59
<.001



FAM13C
0.37
<.001
0.48
<.001



FAS
0.73
0.019
0.72
0.008



FGF10
0.53
<.001
0.58
<.001



FGF7
0.52
<.001
0.59
<.001



FGFR2
0.60
<.001
0.59
<.001



FKBP5
0.70
0.039
0.68
0.003



FLNA
0.39
<.001
0.56
<.001



FLNC
0.33
<.001
0.52
<.001



FOS
0.58
<.001
0.66
0.005



FOXO1
0.57
<.001
0.67
<.001



FOXQ1


0.74
0.023



GADD45B
0.62
0.002
0.71
0.010



GHR
0.62
0.002
0.72
0.009



GNRH1
0.74
0.049
0.75
0.026



GPM6B
0.48
<.001
0.68
<.001



GPS1


0.68
0.003



GSN
0.46
<.001
0.77
0.027



GSTM1
0.44
<.001
0.62
<.001



GSTM2
0.29
<.001
0.49
<.001



HGD


0.77
0.020



HIRIP3
0.75
0.034



HK1
0.48
<.001
0.66
0.001



HLF
0.42
<.001
0.55
<.001



HNF1B
0.67
0.006
0.74
0.010



HPS1
0.66
0.001
0.65
<.001



HSP90AB1
0.75
0.042



HSPA5
0.70
0.011



HSPB2
0.52
<.001
0.70
0.004



IGF1
0.35
<.001
0.59
<.001



IGF2
0.48
<.001
0.70
0.005



IGFBP2
0.61
<.001
0.77
0.044



IGFBP5
0.63
<.001



IGFBP6
0.45
<.001
0.64
<.001



IL6ST
0.55
0.004
0.63
<.001



ILK
0.40
<.001
0.57
<.001



ING5
0.56
<.001
0.78
0.033



ITGA1
0.56
0.004
0.61
<.001



ITGA3


0.78
0.035



ITGA5
0.71
0.019
0.75
0.017



ITGA7
0.37
<.001
0.52
<.001



ITGB3
0.63
0.003
0.70
0.005



ITPR1
0.46
<.001
0.64
<.001



ITPR3
0.70
0.013



ITSN1
0.62
0.001



JUN
0.48
<.001
0.60
<.001



JUNB
0.72
0.025



KIT
0.51
<.001
0.68
0.007



KLC1
0.58
<.001



KLK1
0.69
0.028
0.66
0.003



KLK2
0.60
<.001



KLK3
0.63
<.001
0.69
0.012



KRT15
0.56
<.001
0.60
<.001



KRT18
0.74
0.034



KRT5
0.64
<.001
0.62
<.001



LAMA4
0.47
<.001
0.73
0.010



LAMB3
0.73
0.018
0.69
0.003



LGALS3
0.59
0.003
0.54
<.001



LIG3
0.75
0.044



MAP3K7
0.66
0.003
0.79
0.031



MCM3
0.73
0.013
0.80
0.034



MGMT
0.61
0.001
0.71
0.007



MGST1


0.75
0.017



MLXIP
0.70
0.013



MMP2
0.57
<.001
0.72
0.010



MMP7
0.69
0.009



MPPED2
0.70
0.009
0.59
<.001



MSH6
0.78
0.046



MTA1
0.69
0.007



MTSS1
0.55
<.001
0.54
<.001



MYBPC1
0.45
<.001
0.45
<.001



NCAM1
0.51
<.001
0.65
<.001



NCAPD3
0.42
<.001
0.53
<.001



NCOR2
0.68
0.002



NDUFS5
0.66
0.001
0.70
0.013



NEXN
0.48
<.001
0.62
<.001



NFAT5
0.55
<.001
0.67
0.001



NFKBIA


0.79
0.048



NRG1
0.58
0.001
0.62
0.001



OLFML3
0.42
<.001
0.58
<.001



OMD
0.67
0.004
0.71
0.004



OR51E2
0.65
<.001
0.76
0.007



PAGE4
0.27
<.001
0.46
<.001



PCA3
0.68
0.004



PCDHGB7
0.70
0.025
0.65
<.001



PGF
0.62
0.001



PGR
0.63
0.028



PHTF2
0.69
0.033



PLP2
0.54
<.001
0.71
0.003



PPAP2B
0.41
<.001
0.54
<.001



PPP1R12A
0.48
<.001
0.60
<.001



PRIMA1
0.62
0.003
0.65
<.001



PRKAR1B
0.70
0.009



PRKAR2B


0.79
0.038



PRKCA
0.37
<.001
0.55
<.001



PRKCB
0.47
<.001
0.56
<.001



PTCH1
0.70
0.021



PTEN
0.66
0.010
0.64
<.001



PTGER3


0.76
0.015



PTGS2
0.70
0.013
0.68
0.005



PTH1R
0.48
<.001



PTK2B
0.67
0.014
0.69
0.002



PYCARD
0.72
0.023



RAB27A


0.76
0.017



RAGE
0.77
0.040
0.57
<.001



RARB
0.66
0.002
0.69
0.002



RECK
0.65
<.001



RHOA
0.73
0.043



RHOB
0.61
0.005
0.62
<.001



RND3
0.63
0.006
0.66
<.001



SDHC


0.69
0.002



SEC23A
0.61
<.001
0.74
0.010



SEMA3A
0.49
<.001
0.55
<.001



SERPINA3
0.70
0.034
0.75
0.020



SH3RF2
0.33
<.001
0.42
<.001



SLC22A3
0.23
<.001
0.37
<.001



SMAD4
0.33
<.001
0.39
<.001



SMARCC2
0.62
0.003
0.74
0.008



SMO
0.53
<.001
0.73
0.009



SORBS1
0.40
<.001
0.55
<.001



SPARCL1
0.42
<.001
0.63
<.001



SRD5A2
0.28
<.001
0.37
<.001



ST5
0.52
<.001
0.63
<.001



STAT5A
0.60
<.001
0.75
0.020



STAT5B
0.54
<.001
0.65
<.001



STS


0.78
0.035



SUMO1
0.75
0.017
0.71
0.002



SVIL
0.45
<.001
0.62
<.001



TARP
0.72
0.017



TGFB1I1
0.37
<.001
0.53
<.001



TGFB2
0.61
0.025
0.59
<.001



TGFB3
0.46
<.001
0.60
<.001



TIMP2
0.62
0.001



TIMP3
0.55
<.001
0.76
0.019



TMPRSS2
0.71
0.014



TNF
0.65
0.010



TNFRSF10A
0.71
0.014
0.74
0.010



TNFRSF10B
0.74
0.030
0.73
0.016



TNFSF10


0.69
0.004



TP53


0.73
0.011



TP63
0.62
<.001
0.68
0.003



TPM1
0.43
<.001
0.47
<.001



TPM2
0.30
<.001
0.47
<.001



TPP2
0.58
<.001
0.69
0.001



TRA2A
0.71
0.006



TRAF3IP2
0.50
<.001
0.63
<.001



TRO
0.40
<.001
0.59
<.001



TRPC6
0.73
0.030



TRPV6


0.80
0.047



VCL
0.44
<.001
0.55
<.001



VEGFB
0.73
0.029



VIM
0.72
0.013



VTI1B
0.78
0.046



WDR19
0.65
<.001



WFDC1
0.50
<.001
0.72
0.010



YY1
0.75
0.045



ZFHX3
0.52
<.001
0.54
<.001



ZFP36
0.65
0.004
0.69
0.012



ZNF827
0.59
<.001
0.69
0.004










To identify genes associated with recurrence (cRFI, bRFI) in the primary and the highest Gleason pattern, each of 727 genes were analyzed in univariate models using specimens A1 and B2 (see Table 2, above). Tables 4A and 4B provide genes that were associated, positively or negatively, with cRFI and/or bRFI in the primary and/or highest Gleason pattern. Increased expression of genes in Table 4A is negatively associated with good prognosis, while increased expression of genes in Table 4B is positively associated with good prognosis.









TABLE 4A







Genes significantly (p < 0.05) associated with cRFI


or bRFI in the primary Gleason pattern or highest Gleason


pattern with hazard ratio (HR) >1.0 (increased expression


is negatively associated with good prognosis)












cRFI
cRFI
bRFI
bRFI



Primary
Highest
Primary
Highest



Pattern
Pattern
Pattern
Pattern















Official

p-

p-

p-

p-


Symbol
HR
value
HR
value
HR
value
HR
value


















AKR1C3
1.304
0.022
1.312
0.013






ANLN
1.379
0.002
1.579
<.001
1.465
<.001
1.623
<.001


AQP2
1.184
0.027
1.276
<.001


ASAP2


1.442
0.006


ASPN
2.272
<.001
2.106
<.001
1.861
<.001
1.895
<.001


ATP5E
1.414
0.013
1.538
<.001


BAG5


1.263
0.044


BAX


1.332
0.026
1.327
0.012
1.438
0.002


BGN
1.947
<.001
2.061
<.001
1.339
0.017


BIRC5
1.497
<.001
1.567
<.001
1.478
<.001
1.575
<.001


BMP6
1.705
<.001
2.016
<.001
1.418
0.004
1.541
<.001


BMPR1B
1.401
0.013


1.325
0.016


BRCA2






1.259
0.007


BUB1
1.411
<.001
1.435
<.001
1.352
<.001
1.242
0.002


CADPS




1.387
0.009
1.294
0.027


CCNB1




1.296
0.016
1.376
0.002


CCNE2
1.468
<.001
1.649
<.001
1.729
<.001
1.563
<.001


CD276
1.678
<.001
1.832
<.001
1.581
<.001
1.385
0.002


CDC20
1.547
<.001
1.671
<.001
1.446
<.001
1.540
<.001


CDC6
1.400
0.003
1.290
0.030
1.403
0.002
1.276
0.019


CDH7
1.403
0.003
1.413
0.002


CDKN2B
1.569
<.001
1.752
<.001
1.333
0.017
1.347
0.006


CDKN2C
1.612
<.001
1.780
<.001
1.323
0.005
1.335
0.004


CDKN3
1.384
<.001
1.255
0.024
1.285
0.003
1.216
0.028


CENPF
1.578
<.001
1.692
<.001
1.740
<.001
1.705
<.001


CKS2
1.390
0.007
1.418
0.005
1.291
0.018


CLTC


1.368
0.045


COL1A1
1.873
<.001
2.103
<.001
1.491
<.001
1.472
<.001


COL1A2


1.462
0.001


COL3A1
1.827
<.001
2.005
<.001
1.302
0.012
1.298
0.018


COL4A1
1.490
0.002
1.613
<.001


COL8A1
1.692
<.001
1.926
<.001
1.307
0.013
1.317
0.010


CRISP3
1.425
0.001
1.467
<.001
1.242
0.045


CTHRC1
1.505
0.002
2.025
<.001
1.425
0.003
1.369
0.005


CTNND2




1.412
0.003


CXCR4
1.312
0.023
1.355
0.008


DDIT4
1.543
<.001
1.763
<.001


DYNLL1
1.290
0.039




1.201
0.004


EIF3H




1.428
0.012


ENY2
1.361
0.014


1.392
0.008
1.371
0.001


EZH2


1.311
0.010


F2R
1.773
<.001
1.695
<.001
1.495
<.001
1.277
0.018


FADD


1.292
0.018


FAM171B


1.285
0.036


FAP
1.455
0.004
1.560
0.001
1.298
0.022
1.274
0.038


FASN
1.263
0.035


FCGR3A


1.654
<.001
1.253
0.033
1.350
0.007


FGF5
1.219
0.030


GNPTAB
1.388
0.007
1.503
0.003
1.355
0.005
1.434
0.002


GPR68


1.361
0.008


GREM1
1.470
0.003
1.716
<.001
1.421
0.003
1.316
0.017


HDAC1




1.290
0.025


HDAC9


1.395
0.012


HRAS
1.424
0.006
1.447
0.020


HSD17B4
1.342
0.019
1.282
0.026
1.569
<.001
1.390
0.002


HSPA8
1.290
0.034


IGFBP3
1.333
0.022
1.442
0.003
1.253
0.040
1.323
0.005


INHBA
2.368
<.001
2.765
<.001
1.466
0.002
1.671
<.001


JAG1
1.359
0.006
1.367
0.005
1.259
0.024


KCNN2
1.361
0.011
1.413
0.005
1.312
0.017
1.281
0.030


KHDRBS3
1.387
0.006
1.601
<.001
1.573
<.001
1.353
0.006


KIAA0196






1.249
0.037


KIF4A
1.212
0.016


1.149
0.040
1.278
0.003


KLK14
1.167
0.023




1.180
0.007


KPNA2


1.425
0.009
1.353
0.005
1.305
0.019


KRT75






1.164
0.028


LAMA3




1.327
0.011


LAMB1


1.347
0.019


LAMC1
1.555
0.001
1.310
0.030


1.349
0.014


LIMS1






1.275
0.022


LOX




1.358
0.003
1.410
<.001


LTBP2
1.396
0.009
1.656
<.001
1.278
0.022


LUM


1.315
0.021


MANF




1.660
<.001
1.323
0.011


MCM2




1.345
0.011
1.387
0.014


MCM6
1.307
0.023
1.352
0.008


1.244
0.039


MELK
1.293
0.014
1.401
<.001
1.501
<.001
1.256
0.012


MMP11
1.680
<.001
1.474
<.001
1.489
<.001
1.257
0.030


MRPL13






1.260
0.025


MSH2


1.295
0.027


MYBL2
1.664
<.001
1.670
<.001
1.399
<.001
1.431
<.001


MYO6


1.301
0.033


NETO2
1.412
0.004
1.302
0.027
1.298
0.009


NFKB1




1.236
0.050


NOX4
1.492
<.001
1.507
0.001
1.555
<.001
1.262
0.019


NPM1




1.287
0.036


NRIP3


1.219
0.031


1.218
0.018


NRP1


1.482
0.002


1.245
0.041


OLFML2B


1.362
0.015


OR51E1




1.531
<.001
1.488
0.003


PAK6


1.269
0.033


PATE1
1.308
<.001
1.332
<.001
1.164
0.044


PCNA






1.278
0.020


PEX10
1.436
0.005
1.393
0.009


PGD
1.298
0.048


1.579
<.001


PGK1


1.274
0.023


1.262
0.009


PLA2G7




1.315
0.011
1.346
0.005


PLAU




1.319
0.010


PLK1
1.309
0.021
1.563
<.001
1.410
0.002
1.372
0.003


PLOD2


1.284
0.019
1.272
0.014
1.332
0.005


POSTN
1.599
<.001
1.514
0.002
1.391
0.005


PPP3CA




1.402
0.007
1.316
0.018


PSMD13
1.278
0.040
1.297
0.033
1.279
0.017
1.373
0.004


PTK6
1.640
<.001
1.932
<.001
1.369
0.001
1.406
<.001


PTTG1
1.409
<.001
1.510
<.001
1.347
0.001
1.558
<.001


RAD21
1.315
0.035
1.402
0.004
1.589
<.001
1.439
<.001


RAF1




1.503
0.002


RALA
1.521
0.004
1.403
0.007
1.563
<.001
1.229
0.040


RALBP1




1.277
0.033


RGS7
1.154
0.015
1.266
0.010


RRM1
1.570
0.001
1.602
<.001


RRM2
1.368
<.001
1.289
0.004
1.396
<.001
1.230
0.015


SAT1
1.482
0.016
1.403
0.030


SDC1




1.340
0.018
1.396
0.018


SEC14L1


1.260
0.048


1.360
0.002


SESN3
1.485
<.001
1.631
<.001
1.232
0.047
1.292
0.014


SFRP4
1.800
<.001
1.814
<.001
1.496
<.001
1.289
0.027


SHMT2
1.807
<.001
1.658
<.001
1.673
<.001
1.548
<.001


SKIL




1.327
0.008


SLC25A21




1.398
0.001
1.285
0.018


SOX4




1.286
0.020
1.280
0.030


SPARC
1.539
<.001
1.842
<.001


1.269
0.026


SPP1


1.322
0.022


SQLE


1.359
0.020
1.270
0.036


STMN1
1.402
0.007
1.446
0.005
1.279
0.031


SULF1


1.587
<.001


TAF2






1.273
0.027


TFDP1


1.328
0.021
1.400
0.005
1.416
0.001


THBS2
1.812
<.001
1.960
<.001
1.320
0.012
1.256
0.038


THY1
1.362
0.020
1.662
<.001


TK1


1.251
0.011
1.377
<.001
1.401
<.001


TOP2A
1.670
<.001
1.920
<.001
1.869
<.001
1.927
<.001


TPD52
1.324
0.011


1.366
0.002
1.351
0.005


TPX2
1.884
<.001
2.154
<.001
1.874
<.001
1.794
<.001


UAP1




1.244
0.044


UBE2C
1.403
<.001
1.541
<.001
1.306
0.002
1.323
<.001


UBE2T
1.667
<.001
1.282
0.023
1.502
<.001
1.298
0.005


UGT2B15


1.295
0.001


1.275
0.002


UGT2B17






1.294
0.025


UHRF1
1.454
<.001
1.531
<.001
1.257
0.029


VCPIP1
1.390
0.009
1.414
0.004
1.294
0.021
1.283
0.021


WNT5A


1.274
0.038
1.298
0.020


XIAP




1.464
0.006


ZMYND8


1.277
0.048


ZWINT
1.259
0.047
















TABLE 4B







Genes significantly (p < 0.05) associated with cRFI


or bRFI in the primary Gleason pattern or highest Gleason


pattern with hazard ratio (HR) <1.0 (increased expression


is positively associated with good prognosis)












cRFI
cRFI
bRFI
bRFI



Primary
Highest
Primary
Highest



Pattern
Pattern
Pattern
Pattern















Official

p-

p-

p-

p-


Symbol
HR
value
HR
value
HR
value
HR
value


















AAMP
0.564
<.001
0.571
<.001
0.764
0.037
0.786
0.034


ABCA5
0.755
<.001
0.695
<.001


0.800
0.006


ABCB1
0.777
0.026


ABCG2
0.788
0.033
0.784
0.040
0.803
0.018
0.750
0.004


ABHD2


0.734
0.011


ACE


0.782
0.048


ACOX2
0.639
<.001
0.631
<.001
0.713
<.001
0.716
0.002


ADH5
0.625
<.001
0.637
<.001
0.753
0.026


AKAP1
0.764
0.006
0.800
0.005
0.837
0.046


AKR1C1
0.773
0.033


0.802
0.032


AKT1


0.714
0.005


AKT3
0.811
0.015
0.809
0.021


ALDH1A2
0.606
<.001
0.498
<.001
0.613
<.001
0.624
<.001


AMPD3




0.793
0.024


ANPEP
0.584
<.001
0.493
<.001


ANXA2
0.753
0.013
0.781
0.036
0.762
0.008
0.795
0.032


APRT


0.758
0.026
0.780
0.044
0.746
0.008


ATXN1
0.673
0.001
0.776
0.029
0.809
0.031
0.812
0.043


AXIN2
0.674
<.001
0.571
<.001
0.776
0.005
0.757
0.005


AZGP1
0.585
<.001
0.652
<.001
0.664
<.001
0.746
<.001


BAD


0.765
0.023


BCL2
0.788
0.033
0.778
0.036


BDKRB1
0.728
0.039


BIK


0.712
0.005


BIN1
0.607
<.001
0.724
0.002
0.726
<.001
0.834
0.034


BTG3




0.847
0.034


BTRC
0.688
0.001
0.713
0.003


C7
0.589
<.001
0.639
<.001
0.629
<.001
0.691
<.001


CADM1
0.546
<.001
0.529
<.001
0.743
0.008
0.769
0.015


CASP1
0.769
0.014
0.799
0.028
0.799
0.010
0.815
0.018


CAV1
0.736
0.011
0.711
0.005
0.675
<.001
0.743
0.006


CAV2


0.636
0.010
0.648
0.012
0.685
0.012


CCL2
0.759
0.029
0.764
0.024


CCNH
0.689
<.001
0.700
<.001


CD164
0.664
<.001
0.651
<.001


CD1A




0.687
0.004


CD44
0.545
<.001
0.600
<.001
0.788
0.018
0.799
0.023


CD82
0.771
0.009
0.748
0.004


CDC25B
0.755
0.006


0.817
0.025


CDK14
0.845
0.043


CDK2






0.819
0.032


CDK3
0.733
0.005


0.772
0.006
0.838
0.017


CDKN1A


0.766
0.041


CDKN1C
0.662
<.001
0.712
0.002
0.693
<.001
0.761
0.009


CHN1
0.788
0.036


COL6A1
0.608
<.001
0.767
0.013
0.706
<.001
0.775
0.007


CSF1
0.626
<.001
0.709
0.003


CSK




0.837
0.029


CSRP1
0.793
0.024
0.782
0.019


CTNNB1
0.898
0.042


0.885
<.001


CTSB
0.701
0.004
0.713
0.007
0.715
0.002
0.803
0.038


CTSK




0.815
0.042


CXCL12
0.652
<.001
0.802
0.044
0.711
0.001


CYP3A5
0.463
<.001
0.436
<.001
0.727
0.003


CYR61
0.652
0.002
0.676
0.002


DAP


0.761
0.026
0.775
0.025
0.802
0.048


DARC




0.725
0.005
0.792
0.032


DDR2




0.719
0.001
0.763
0.008


DES
0.619
<.001
0.737
0.005
0.638
<.001
0.793
0.017


DHRS9
0.642
0.003


DHX9
0.888
<.001


DLC1
0.710
0.007
0.715
0.009


DLGAP1
0.613
<.001
0.551
<.001


0.779
0.049


DNM3
0.679
<.001


0.812
0.037


DPP4
0.591
<.001
0.613
<.001
0.761
0.003


DPT
0.613
<.001
0.576
<.001
0.647
<.001
0.677
<.001


DUSP1
0.662
0.001
0.665
0.001


0.785
0.024


DUSP6
0.713
0.005
0.668
0.002


EDNRA
0.702
0.002
0.779
0.036


EGF


0.738
0.028


EGR1
0.569
<.001
0.577
<.001


0.782
0.022


EGR3
0.601
<.001
0.619
<.001


0.800
0.038


EIF2S3






0.756
0.015


EIF5
0.776
0.023
0.787
0.028


ELK4
0.628
<.001
0.658
<.001


EPHA2
0.720
0.011
0.663
0.004


EPHA3
0.727
0.003


0.772
0.005


ERBB2
0.786
0.019
0.738
0.003
0.815
0.041


ERBB3
0.728
0.002
0.711
0.002
0.828
0.043
0.813
0.023


ERCC1
0.771
0.023
0.725
0.007
0.806
0.049
0.704
0.002


EREG




0.754
0.016
0.777
0.034


ESR2


0.731
0.026


FAAH
0.708
0.004
0.758
0.012
0.784
0.031
0.774
0.007


FAM107A
0.517
<.001
0.576
<.001
0.642
<.001
0.656
<.001


FAM13C
0.568
<.001
0.526
<.001
0.739
0.002
0.639
<.001


FAS
0.755
0.014


FASLG


0.706
0.021


FGF10
0.653
<.001


0.685
<.001
0.766
0.022


FGF17


0.746
0.023
0.781
0.015
0.805
0.028


FGF7
0.794
0.030


0.820
0.037
0.811
0.040


FGFR2
0.683
<.001
0.686
<.001
0.674
<.001
0.703
<.001


FKBP5


0.676
0.001


FLNA
0.653
<.001
0.741
0.010
0.682
<.001
0.771
0.016


FLNC
0.751
0.029
0.779
0.047
0.663
<.001
0.725
<.001


FLT1


0.799
0.044


FOS
0.566
<.001
0.543
<.001


0.757
0.006


FOXO1




0.816
0.039
0.798
0.023


FOXQ1
0.753
0.017
0.757
0.024
0.804
0.018


FYN
0.779
0.031


GADD45B
0.590
<.001
0.619
<.001


GDF15
0.759
0.019
0.794
0.048


GHR
0.702
0.005
0.630
<.001
0.673
<.001
0.590
<.001


GNRH1




0.742
0.014


GPM6B
0.653
<.001
0.633
<.001
0.696
<.001
0.768
0.007


GSN
0.570
<.001
0.697
0.001
0.697
<.001
0.758
0.005


GSTM1
0.612
<.001
0.588
<.001
0.718
<.001
0.801
0.020


GSTM2
0.540
<.001
0.630
<.001
0.602
<.001
0.706
<.001


HGD
0.796
0.020
0.736
0.002


HIRIP3
0.753
0.011


0.824
0.050


HK1
0.684
<.001
0.683
<.001
0.799
0.011
0.804
0.014


HLA-G


0.726
0.022


HLF
0.555
<.001
0.582
<.001
0.703
<.001
0.702
<.001


HNF1B
0.690
<.001
0.585
<.001


HPS1
0.744
0.003
0.784
0.020
0.836
0.047


HSD3B2






0.733
0.016


HSP90AB1
0.801
0.036


HSPA5


0.776
0.034


HSPB1
0.813
0.020


HSPB2
0.762
0.037


0.699
0.002
0.783
0.034


HSPG2




0.794
0.044


ICAM1
0.743
0.024
0.768
0.040


IER3
0.686
0.002
0.663
<.001


IFIT1
0.649
<.001
0.761
0.026


IGF1
0.634
<.001
0.537
<.001
0.696
<.001
0.688
<.001


IGF2




0.732
0.004


IGFBP2
0.548
<.001
0.620
<.001


IGFBP5
0.681
<.001


IGFBP6
0.577
<.001


0.675
<.001


IL1B
0.712
0.005
0.742
0.009


IL6
0.763
0.028


IL6R


0.791
0.039


IL6ST
0.585
<.001
0.639
<.001
0.730
0.002
0.768
0.006


IL8
0.624
<.001
0.662
0.001


ILK
0.712
0.009
0.728
0.012
0.790
0.047
0.790
0.042


ING5
0.625
<.001
0.658
<.001
0.728
0.002


ITGA5
0.728
0.006
0.803
0.039


ITGA6
0.779
0.007
0.775
0.006


ITGA7
0.584
<.001
0.700
0.001
0.656
<.001
0.786
0.014


ITGAD


0.657
0.020


ITGB4
0.718
0.007
0.689
<.001
0.818
0.041


ITGB5


0.801
0.050


ITPR1
0.707
0.001


JUN
0.556
<.001
0.574
<.001


0.754
0.008


JUNB
0.730
0.017
0.715
0.010


KIT
0.644
0.004
0.705
0.019
0.605
<.001
0.659
0.001


KLC1
0.692
0.003
0.774
0.024
0.747
0.008


KLF6
0.770
0.032
0.776
0.039


KLK1
0.646
<.001
0.652
0.001
0.784
0.037


KLK10


0.716
0.006


KLK2
0.647
<.001
0.628
<.001


0.786
0.009


KLK3
0.706
<.001
0.748
<.001


0.845
0.018


KRT1






0.734
0.024


KRT15
0.627
<.001
0.526
<.001
0.704
<.001
0.782
0.029


KRT18
0.624
<.001
0.617
<.001
0.738
0.005
0.760
0.005


KRT5
0.640
<.001
0.550
<.001
0.740
<.001
0.798
0.023


KRT8
0.716
0.006
0.744
0.008


L1CAM
0.738
0.021
0.692
0.009


0.761
0.036


LAG3
0.741
0.013
0.729
0.011


LAMA4
0.686
0.011


0.592
0.003


LAMA5






0.786
0.025


LAMB3
0.661
<.001
0.617
<.001
0.734
<.001


LGALS3
0.618
<.001
0.702
0.001
0.734
0.001
0.793
0.012


LIG3
0.705
0.008
0.615
<.001


LRP1
0.786
0.050


0.795
0.023
0.770
0.009


MAP3K7




0.789
0.003


MGMT
0.632
<.001
0.693
<.001


MICA
0.781
0.014
0.653
<.001


0.833
0.043


MPPED2
0.655
<.001
0.597
<.001
0.719
<.001
0.759
0.006


MSH6




0.793
0.015


MTSS1
0.613
<.001


0.746
0.008


MVP
0.792
0.028
0.795
0.045
0.819
0.023


MYBPC1
0.648
<.001
0.496
<.001
0.701
<.001
0.629
<.001


NCAM1




0.773
0.015


NCAPD3
0.574
<.001
0.463
<.001
0.679
<.001
0.640
<.001


NEXN
0.701
0.002
0.791
0.035
0.725
0.002
0.781
0.016


NFAT5
0.515
<.001
0.586
<.001
0.785
0.017


NFATC2
0.753
0.023


NFKBIA
0.778
0.037


NRG1
0.644
0.004
0.696
0.017
0.698
0.012


OAZ1
0.777
0.034
0.775
0.022


OLFML3
0.621
<.001
0.720
0.001
0.600
<.001
0.626
<.001


OMD
0.706
0.003


OR51E2
0.820
0.037
0.798
0.027


PAGE4
0.549
<.001
0.613
<.001
0.542
<.001
0.628
<.001


PCA3
0.684
<.001
0.635
<.001


PCDHGB7
0.790
0.045


0.725
0.002
0.664
<.001


PGF
0.753
0.017


PGR
0.740
0.021
0.728
0.018


PIK3CG
0.803
0.024


PLAUR
0.778
0.035


PLG






0.728
0.028


PPAP2B
0.575
<.001
0.629
<.001
0.643
<.001
0.699
<.001


PPP1R12A
0.647
<.001
0.683
0.002
0.782
0.023
0.784
0.030


PRIMA1
0.626
<.001
0.658
<.001
0.703
0.002
0.724
0.003


PRKCA
0.642
<.001
0.799
0.029
0.677
0.001
0.776
0.006


PRKCB
0.675
0.001


0.648
<.001
0.747
0.006


PROM1
0.603
0.018


0.659
0.014
0.493
0.008


PTCH1
0.680
0.001


0.753
0.010
0.789
0.018


PTEN
0.732
0.002
0.747
0.005
0.744
<.001
0.765
0.002


PTGS2
0.596
<.001
0.610
<.001


PTH1R
0.767
0.042


0.775
0.028
0.788
0.047


PTHLH
0.617
0.002
0.726
0.025
0.668
0.002
0.718
0.007


PTK2B
0.744
0.003
0.679
<.001
0.766
0.002
0.726
<.001


PTPN1
0.760
0.020
0.780
0.042


PYCARD


0.748
0.012


RAB27A


0.708
0.004


RAB30
0.755
0.008


RAGE


0.817
0.048


RAP1B




0.818
0.050


RARB
0.757
0.007
0.677
<.001
0.789
0.007
0.746
0.003


RASSF1
0.816
0.035


RHOB
0.725
0.009
0.676
0.001


0.793
0.039


RLN1


0.742
0.033


0.762
0.040


RND3
0.636
<.001
0.647
<.001


RNF114


0.749
0.011


SDC2




0.721
0.004


SDHC
0.725
0.003
0.727
0.006


SEMA3A
0.757
0.024
0.721
0.010


SERPINA3
0.716
0.008
0.660
0.001


SERPINB5
0.747
0.031
0.616
0.002


SH3RF2
0.577
<.001
0.458
<.001
0.702
<.001
0.640
<.001


SLC22A3
0.565
<.001
0.540
<.001
0.747
0.004
0.756
0.007


SMAD4
0.546
<.001
0.573
<.001
0.636
<.001
0.627
<.001


SMARCD1
0.718
<.001
0.775
0.017


SMO
0.793
0.029
0.754
0.021


0.718
0.003


SOD1
0.757
0.049
0.707
0.006


SORBS1
0.645
<.001
0.716
0.003
0.693
<.001
0.784
0.025


SPARCL1
0.821
0.028


0.829
0.014
0.781
0.030


SPDEF
0.778
<.001


SPINT1
0.732
0.009
0.842
0.026


SRC
0.647
<.001
0.632
<.001


SRD5A1




0.813
0.040


SRD5A2
0.489
<.001
0.533
<.001
0.544
<.001
0.611
<.001


ST5
0.713
0.002
0.783
0.011
0.725
<.001
0.827
0.025


STAT3
0.773
0.037
0.759
0.035


STAT5A
0.695
<.001
0.719
0.002
0.806
0.020
0.783
0.008


STAT5B
0.633
<.001
0.655
<.001


0.814
0.028


SUMO1
0.790
0.015


SVIL
0.659
<.001
0.713
0.002
0.711
0.002
0.779
0.010


TARP






0.800
0.040


TBP
0.761
0.010


TFF3
0.734
0.010
0.659
<.001


TGFB1I1
0.618
<.001
0.693
0.002
0.637
<.001
0.719
0.004


TGFB2
0.679
<.001
0.747
0.005
0.805
0.030


TGFB3




0.791
0.037


TGFBR2




0.778
0.035


TIMP3




0.751
0.011


TMPRSS2
0.745
0.003
0.708
<.001


TNF


0.670
0.013


0.697
0.015


TNFRSF10A
0.780
0.018
0.752
0.006
0.817
0.032


TNFRSF10B
0.576
<.001
0.655
<.001
0.766
0.004
0.778
0.002


TNFRSF18
0.648
0.016


0.759
0.034


TNFSF10
0.653
<.001
0.667
0.004


TP53


0.729
0.003


TP63
0.759
0.016
0.636
<.001
0.698
<.001
0.712
0.001


TPM1
0.778
0.048
0.743
0.012
0.783
0.032
0.811
0.046


TPM2
0.578
<.001
0.634
<.001
0.611
<.001
0.710
0.001


TPP2


0.775
0.037


TRAF3IP2
0.722
0.002
0.690
<.001
0.792
0.021
0.823
0.049


TRO
0.744
0.003
0.725
0.003
0.765
0.002
0.821
0.041


TUBB2A
0.639
<.001
0.625
<.001


TYMP
0.786
0.039


VCL
0.594
<.001
0.657
0.001
0.682
<.001


VEGFA


0.762
0.024


VEGFB
0.795
0.037


VIM
0.739
0.009


0.791
0.021


WDR19






0.776
0.015


WFDC1




0.746
<.001


YY1
0.683
0.001


0.728
0.002


ZFHX3
0.684
<.001
0.661
<.001
0.801
0.010
0.762
0.001


ZFP36
0.605
<.001
0.579
<.001


0.815
0.043


ZNF827
0.624
<.001
0.730
0.007
0.738
0.004









Tables 5A and 5B provide genes that were significantly associated (p<0.05), positively or negatively, with recurrence (cRFI, bRFI) after adjusting for AUA risk group in the primary and/or highest Gleason pattern. Increased expression of genes in Table 5A is negatively associated with good prognosis, while increased expression of genes in Table 5B is positively associated with good prognosis.









TABLE 5A







Gene significantly (p < 0.05) associated with cRFI or bRFI


after adjustment for AUA risk group in the primary Gleason pattern


or highest Gleason pattern with hazard ratio (HR) >1.0 (increased


expression negatively associated with good prognosis)












cRFI
cRFI
bRFI
bRFI



Primary
Highest
Primary
Highest



Pattern
Pattern
Pattern
Pattern















Official

p-

p-

p-

p-


Symbol
HR
value
HR
value
HR
value
HR
value


















AKR1C3
1.315
0.018
1.283
0.024






ALOX12






1.198
0.024


ANLN
1.406
<.001
1.519
<.001
1.485
<.001
1.632
<.001


AQP2
1.209
<.001
1.302
<.001


ASAP2


1.582
<.001
1.333
0.011
1.307
0.019


ASPN
1.872
<.001
1.741
<.001
1.638
<.001
1.691
<.001


ATP5E
1.309
0.042
1.369
0.012


BAG5


1.291
0.044


BAX




1.298
0.025
1.420
0.004


BGN
1.746
<.001
1.755
<.001


BIRC5
1.480
<.001
1.470
<.001
1.419
<.001
1.503
<.001


BMP6
1.536
<.001
1.815
<.001
1.294
0.033
1.429
0.001


BRCA2






1.184
0.037


BUB1
1.288
0.001
1.391
<.001
1.254
<.001
1.189
0.018


CACNA1D


1.313
0.029


CADPS




1.358
0.007
1.267
0.022


CASP3




1.251
0.037


CCNB1




1.261
0.033
1.318
0.005


CCNE2
1.345
0.005
1.438
<.001
1.606
<.001
1.426
<.001


CD276
1.482
0.002
1.668
<.001
1.451
<.001
1.302
0.011


CDC20
1.417
<.001
1.547
<.001
1.355
<.001
1.446
<.001


CDC6
1.340
0.011
1.265
0.046
1.367
0.002
1.272
0.025


CDH7
1.402
0.003
1.409
0.002


CDKN2B
1.553
<.001
1.746
<.001
1.340
0.014
1.369
0.006


CDKN2C
1.411
<.001
1.604
<.001
1.220
0.033


CDKN3
1.296
0.004


1.226
0.015


CENPF
1.434
0.002
1.570
<.001
1.633
<.001
1.610
<.001


CKS2
1.419
0.008
1.374
0.022
1.380
0.004


COL1A1
1.677
<.001
1.809
<.001
1.401
<.001
1.352
0.003


COL1A2


1.373
0.010


COL3A1
1.669
<.001
1.781
<.001
1.249
0.024
1.234
0.047


COL4A1
1.475
0.002
1.513
0.002


COL8A1
1.506
0.001
1.691
<.001


CRISP3
1.406
0.004
1.471
<.001


CTHRC1
1.426
0.009
1.793
<.001
1.311
0.019


CTNND2




1.462
<.001


DDIT4
1.478
0.003
1.783
<.001


1.236
0.039


DYNLL1
1.431
0.002




1.193
0.004


EIF3H




1.372
0.027


ENY2




1.325
0.023
1.270
0.017


ERG
1.303
0.041


EZH2


1.254
0.049


F2R
1.540
0.002
1.448
0.006
1.286
0.023


FADD
1.235
0.041
1.404
<.001


FAP
1.386
0.015
1.440
0.008
1.253
0.048


FASN
1.303
0.028


FCGR3A


1.439
0.011


1.262
0.045


FGF5
1.289
0.006


GNPTAB
1.290
0.033
1.369
0.022
1.285
0.018
1.355
0.008


GPR68


1.396
0.005


GREM1
1.341
0.022
1.502
0.003
1.366
0.006


HDAC1




1.329
0.016


HDAC9


1.378
0.012


HRAS
1.465
0.006


HSD17B4




1.442
<.001
1.245
0.028


IGFBP3


1.366
0.019


1.302
0.011


INHBA
2.000
<.001
2.336
<.001


1.486
0.002


JAG1
1.251
0.039


KCNN2
1.347
0.020
1.524
<.001
1.312
0.023
1.346
0.011


KHDRBS3


1.500
0.001
1.426
0.001
1.267
0.032


KIAA0196






1.272
0.028


KIF4A
1.199
0.022




1.262
0.004


KPNA2




1.252
0.016


LAMA3




1.332
0.004
1.356
0.010


LAMB1


1.317
0.028


LAMC1
1.516
0.003
1.302
0.040


1.397
0.007


LIMS1






1.261
0.027


LOX




1.265
0.016
1.372
0.001


LTBP2


1.477
0.002


LUM


1.321
0.020


MANF




1.647
<.001
1.284
0.027


MCM2




1.372
0.003
1.302
0.032


MCM3


1.269
0.047


MCM6


1.276
0.033


1.245
0.037


MELK


1.294
0.005
1.394
<.001


MKI67
1.253
0.028
1.246
0.029


MMP11
1.557
<.001
1.290
0.035
1.357
0.005


MRPL13






1.275
0.003


MSH2


1.355
0.009


MYBL2
1.497
<.001
1.509
<.001
1.304
0.003
1.292
0.007


MYO6


1.367
0.010


NDRG1
1.270
0.042




1.314
0.025


NEK2


1.338
0.020


1.269
0.026


NETO2
1.434
0.004
1.303
0.033
1.283
0.012


NOX4
1.413
0.006
1.308
0.037
1.444
<.001


NRIP3






1.171
0.026


NRP1


1.372
0.020


ODC1




1.450
<.001


OR51E1




1.559
<.001
1.413
0.008


PAK6






1.233
0.047


PATE1
1.262
<.001
1.375
<.001
1.143
0.034
1.191
0.036


PCNA




1.227
0.033
1.318
0.003


PEX10
1.517
<.001
1.500
0.001


PGD
1.363
0.028
1.316
0.039
1.652
<.001


PGK1


1.224
0.034


1.206
0.024


PIM1




1.205
0.042


PLA2G7




1.298
0.018
1.358
0.005


PLAU




1.242
0.032


PLK1


1.464
0.001
1.299
0.018
1.275
0.031


PLOD2




1.206
0.039
1.261
0.025


POSTN
1.558
0.001
1.356
0.022
1.363
0.009


PPP3CA




1.445
0.002


PSMD13




1.301
0.017
1.411
0.003


PTK2


1.318
0.031


PTK6
1.582
<.001
1.894
<.001
1.290
0.011
1.354
0.003


PTTG1
1.319
0.004
1.430
<.001
1.271
0.006
1.492
<.001


RAD21


1.278
0.028
1.435
0.004
1.326
0.008


RAF1




1.504
<.001


RALA
1.374
0.028


1.459
0.001


RGS7


1.203
0.031


RRM1
1.535
0.001
1.525
<.001


RRM2
1.302
0.003
1.197
0.047
1.342
<.001


SAT1
1.374
0.043


SDC1




1.344
0.011
1.473
0.008


SEC14L1






1.297
0.006


SESN3
1.337
0.002
1.495
<.001


1.223
0.038


SFRP4
1.610
<.001
1.542
0.002
1.370
0.009


SHMT2
1.567
0.001
1.522
<.001
1.485
0.001
1.370
<.001


SKIL




1.303
0.008


SLC25A21




1.287
0.020
1.306
0.017


SLC44A1


1.308
0.045


SNRPB2
1.304
0.018


SOX4




1.252
0.031


SPARC
1.445
0.004
1.706
<.001


1.269
0.026


SPP1


1.376
0.016


SQLE


1.417
0.007
1.262
0.035


STAT1






1.209
0.029


STMN1
1.315
0.029


SULF1


1.504
0.001


TAF2




1.252
0.048
1.301
0.019


TFDP1




1.395
0.010
1.424
0.002


THBS2
1.716
<.001
1.719
<.001


THY1
1.343
0.035
1.575
0.001


TK1




1.320
<.001
1.304
<.001


TOP2A
1.464
0.001
1.688
<.001
1.715
<.001
1.761
<.001


TPD52




1.286
0.006
1.258
0.023


TPX2
1.644
<.001
1.964
<.001
1.699
<.001
1.754
<.001


TYMS






1.315
0.014


UBE2C
1.270
0.019
1.558
<.001
1.205
0.027
1.333
<.001


UBE2G1
1.302
0.041


UBE2T
1.451
<.001


1.309
0.003


UGT2B15


1.222
0.025


UHRF1
1.370
0.003
1.520
<.001
1.247
0.020


VCPIP1


1.332
0.015


VTI1B




1.237
0.036


XIAP




1.486
0.008


ZMYND8


1.408
0.007


ZNF3






1.284
0.018


ZWINT
1.289
0.028
















TABLE 5B







Genes significantly (p < 0.05) associated with cRFI or bRFI


after adjustment for AUA risk group in the primary Gleason pattern


or highest Gleason pattern with hazard ratio (HR) <1.0 (increased


expression is positively associated with good prognosis)












cRFI
cRFI
bRFI
bRFI



Primary
Highest
Primary
Highest



Pattern
Pattern
Pattern
Pattern















Official

p-

p-

p-

p-


Symbol
HR
value
HR
value
HR
value
HR
value


















AAMP
0.535
<.001
0.581
<.001
0.700
0.002
0.759
0.006


ABCA5
0.798
0.007
0.745
0.002


0.841
0.037


ABCC1


0.800
0.044


ABCC4


0.787
0.022


ABHD2


0.768
0.023


ACOX2
0.678
0.002
0.749
0.027
0.759
0.004


ADH5
0.645
<.001
0.672
0.001


AGTR1
0.780
0.030


AKAP1
0.815
0.045
0.758
<.001


AKT1


0.732
0.010


ALDH1A2
0.646
<.001
0.548
<.001
0.671
<.001
0.713
0.001


ANPEP
0.641
<.001
0.535
<.001


ANXA2
0.772
0.035


0.804
0.046


ATXN1
0.654
<.001
0.754
0.020
0.797
0.017


AURKA


0.788
0.030


AXIN2
0.744
0.005
0.655
<.001


AZGP1
0.656
<.001
0.676
<.001
0.754
0.001
0.791
0.004


BAD


0.700
0.004


BIN1
0.650
<.001
0.764
0.013
0.803
0.015


BTG3




0.836
0.025


BTRC
0.730
0.005


C7
0.617
<.001
0.680
<.001
0.667
<.001
0.755
0.005


CADM1
0.559
<.001
0.566
<.001
0.772
0.020
0.802
0.046


CASP1
0.781
0.030
0.779
0.021
0.818
0.027
0.828
0.036


CAV1




0.775
0.034


CAV2


0.677
0.019


CCL2


0.752
0.023


CCNH
0.679
<.001
0.682
<.001


CD164
0.721
0.002
0.724
0.005


CD1A




0.710
0.014


CD44
0.591
<.001
0.642
<.001


CD82
0.779
0.021
0.771
0.024


CDC25B
0.778
0.035


0.818
0.023


CDK14
0.788
0.011


CDK3
0.752
0.012


0.779
0.005
0.841
0.020


CDKN1A
0.770
0.049
0.712
0.014


CDKN1C
0.684
<.001


0.697
<.001


CHN1
0.772
0.031


COL6A1
0.648
<.001
0.807
0.046
0.768
0.004


CSF1
0.621
<.001
0.671
0.001


CTNNB1




0.905
0.008


CTSB
0.754
0.030
0.716
0.011
0.756
0.014


CXCL12
0.641
<.001
0.796
0.038
0.708
<.001


CYP3A5
0.503
<.001
0.528
<.001
0.791
0.028


CYR61
0.639
0.001
0.659
0.001


0.797
0.048


DARC




0.707
0.004


DDR2




0.750
0.011


DES
0.657
<.001
0.758
0.022
0.699
<.001


DHRS9
0.625
0.002


DHX9
0.846
<.001


DIAPH1
0.682
0.007
0.723
0.008
0.780
0.026


DLC1
0.703
0.005
0.702
0.008


DLGAP1
0.703
0.008
0.636
<.001


DNM3
0.701
0.001


0.817
0.042


DPP4
0.686
<.001
0.716
0.001


DPT
0.636
<.001
0.633
<.001
0.709
0.006
0.773
0.024


DUSP1
0.683
0.006
0.679
0.003


DUSP6
0.694
0.003
0.605
<.001


EDN1




0.773
0.031


EDNRA
0.716
0.007


EGR1
0.575
<.001
0.575
<.001


0.771
0.014


EGR3
0.633
0.002
0.643
<.001


0.792
0.025


EIF4E
0.722
0.002


ELK4
0.710
0.009
0.759
0.027


ENPP2
0.786
0.039


EPHA2


0.593
0.001


EPHA3
0.739
0.006


0.802
0.020


ERBB2


0.753
0.007


ERBB3
0.753
0.009
0.753
0.015


ERCC1






0.727
0.001


EREG




0.722
0.012
0.769
0.040


ESR1


0.742
0.015


FABP5
0.756
0.032


FAM107A
0.524
<.001
0.579
<.001
0.688
<.001
0.699
0.001


FAM13C
0.639
<.001
0.601
<.001
0.810
0.019
0.709
<.001


FAS
0.770
0.033


FASLG
0.716
0.028
0.683
0.017


FGF10




0.798
0.045


FGF17


0.718
0.018
0.793
0.024
0.790
0.024


FGFR2
0.739
0.007
0.783
0.038
0.740
0.004


FGFR4


0.746
0.050


FKBP5


0.689
0.003


FLNA
0.701
0.006
0.766
0.029
0.768
0.037


FLNC




0.755
<.001
0.820
0.022


FLT1


0.729
0.008


FOS
0.572
<.001
0.536
<.001


0.750
0.005


FOXQ1
0.778
0.033


0.820
0.018


FYN
0.708
0.006


GADD45B
0.577
<.001
0.589
<.001


GDF15
0.757
0.013
0.743
0.006


GHR


0.712
0.004


0.679
0.001


GNRH1




0.791
0.048


GPM6B
0.675
<.001
0.660
<.001
0.735
<.001
0.823
0.049


GSK3B
0.783
0.042


GSN
0.587
<.001
0.705
0.002
0.745
0.004
0.796
0.021


GSTM1
0.686
0.001
0.631
<.001
0.807
0.018


GSTM2
0.607
<.001
0.683
<.001
0.679
<.001
0.800
0.027


HIRIP3
0.692
<.001


0.782
0.007


HK1
0.724
0.002
0.718
0.002


HLF
0.580
<.001
0.571
<.001
0.759
0.008
0.750
0.004


HNF1B


0.669
<.001


HPS1
0.764
0.008


HSD17B10
0.802
0.045


HSD17B2




0.723
0.048


HSD3B2






0.709
0.010


HSP90AB1
0.780
0.034


0.809
0.041


HSPA5


0.738
0.017


HSPB1
0.770
0.006
0.801
0.032


HSPB2




0.788
0.035


ICAM1
0.728
0.015
0.716
0.010


IER3
0.735
0.016
0.637
<.001


0.802
0.035


IFIT1
0.647
<.001
0.755
0.029


IGF1
0.675
<.001
0.603
<.001
0.762
0.006
0.770
0.030


IGF2




0.761
0.011


IGFBP2
0.601
<.001
0.605
<.001


IGFBP5
0.702
<.001


IGFBP6
0.628
<.001


0.726
0.003


IL1B
0.676
0.002
0.716
0.004


IL6
0.688
0.005
0.766
0.044


IL6R


0.786
0.036


IL6ST
0.618
<.001
0.639
<.001
0.785
0.027
0.813
0.042


IL8
0.635
<.001
0.628
<.001


ILK
0.734
0.018
0.753
0.026


ING5
0.684
<.001
0.681
<.001
0.756
0.006


ITGA4
0.778
0.040


ITGA5
0.762
0.026


ITGA6


0.811
0.038


ITGA7
0.592
<.001
0.715
0.006
0.710
0.002


ITGAD


0.576
0.006


ITGB4


0.693
0.003


ITPR1
0.789
0.029


JUN
0.572
<.001
0.581
<.001


0.777
0.019


JUNB
0.732
0.030
0.707
0.016


KCTD12
0.758
0.036


KIT




0.691
0.009
0.738
0.028


KLC1
0.741
0.024


0.781
0.024


KLF6
0.733
0.018
0.727
0.014


KLK1


0.744
0.028


KLK2
0.697
0.002
0.679
<.001


KLK3
0.725
<.001
0.715
<.001


0.841
0.023


KRT15
0.660
<.001
0.577
<.001
0.750
0.002


KRT18
0.623
<.001
0.642
<.001
0.702
<.001
0.760
0.006


KRT2




0.740
0.044


KRT5
0.674
<.001
0.588
<.001
0.769
0.005


KRT8
0.768
0.034


L1CAM
0.737
0.036


LAG3
0.711
0.013
0.748
0.029


LAMA4




0.649
0.009


LAMB3
0.709
0.002
0.684
0.006
0.768
0.006


LGALS3
0.652
<.001
0.752
0.015
0.805
0.028


LIG3
0.728
0.016
0.667
<.001


LRP1






0.811
0.043


MDM2


0.788
0.033


MGMT
0.645
<.001
0.766
0.015


MICA
0.796
0.043
0.676
<.001


MPPED2
0.675
<.001
0.616
<.001
0.750
0.006


MRC1






0.788
0.028


MTSS1
0.654
<.001


0.793
0.036


MYBPC1
0.706
<.001
0.534
<.001
0.773
0.004
0.692
<.001


NCAPD3
0.658
<.001
0.566
<.001
0.753
0.011
0.733
0.009


NCOR1


0.838
0.045


NEXN
0.748
0.025


0.785
0.020


NFAT5
0.531
<.001
0.626
<.001


NFATC2


0.759
0.024


OAZ1


0.766
0.024


OLFML3
0.648
<.001
0.748
0.005
0.639
<.001
0.675
<.001


OR51E2
0.823
0.034


PAGE4
0.599
<.001
0.698
0.002
0.606
<.001
0.726
<.001


PCA3
0.705
<.001
0.647
<.001


PCDHGB7






0.712
<.001


PGF
0.790
0.039


PLG






0.764
0.048


PLP2


0.766
0.037


PPAP2B
0.589
<.001
0.647
<.001
0.691
<.001
0.765
0.013


PPP1R12A
0.673
0.001
0.677
0.001


0.807
0.045


PRIMA1
0.622
<.001
0.712
0.008
0.740
0.013


PRKCA
0.637
<.001


0.694
<.001


PRKCB
0.741
0.020


0.664
<.001


PROM1
0.599
0.017
0.527
0.042
0.610
0.006
0.420
0.002


PTCH1
0.752
0.027


0.762
0.011


PTEN
0.779
0.011
0.802
0.030
0.788
0.009


PTGS2
0.639
<.001
0.606
<.001


PTHLH
0.632
0.007
0.739
0.043
0.654
0.002
0.740
0.015


PTK2B


0.775
0.019
0.831
0.028
0.810
0.017


PTPN1
0.721
0.012
0.737
0.024


PYCARD


0.702
0.005


RAB27A


0.736
0.008


RAB30
0.761
0.011


RARB


0.746
0.010


RASSF1
0.805
0.043


RHOB
0.755
0.029
0.672
0.001


RLN1
0.742
0.036
0.740
0.036


RND3
0.607
<.001
0.633
<.001


RNF114
0.782
0.041
0.747
0.013


SDC2




0.714
0.002


SDHC
0.698
<.001
0.762
0.029


SERPINA3


0.752
0.030


SERPINB5


0.669
0.014


SH3RF2
0.705
0.012
0.568
<.001


0.755
0.016


SLC22A3
0.650
<.001
0.582
<.001


SMAD4
0.636
<.001
0.684
0.002
0.741
0.007
0.738
0.007


SMARCD1
0.757
0.001


SMO
0.790
0.049




0.766
0.013


SOD1
0.741
0.037
0.713
0.007


SORBS1
0.684
0.003
0.732
0.008
0.788
0.049


SPDEF
0.840
0.012


SPINT1


0.837
0.048


SRC
0.674
<.001
0.671
<.001


SRD5A2
0.553
<.001
0.588
<.001
0.618
<.001
0.701
<.001


ST5
0.747
0.012
0.761
0.010
0.780
0.016
0.832
0.041


STAT3


0.735
0.020


STAT5A
0.731
0.005
0.743
0.009


0.817
0.027


STAT5B
0.708
<.001
0.696
0.001


SUMO1
0.815
0.037


SVIL
0.689
0.003
0.739
0.008
0.761
0.011


TBP
0.792
0.037


TFF3
0.719
0.007
0.664
0.001


TGFB1I1
0.676
0.003
0.707
0.007
0.709
0.005
0.777
0.035


TGFB2
0.741
0.010
0.785
0.017


TGFBR2




0.759
0.022


TIMP3




0.785
0.037


TMPRSS2
0.780
0.012
0.742
<.001


TNF


0.654
0.007


0.682
0.006


TNFRSF10B
0.623
<.001
0.681
<.001
0.801
0.018
0.815
0.019


TNFSF10
0.721
0.004


TP53


0.759
0.011


TP63


0.737
0.020
0.754
0.007


TPM2
0.609
<.001
0.671
<.001
0.673
<.001
0.789
0.031


TRAF3IP2
0.795
0.041
0.727
0.005


TRO
0.793
0.033
0.768
0.027
0.814
0.023


TUBB2A
0.626
<.001
0.590
<.001


VCL
0.613
<.001
0.701
0.011


VIM
0.716
0.005


0.792
0.025


WFDC1




0.824
0.029


YY1
0.668
<.001
0.787
0.014
0.716
0.001
0.819
0.011


ZFHX3
0.732
<.001
0.709
<.001


ZFP36
0.656
0.001
0.609
<.001


0.818
0.045


ZNF827
0.750
0.022









Tables 6A and 6B provide genes that were significantly associated (p<0.05), positively or negatively, with recurrence (cRFI, bRFI) after adjusting for Gleason pattern in the primary and/or highest Gleason pattern. Increased expression of genes in Table 6A is negatively associated with good prognosis, while increased expression of gene in Table 6B is positively associated with good prognosis.









TABLE 6A







Genes significantly (p < 0.05) associated with cRFI or bRFI


after adjustment for Gleason pattern in the primary Gleason pattern


or highest Gleason pattern with a hazard ratio (HR) >1.0 (increased


expression is negatively associated with good prognosis)












cRFI
cRFI
bRFI
bRFI



Primary
Highest
Primary
Highest



Pattern
Pattern
Pattern
Pattern















Official

p-

p-

p-

p-


Symbol
HR
value
HR
value
HR
value
HR
value


















AKR1C3
1.258
0.039








ANLN
1.292
0.023


1.449
<.001
1.420
0.001


AQP2
1.178
0.008
1.287
<.001


ASAP2


1.396
0.015


ASPN
1.809
<.001
1.508
0.009
1.506
0.002
1.438
0.002


BAG5


1.367
0.012


BAX






1.234
0.044


BGN
1.465
0.009
1.342
0.046


BIRC5
1.338
0.008


1.364
0.004
1.279
0.006


BMP6
1.369
0.015
1.518
0.002


BUB1
1.239
0.024
1.227
0.001
1.236
0.004


CACNA1D


1.337
0.025


CADPS




1.280
0.029


CCNE2


1.256
0.043
1.577
<.001
1.324
0.001


CD276
1.320
0.029
1.396
0.007
1.279
0.033


CDC20
1.298
0.016
1.334
0.002
1.257
0.032
1.279
0.003


CDH7
1.258
0.047
1.338
0.013


CDKN2B
1.342
0.032
1.488
0.009


CDKN2C
1.344
0.010
1.450
<.001


CDKN3
1.284
0.012


CENPF
1.289
0.048


1.498
0.001
1.344
0.010


COL1A1
1.481
0.003
1.506
0.002


COL3A1
1.459
0.004
1.430
0.013


COL4A1
1.396
0.015


COL8A1
1.413
0.008


CRISP3
1.346
0.012
1.310
0.025


CTHRC1


1.588
0.002


DDIT4
1.363
0.020
1.379
0.028


DICER1






1.294
0.008


ENY2




1.269
0.024


FADD


1.307
0.010


FAS






1.243
0.025


FGF5
1.328
0.002


GNPTAB






1.246
0.037


GREM1
1.332
0.024
1.377
0.013
1.373
0.011


HDAC1




1.301
0.018
1.237
0.021


HSD17B4






1.277
0.011


IFN-γ




1.219
0.048


IMMT




1.230
0.049


INHBA
1.866
<.001
1.944
<.001


JAG1


1.298
0.030


KCNN2


1.378
0.020


1.282
0.017


KHDRBS3


1.353
0.029
1.305
0.014


LAMA3




1.344
<.001
1.232
0.048


LAMC1
1.396
0.015


LIMS1






1.337
0.004


LOX




1.355
0.001
1.341
0.002


LTBP2


1.304
0.045


MAGEA4
1.215
0.024


MANF




1.460
<.001


MCM6


1.287
0.042


1.214
0.046


MELK




1.329
0.002


MMP11
1.281
0.050


MRPL13






1.266
0.021


MYBL2
1.453
<.001


1.274
0.019


MYC




1.265
0.037


MYO6


1.278
0.047


NETO2
1.322
0.022


NFKB1






1.255
0.032


NOX4




1.266
0.041


OR51E1




1.566
<.001
1.428
0.003


PATE1
1.242
<.001
1.347
<.001


1.177
0.011


PCNA






1.251
0.025


PEX10


1.302
0.028


PGD


1.335
0.045
1.379
0.014
1.274
0.025


PIM1




1.254
0.019


PLA2G7




1.289
0.025
1.250
0.031


PLAU




1.267
0.031


PSMD13






1.333
0.005


PTK6
1.432
<.001
1.577
<.001
1.223
0.040


PTTG1




1.279
0.013
1.308
0.006


RAGE






1.329
0.011


RALA
1.363
0.044


1.471
0.003


RGS7
1.120
0.040
1.173
0.031


RRM1
1.490
0.004
1.527
<.001


SESN3


1.353
0.017


SFRP4
1.370
0.025


SHMT2
1.460
0.008
1.410
0.006
1.407
0.008
1.345
<.001


SKIL




1.307
0.025


SLC25A21




1.414
0.002
1.330
0.004


SMARCC2




1.219
0.049


SPARC


1.431
0.005


TFDP1




1.283
0.046
1.345
0.003


THBS2
1.456
0.005
1.431
0.012


TK1




1.214
0.015
1.222
0.006


TOP2A


1.367
0.018
1.518
0.001
1.480
<.001


TPX2
1.513
0.001
1.607
<.001
1.588
<.001
1.481
<.001


UBE2T
1.409
0.002


1.285
0.018


UGT2B15


1.216
0.009


1.182
0.021


XIAP




1.336
0.037
1.194
0.043
















TABLE 6B







Genes significantly (p < 0.05) associated with cRFI or bRFI


after adjustment for Gleason pattern in the primary Gleason pattern


or highest Gleason pattern with hazard ration (HR) <1.0 (increased


expression is positively associated with good prognosis)












cRFI
cRFI
bRFI
bRFI



Primary
Highest
Primary
Highest



Pattern
Pattern
Pattern
Pattern















Official

p-

p-

p-

p-


Symbol
HR
value
HR
value
HR
value
HR
value


















AAMP
0.660
0.001
0.675
<.001


0.836
0.045


ABCA5
0.807
0.014
0.737
<.001


0.845
0.030


ABCC1
0.780
0.038
0.794
0.015


ABCG2






0.807
0.035


ABHD2


0.720
0.002


ADH5
0.750
0.034


AKAP1


0.721
<.001


ALDH1A2
0.735
0.009
0.592
<.001
0.756
0.007
0.781
0.021


ANGPT2




0.741
0.036


ANPEP
0.637
<.001
0.536
<.001


ANXA2


0.762
0.044


APOE


0.707
0.013


APRT


0.727
0.004


0.771
0.006


ATXN1
0.725
0.013


AURKA
0.784
0.037
0.735
0.003


AXIN2
0.744
0.004
0.630
<.001


AZGP1
0.672
<.001
0.720
<.001
0.764
0.001


BAD


0.687
<.001


BAK1


0.783
0.014


BCL2
0.777
0.033
0.772
0.036


BIK


0.768
0.040


BIN1
0.691
<.001


BTRC


0.776
0.029


C7
0.707
0.004


0.791
0.024


CADM1
0.587
<.001
0.593
<.001


CASP1
0.773
0.023


0.820
0.025


CAV1




0.753
0.014


CAV2


0.627
0.009


0.682
0.003


CCL2


0.740
0.019


CCNH
0.736
0.003


CCR1


0.755
0.022


CD1A




0.740
0.025


CD44
0.590
<.001
0.637
<.001


CD68
0.757
0.026


CD82
0.778
0.012
0.759
0.016


CDC25B
0.760
0.021


CDK3
0.762
0.024


0.774
0.007


CDKN1A


0.714
0.015


CDKN1C
0.738
0.014


0.768
0.021


COL6A1
0.690
<.001
0.805
0.048


CSF1
0.675
0.002
0.779
0.036


CSK




0.825
0.004


CTNNB1
0.884
0.045


0.888
0.027


CTSB
0.740
0.017
0.676
0.003
0.755
0.010


CTSD
0.673
0.031
0.722
0.009


CTSK




0.804
0.034


CTSL2


0.748
0.019


CXCL12
0.731
0.017


CYP3A5
0.523
<.001
0.518
<.001


CYR61
0.744
0.041


DAP




0.755
0.011


DARC




0.763
0.029


DDR2






0.813
0.041


DES
0.743
0.020


DHRS9
0.606
0.001


DHX9
0.916
0.021


DIAPH1
0.749
0.036
0.688
0.003


DLGAP1
0.758
0.042
0.676
0.002


DLL4






0.779
0.010


DNM3
0.732
0.007


DPP4
0.732
0.004
0.750
0.014


DPT


0.704
0.014


DUSP6
0.662
<.001
0.665
0.001


EBNA1BP2






0.828
0.019


EDNRA
0.782
0.048


EGF


0.712
0.023


EGR1
0.678
0.004
0.725
0.028


EGR3
0.680
0.006
0.738
0.027


EIF2C2


0.789
0.032


EIF2S3






0.759
0.012


ELK4
0.745
0.024


EPHA2


0.661
0.007


EPHA3
0.781
0.026




0.828
0.037


ERBB2
0.791
0.022
0.760
0.014
0.789
0.006


ERBB3


0.757
0.009


ERCC1






0.760
0.008


ESR1


0.742
0.014


ESR2


0.711
0.038


ETV4


0.714
0.035


FAM107A
0.619
<.001
0.710
0.011


0.781
0.019


FAM13C
0.664
<.001
0.686
<.001


0.813
0.014


FAM49B
0.670
<.001
0.793
0.014
0.815
0.044
0.843
0.047


FASLG


0.616
0.004


0.813
0.038


FGF10
0.751
0.028


0.766
0.019


FGF17


0.718
0.031
0.765
0.019


FGFR2
0.740
0.009


0.738
0.002


FKBP5


0.749
0.031


FLNC




0.826
0.029


FLT1
0.779
0.045
0.729
0.006


FLT4






0.815
0.024


FOS
0.657
0.003
0.656
0.004


FSD1






0.763
0.017


FYN
0.716
0.004


0.792
0.024


GADD45B
0.692
0.009
0.697
0.010


GDF15


0.767
0.016


GHR


0.701
0.002
0.704
0.002
0.640
<.001


GNRH1




0.778
0.039


GPM6B
0.749
0.010
0.750
0.010
0.827
0.037


GRB7


0.696
0.005


GSK3B
0.726
0.005


GSN
0.660
<.001
0.752
0.019


GSTM1
0.710
0.004
0.676
<.001


GSTM2
0.643
<.001


0.767
0.015


HK1
0.798
0.035


HLA-G


0.660
0.013


HLF
0.644
<.001
0.727
0.011


HNF1B


0.755
0.013


HPS1
0.756
0.006
0.791
0.043


HSD17B10
0.737
0.006


HSD3B2






0.674
0.003


HSP90AB1


0.763
0.015


HSPB1
0.787
0.020
0.778
0.015


HSPE1


0.794
0.039


ICAM1


0.664
0.003


IER3
0.699
0.003
0.693
0.010


IFIT1
0.621
<.001
0.733
0.027


IGF1
0.751
0.017
0.655
<.001


IGFBP2
0.599
<.001
0.605
<.001


IGFBP5
0.745
0.007
0.775
0.035


IGFBP6
0.671
0.005


IL1B
0.732
0.016
0.717
0.005


IL6
0.763
0.040


IL6R


0.764
0.022


IL6ST
0.647
<.001
0.739
0.012


IL8
0.711
0.015
0.694
0.006


ING5
0.729
0.007
0.727
0.003


ITGA4


0.755
0.009


ITGA5
0.743
0.018
0.770
0.034


ITGA6
0.816
0.044
0.772
0.006


ITGA7
0.680
0.004


ITGAD


0.590
0.009


ITGB4
0.663
<.001
0.658
<.001
0.759
0.004


JUN
0.656
0.004
0.639
0.003


KIAA0196
0.737
0.011


KIT




0.730
0.021
0.724
0.008


KLC1
0.755
0.035


KLK1
0.706
0.008


KLK2
0.740
0.016
0.723
0.001


KLK3
0.765
0.006
0.740
0.002


KRT1






0.774
0.042


KRT15
0.658
<.001
0.632
<.001
0.764
0.008


KRT18
0.703
0.004
0.672
<.001
0.779
0.015
0.811
0.032


KRT5
0.686
<.001
0.629
<.001
0.802
0.023


KRT8
0.763
0.034
0.771
0.022


L1CAM
0.748
0.041


LAG3
0.693
0.008
0.724
0.020


LAMA4




0.689
0.039


LAMB3
0.667
<.001
0.645
<.001
0.773
0.006


LGALS3
0.666
<.001


0.822
0.047


LIG3


0.723
0.008


LRP1
0.777
0.041




0.769
0.007


MDM2


0.688
<.001


MET
0.709
0.010
0.736
0.028
0.715
0.003


MGMT
0.751
0.031


MICA


0.705
0.002


MPPED2
0.690
0.001
0.657
<.001
0.708
<.001


MRC1






0.812
0.049


MSH6






0.860
0.049


MTSS1
0.686
0.001


MVP
0.798
0.034
0.761
0.033


MYBPC1
0.754
0.009
0.615
<.001


NCAPD3
0.739
0.021
0.664
0.005


NEXN


0.798
0.037


NFAT5
0.596
<.001
0.732
0.005


NFATC2
0.743
0.016
0.792
0.047


NOS3
0.730
0.012
0.757
0.032


OAZ1
0.732
0.020
0.705
0.002


OCLN




0.746
0.043
0.784
0.025


OLFML3
0.711
0.002


0.709
<.001
0.720
0.001


OMD
0.729
0.011
0.762
0.033


OSM






0.813
0.028


PAGE4
0.668
0.003
0.725
0.004
0.688
<.001
0.766
0.005


PCA3
0.736
0.001
0.691
<.001


PCDHGB7




0.769
0.019
0.789
0.022


PIK3CA


0.768
0.010


PIK3CG
0.792
0.019
0.758
0.009


PLG






0.682
0.009


PPAP2B
0.688
0.005


0.815
0.046


PPP1R12A
0.731
0.026
0.775
0.042


PRIMA1
0.697
0.004
0.757
0.032


PRKCA
0.743
0.019


PRKCB
0.756
0.036


0.767
0.029


PROM1
0.640
0.027


0.699
0.034
0.503
0.013


PTCH1
0.730
0.018


PTEN
0.779
0.015


0.789
0.007


PTGS2
0.644
<.001
0.703
0.007


PTHLH
0.655
0.012
0.706
0.038
0.634
0.001
0.665
0.003


PTK2B
0.779
0.023
0.702
0.002
0.806
0.015
0.806
0.024


PYCARD


0.659
0.001


RAB30
0.779
0.033
0.754
0.014


RARB
0.787
0.043
0.742
0.009


RASSF1
0.754
0.005


RHOA


0.796
0.041


0.819
0.048


RND3
0.721
0.011
0.743
0.028


SDC1


0.707
0.011


SDC2




0.745
0.002


SDHC
0.750
0.013


SERPINA3


0.730
0.016


SERPINB5


0.715
0.041


SH3RF2


0.698
0.025


SIPA1L1


0.796
0.014


0.820
0.004


SLC22A3
0.724
0.014
0.700
0.008


SMAD4
0.668
0.002


0.771
0.016


SMARCD1
0.726
<.001
0.700
0.001


0.812
0.028


SMO






0.785
0.027


SOD1


0.735
0.012


SORBS1


0.785
0.039


SPDEF
0.818
0.002


SPINT1
0.761
0.024
0.773
0.006


SRC
0.709
<.001
0.690
<.001


SRD5A1
0.746
0.010
0.767
0.024
0.745
0.003


SRD5A2
0.575
<.001
0.669
0.001
0.674
<.001
0.781
0.018


ST5
0.774
0.027


STAT1
0.694
0.004


STAT5A
0.719
0.004
0.765
0.006


0.834
0.049


STAT5B
0.704
0.001
0.744
0.012


SUMO1
0.777
0.014


SVIL


0.771
0.026


TBP
0.774
0.031


TFF3
0.742
0.015
0.719
0.024


TGFB1I1
0.763
0.048


TGFB2
0.729
0.011
0.758
0.002


TMPRSS2
0.810
0.034
0.692
<.001


TNF






0.727
0.022


TNFRSF10A


0.805
0.025


TNFRSF10B
0.581
<.001
0.738
0.014
0.809
0.034


TNFSF10
0.751
0.015
0.700
<.001


TP63


0.723
0.018
0.736
0.003


TPM2
0.708
0.010
0.734
0.014


TRAF3IP2


0.718
0.004


TRO


0.742
0.012


TSTA3


0.774
0.028


TUBB2A
0.659
<.001
0.650
<.001


TYMP
0.695
0.002


VCL
0.683
0.008


VIM
0.778
0.040


WDR19






0.775
0.014


XRCC5
0.793
0.042


YY1
0.751
0.025




0.810
0.008


ZFHX3
0.760
0.005
0.726
0.001


ZFP36
0.707
0.008
0.672
0.003


ZNF827
0.667
0.002


0.792
0.039









Tables 7A and 7B provide genes significantly associated (p<0.05), positively or negatively, with clinical recurrence (cRFI) in negative TMPRSS fusion specimens in the primary or highest Gleason pattern specimen. Increased expression of genes in Table 7A is negatively associated with good prognosis, while increased expression of genes in Table 7B is positively associated with good prognosis.









TABLE 7A







Genes significantly (p < 0.05) associated with cRFI for


TMPRSS2-ERG fusion negative in the primary Gleason pattern


or highest Gleason pattern with hazard ratio (HR) >1.0


(increased expression is negatively associated with good prognosis)













Official
Primary Pattern

Highest Pattern














Symbol
HR
p-value
HR
p-value

















ANLN
1.42
0.012
1.36
0.004



AQP2
1.25
0.033



ASPN
2.48
<.001
1.65
<.001



BGN
2.04
<.001
1.45
0.007



BIRC5
1.59
<.001
1.37
0.005



BMP6
1.95
<.001
1.43
0.012



BMPR1B
1.93
0.002



BUB1
1.51
<.001
1.35
<.001



CCNE2
1.48
0.007



CD276
1.93
<.001
1.79
<.001



CDC20
1.49
0.004
1.47
<.001



CDC6
1.52
0.009
1.34
0.022



CDKN2B
1.54
0.008
1.55
0.003



CDKN2C
1.55
0.003
1.57
<.001



CDKN3
1.34
0.026



CENPF
1.63
0.002
1.33
0.018



CKS2
1.50
0.026
1.43
0.009



CLTC


1.46
0.014



COL1A1
1.98
<.001
1.50
0.002



COL3A1
2.03
<.001
1.42
0.007



COL4A1
1.81
0.002



COL8A1
1.63
0.004
1.60
0.001



CRISP3


1.31
0.016



CTHRC1
1.67
0.006
1.48
0.005



DDIT4
1.49
0.037



ENY2


1.29
0.039



EZH2


1.35
0.016



F2R
1.46
0.034
1.46
0.007



FAP
1.66
0.006
1.38
0.012



FGF5


1.46
0.001



GNPTAB
1.49
0.013



HSD17B4
1.34
0.039
1.44
0.002



INHBA
2.92
<.001
2.19
<.001



JAG1
1.38
0.042



KCNN2
1.71
0.002
1.73
<.001



KHDRBS3


1.46
0.015



KLK14
1.28
0.034



KPNA2
1.63
0.016



LAMC1
1.41
0.044



LOX


1.29
0.036



LTBP2
1.57
0.017



MELK
1.38
0.029



MMP11
1.69
0.002
1.42
0.004



MYBL2
1.78
<.001
1.49
<.001



NETO2
2.01
<.001
1.43
0.007



NME1


1.38
0.017



PATE1
1.43
<.001
1.24
0.005



PEX10
1.46
0.030



PGD
1.77
0.002



POSTN
1.49
0.037
1.34
0.026



PPFIA3
1.51
0.012



PPP3CA
1.46
0.033
1.34
0.020



PTK6
1.69
<.001
1.56
<.001



PTTG1
1.35
0.028



RAD51
1.32
0.048



RALBP1


1.29
0.042



RGS7
1.18
0.012
1.32
0.009



RRM1
1.57
0.016
1.32
0.041



RRM2
1.30
0.039



SAT1
1.61
0.007



SESN3
1.76
<.001
1.36
0.020



SFRP4
1.55
0.016
1.48
0.002



SHMT2
2.23
<.001
1.59
<.001



SPARC
1.54
0.014



SQLE
1.86
0.003



STMN1
2.14
<.001



THBS2
1.79
<.001
1.43
0.009



TK1
1.30
0.026



TOP2A
2.03
<.001
1.47
0.003



TPD52
1.63
0.003



TPX2
2.11
<.001
1.63
<.001



TRAP1
1.46
0.023



UBE2C
1.57
<.001
1.58
<.001



UBE2G1
1.56
0.008



UBE2T
1.75
<.001



UGT2B15
1.31
0.036
1.33
0.004



UHRF1
1.46
0.007



UTP23
1.52
0.017

















TABLE 7B







Genes significantly (p < 0.05) associated with cRFI for


TMPRSS2-ERG fusion negative in the primary Gleason pattern


or highest Gleason pattern with hazard ratio (HR) <1.0


(increased expression is positively associated with good prognosis)













Official
Primary Pattern

Highest Pattern














Symbol
HR
p-value
HR
p-value

















AAMP
0.56
<.001
0.65
0.001



ABCA5
0.64
<.001
0.71
<.001



ABCB1
0.62
0.004



ABCC3


0.74
0.031



ABCG2


0.78
0.050



ABHD2
0.71
0.035



ACOX2
0.54
<.001
0.71
0.007



ADH5
0.49
<.001
0.61
<.001



AKAP1
0.77
0.031
0.76
0.013



AKR1C1
0.65
0.006
0.78
0.044



AKT1


0.72
0.020



AKT3
0.75
<.001



ALDH1A2
0.53
<.001
0.60
<.001



AMPD3
0.62
<.001
0.78
0.028



ANPEP
0.54
<.001
0.61
<.001



ANXA2
0.63
0.008
0.74
0.016



ARHGAP29
0.67
0.005
0.77
0.016



ARHGDIB
0.64
0.013



ATP5J
0.57
0.050



ATXN1
0.61
0.004
0.77
0.043



AXIN2
0.51
<.001
0.62
<.001



AZGP1
0.61
<.001
0.64
<.001



BCL2
0.64
0.004
0.75
0.029



BIN1
0.52
<.001
0.74
0.010



BTG3
0.75
0.032
0.75
0.010



BTRC
0.69
0.011



C7
0.51
<.001
0.67
<.001



CADM1
0.49
<.001
0.76
0.034



CASP1
0.71
0.010
0.74
0.007



CAV1


0.73
0.015



CCL5
0.67
0.018
0.67
0.003



CCNH
0.63
<.001
0.75
0.004



CCR1


0.77
0.032



CD164
0.52
<.001
0.63
<.001



CD44
0.53
<.001
0.74
0.014



CDH10
0.69
0.040



CDH18
0.40
0.011



CDK14
0.75
0.013



CDK2


0.81
0.031



CDK3
0.73
0.022



CDKN1A
0.68
0.038



CDKN1C
0.62
0.003
0.72
0.005



COL6A1
0.54
<.001
0.70
0.004



COL6A3
0.64
0.004



CSF1
0.56
<.001
0.78
0.047



CSRP1
0.40
<.001
0.66
0.002



CTGF
0.66
0.015
0.74
0.027



CTNNB1
0.69
0.043



CTSB
0.60
0.002
0.71
0.011



CTSS
0.67
0.013



CXCL12
0.56
<.001
0.77
0.026



CYP3A5
0.43
<.001
0.63
<.001



CYR61
0.43
<.001
0.58
<.001



DAG1


0.72
0.012



DARC
0.66
0.016



DDR2
0.65
0.007



DES
0.52
<.001
0.74
0.018



DHRS9
0.54
0.007



DICER1
0.70
0.044



DLC1


0.75
0.021



DLGAP1
0.55
<.001
0.72
0.005



DNM3
0.61
0.001



DPP4
0.55
<.001
0.77
0.024



DPT
0.48
<.001
0.61
<.001



DUSP1
0.47
<.001
0.59
<.001



DUSP6
0.65
0.009
0.65
0.002



DYNLL1


0.74
0.045



EDNRA
0.61
0.002
0.75
0.038



EFNB2
0.71
0.043



EGR1
0.43
<.001
0.58
<.001



EGR3
0.47
<.001
0.66
<.001



EIF5


0.77
0.028



ELK4
0.49
<.001
0.72
0.012



EPHA2


0.70
0.007



EPHA3
0.62
<.001
0.72
0.009



EPHB2
0.68
0.009



ERBB2
0.64
<.001
0.63
<.001



ERBB3
0.69
0.018



ERCC1
0.69
0.019
0.77
0.021



ESR2
0.61
0.020



FAAH
0.57
<.001
0.77
0.035



FABP5
0.67
0.035



FAM107A
0.42
<.001
0.59
<.001



FAM13C
0.53
<.001
0.59
<.001



FAS
0.71
0.035



FASLG
0.56
0.017
0.67
0.014



FGF10
0.57
0.002



FGF17
0.70
0.039
0.70
0.010



FGF7
0.63
0.005
0.70
0.004



FGFR2
0.63
0.003
0.71
0.003



FKBP5


0.72
0.020



FLNA
0.48
<.001
0.74
0.022



FOS
0.45
<.001
0.56
<.001



FOXO1
0.59
<.001



FOXQ1
0.57
<.001
0.69
0.008



FYN
0.62
0.001
0.74
0.013



G6PD


0.77
0.014



GADD45A
0.73
0.045



GADD45B
0.45
<.001
0.64
0.001



GDF15
0.58
<.001



GHR
0.62
0.008
0.68
0.002



GPM6B
0.60
<.001
0.70
0.003



GSK3B
0.71
0.016
0.71
0.006



GSN
0.46
<.001
0.66
<.001



GSTM1
0.56
<.001
0.62
<.001



GSTM2
0.47
<.001
0.67
<.001



HGD


0.72
0.002



HIRIP3
0.69
0.021
0.69
0.002



HK1
0.68
0.005
0.73
0.005



HLA-G
0.54
0.024
0.65
0.013



HLF
0.41
<.001
0.68
0.001



HNF1B
0.55
<.001
0.59
<.001



HPS1
0.74
0.015
0.76
0.025



HSD17B3
0.65
0.031



HSPB2
0.62
0.004
0.76
0.027



ICAM1
0.61
0.010



IER3
0.55
<.001
0.67
0.003



IFIT1
0.57
<.001
0.70
0.008



IFNG


0.69
0.040



IGF1
0.63
<.001
0.59
<.001



IGF2
0.67
0.019
0.70
0.005



IGFBP2
0.53
<.001
0.63
<.001



IGFBP5
0.57
<.001
0.71
0.006



IGFBP6
0.41
<.001
0.71
0.012



IL10
0.59
0.020



IL1B
0.53
<.001
0.70
0.005



IL6
0.55
0.001



IL6ST
0.45
<.001
0.68
<.001



IL8
0.60
0.005
0.70
0.008



ILK
0.68
0.029
0.76
0.036



ING5
0.54
<.001
0.82
0.033



ITGA1
0.66
0.017



ITGA3
0.70
0.020



ITGA5
0.64
0.011



ITGA6
0.66
0.003
0.74
0.006



ITGA7
0.50
<.001
0.71
0.010



ITGB4
0.63
0.014
0.73
0.010



ITPR1
0.55
<.001



ITPR3


0.76
0.007



JUN
0.37
<.001
0.54
<.001



JUNB
0.58
0.002
0.71
0.016



KCTD12
0.68
0.017



KIT
0.49
0.002
0.76
0.043



KLC1
0.61
0.005
0.77
0.045



KLF6
0.65
0.009



KLK1
0.68
0.036



KLK10


0.76
0.037



KLK2
0.64
<.001
0.73
0.006



KLK3
0.65
<.001
0.76
0.021



KLRK1
0.63
0.005



KRT15
0.52
<.001
0.58
<.001



KRT18
0.46
<.001



KRT5
0.51
<.001
0.58
<.001



KRT8
0.53
<.001



L1CAM
0.65
0.031



LAG3
0.58
0.002
0.76
0.033



LAMA4
0.52
0.018



LAMB3
0.60
0.002
0.65
0.003



LGALS3
0.52
<.001
0.71
0.002



LIG3
0.65
0.011



LRP1
0.61
0.001
0.75
0.040



MGMT
0.66
0.003



MICA
0.59
0.001
0.68
0.001



MLXIP
0.70
0.020



MMP2
0.68
0.022



MMP9
0.67
0.036



MPPED2
0.57
<.001
0.66
<.001



MRC1
0.69
0.028



MTSS1
0.63
0.005
0.79
0.037



MVP
0.62
<.001



MYBPC1
0.53
<.001
0.70
0.011



NCAM1
0.70
0.039
0.77
0.042



NCAPD3
0.52
<.001
0.59
<.001



NDRG1


0.69
0.008



NEXN
0.62
0.002



NFAT5
0.45
<.001
0.59
<.001



NFATC2
0.68
0.035
0.75
0.036



NFKBIA
0.70
0.030



NRG1
0.59
0.022
0.71
0.018



OAZ1
0.69
0.018
0.62
<.001



OLFML3
0.59
<.001
0.72
0.003



OR51E2
0.73
0.013



PAGE4
0.42
<.001
0.62
<.001



PCA3
0.53
<.001



PCDHGB7
0.70
0.032



PGF
0.68
0.027
0.71
0.013



PGR


0.76
0.041



PIK3C2A


0.80
<.001



PIK3CA
0.61
<.001
0.80
0.036



PIK3CG
0.67
0.001
0.76
0.018



PLP2
0.65
0.015
0.72
0.010



PPAP2B
0.45
<.001
0.69
0.003



PPP1R12A
0.61
0.007
0.73
0.017



PRIMA1
0.51
<.001
0.68
0.004



PRKCA
0.55
<.001
0.74
0.009



PRKCB
0.55
<.001



PROM1


0.67
0.042



PROS1
0.73
0.036



PTCH1
0.69
0.024
0.72
0.010



PTEN
0.54
<.001
0.64
<.001



PTGS2
0.48
<.001
0.55
<.001



PTH1R
0.57
0.003
0.77
0.050



PTHLH
0.55
0.010



PTK2B
0.56
<.001
0.70
0.001



PYCARD


0.73
0.009



RAB27A
0.65
0.009
0.71
0.014



RAB30
0.59
0.003
0.72
0.010



RAGE


0.76
0.011



RARB
0.59
<.001
0.63
<.001



RASSF1
0.67
0.003



RB1
0.67
0.006



RFX1
0.71
0.040
0.70
0.003



RHOA
0.71
0.038
0.65
<.001



RHOB
0.58
0.001
0.71
0.006



RND3
0.54
<.001
0.69
0.003



RNF114
0.59
0.004
0.68
0.003



SCUBE2


0.77
0.046



SDHC
0.72
0.028
0.76
0.025



SEC23A


0.75
0.029



SEMA3A
0.61
0.004
0.72
0.011



SEPT9
0.66
0.013
0.76
0.036



SERPINB5


0.75
0.039



SH3RF2
0.44
<.001
0.48
<.001



SHH


0.74
0.049



SLC22A3
0.42
<.001
0.61
<.001



SMAD4
0.45
<.001
0.66
<.001



SMARCD1
0.69
0.016



SOD1
0.68
0.042



SORBS1
0.51
<.001
0.73
0.012



SPARCL1
0.58
<.001
0.77
0.040



SPDEF
0.77
<.001



SPINT1
0.65
0.004
0.79
0.038



SRC
0.61
<.001
0.69
0.001



SRD5A2
0.39
<.001
0.55
<.001



ST5
0.61
<.001
0.73
0.012



STAT1
0.64
0.006



STAT3
0.63
0.010



STAT5A
0.62
0.001
0.70
0.003



STAT5B
0.58
<.001
0.73
0.009



SUMO1
0.66
<.001



SVIL
0.57
0.001
0.74
0.022



TBP
0.65
0.002



TFF1
0.65
0.021



TFF3
0.58
<.001



TGFB1I1
0.51
<.001
0.75
0.026



TGFB2
0.48
<.001
0.62
<.001



TGFBR2
0.61
0.003



TIAM1
0.68
0.019



TIMP2
0.69
0.020



TIMP3
0.58
0.002



TNFRSF10A
0.73
0.047



TNFRSF10B
0.47
<.001
0.70
0.003



TNFSF10
0.56
0.001



TP63


0.67
0.001



TPM1
0.58
0.004
0.73
0.017



TPM2
0.46
<.001
0.70
0.005



TRA2A
0.68
0.013



TRAF3IP2
0.73
0.041
0.71
0.004



TRO
0.72
0.016
0.71
0.004



TUBB2A
0.53
<.001
0.73
0.021



TYMP
0.70
0.011



VCAM1
0.69
0.041



VCL
0.46
<.001



VEGFA


0.77
0.039



VEGFB
0.71
0.035



VIM
0.60
0.001



XRCC5


0.75
0.026



YY1
0.62
0.008
0.77
0.039



ZFHX3
0.53
<.001
0.58
<.001



ZFP36
0.43
<.001
0.54
<.001



ZNF827
0.55
0.001










Tables 8A and 8B provide genes that were significantly associated (p<0.05), positively or negatively, with clinical recurrence (cRFI) in positive TMPRSS fusion specimens in the primary or highest Gleason pattern specimen. Increased expression of genes in Table 8A is negatively associated with good prognosis, while increased expression of genes in Table 8B is positively associated with good prognosis.









TABLE 8A







Genes significantly (p < 0.05) associated with cRFI for


TMPRSS2-ERG fusion positive in the primary Gleason pattern


or highest Gleason pattern with hazard ratio (HR) >1.0


(increased expression is negatively associated with good prognosis)













Official
Primary Pattern

Highest Pattern














Symbol
HR
p-value
HR
p-value

















ACTR2
1.78
0.017





AKR1C3
1.44
0.013



ALCAM


1.44
0.022



ANLN
1.37
0.046
1.81
<.001



APOE
1.49
0.023
1.66
0.005



AQP2


1.30
0.013



ARHGDIB
1.55
0.021



ASPN
2.13
<.001
2.43
<.001



ATP5E
1.69
0.013
1.58
0.014



BGN
1.92
<.001
2.55
<.001



BIRC5
1.48
0.006
1.89
<.001



BMP6
1.51
0.010
1.96
<.001



BRCA2


1.41
0.007



BUB1
1.36
0.007
1.52
<.001



CCNE2
1.55
0.004
1.59
<.001



CD276


1.65
<.001



CDC20
1.68
<.001
1.74
<.001



CDH11


1.50
0.017



CDH18
1.36
<.001



CDH7
1.54
0.009
1.46
0.026



CDKN2B
1.68
0.008
1.93
0.001



CDKN2C
2.01
<.001
1.77
<.001



CDKN3
1.51
0.002
1.33
0.049



CENPF
1.51
0.007
2.04
<.001



CKS2
1.43
0.034
1.56
0.007



COL1A1
2.23
<.001
3.04
<.001



COL1A2
1.79
0.001
2.22
<.001



COL3A1
1.96
<.001
2.81
<.001



COL4A1


1.52
0.020



COL5A1


1.50
0.020



COL5A2
1.64
0.017
1.55
0.010



COL8A1
1.96
<.001
2.38
<.001



CRISP3
1.68
0.002
1.67
0.002



CTHRC1


2.06
<.001



CTNND2
1.42
0.046
1.50
0.025



CTSK


1.43
0.049



CXCR4
1.82
0.001
1.64
0.007



DDIT4
1.54
0.016
1.58
0.009



DLL4


1.51
0.007



DYNLL1
1.50
0.021
1.22
0.002



F2R
2.27
<.001
2.02
<.001



FAP


2.12
<.001



FCGR3A


1.94
0.002



FGF5
1.23
0.047



FOXP3
1.52
0.006
1.48
0.018



GNPTAB


1.44
0.042



GPR68


1.51
0.011



GREM1
1.91
<.001
2.38
<.001



HDAC1


1.43
0.048



HDAC9
1.65
<.001
1.67
0.004



HRAS
1.65
0.005
1.58
0.021



IGFBP3
1.94
<.001
1.85
<.001



INHBA
2.03
<.001
2.64
<.001



JAG1
1.41
0.027
1.50
0.008



KCTD12


1.51
0.017



KHDRBS3
1.48
0.029
1.54
0.014



KPNA2


1.46
0.050



LAMA3
1.35
0.040



LAMC1
1.77
0.012



LTBP2


1.82
<.001



LUM
1.51
0.021
1.53
0.009



MELK
1.38
0.020
1.49
0.001



MKI67


1.37
0.014



MMP11
1.73
<.001
1.69
<.001



MRPL13


1.30
0.046



MYBL2
1.56
<.001
1.72
<.001



MYLK3


1.17
0.007



NOX4
1.58
0.005
1.96
<.001



NRIP3


1.30
0.040



NRP1


1.53
0.021



OLFML2B


1.54
0.024



OSM
1.43
0.018



PATE1
1.20
<.001
1.33
<.001



PCNA


1.64
0.003



PEX10
1.41
0.041
1.64
0.003



PIK3CA
1.38
0.037



PLK1
1.52
0.009
1.67
0.002



PLOD2


1.65
0.002



POSTN
1.79
<.001
2.06
<.001



PTK6
1.67
0.002
2.38
<.001



PTTG1
1.56
0.002
1.54
0.003



RAD21
1.61
0.036
1.53
0.005



RAD51


1.33
0.009



RALA
1.95
0.004
1.60
0.007



REG4


1.43
0.042



ROBO2
1.46
0.024



RRM1


1.44
0.033



RRM2
1.50
0.003
1.48
<.001



SAT1
1.42
0.009
1.43
0.012



SEC14L1


1.64
0.002



SFRP4
2.07
<.001
2.40
<.001



SHMT2
1.52
0.030
1.60
0.001



SLC44A1


1.42
0.039



SPARC
1.93
<.001
2.21
<.001



SULF1
1.63
0.006
2.04
<.001



THBS2
1.95
<.001
2.26
<.001



THY1
1.69
0.016
1.95
0.002



TK1


1.43
0.003



TOP2A
1.57
0.002
2.11
<.001



TPX2
1.84
<.001
2.27
<.001



UBE2C
1.41
0.011
1.44
0.006



UBE2T
1.63
0.001



UHRF1
1.51
0.007
1.69
<.001



WISP1
1.47
0.045



WNT5A
1.35
0.027
1.63
0.001



ZWINT
1.36
0.045

















TABLE 8B







Genes significantly (p < 0.05) associated with cRFI for


TMPRSS2-ERG fusion positive in the primary Gleason pattern


or highest Gleason pattern with hazard ratio (HR) <1.0


(increased expression is positively associated with good prognosis)













Official
Primary Pattern

Highest Pattern














Symbol
HR
p-value
HR
p-value

















AAMP
0.57
0.007
0.58
<.001



ABCA5


0.80
0.044



ACE
0.65
0.023
0.55
<.001



ACOX2


0.55
<.001



ADH5


0.68
0.022



AKAP1


0.81
0.043



ALDH1A2
0.72
0.036
0.43
<.001



ANPEP
0.66
0.022
0.46
<.001



APRT


0.73
0.040



AXIN2


0.60
<.001



AZGP1
0.57
<.001
0.65
<.001



BCL2


0.69
0.035



BIK
0.71
0.045



BIN1
0.71
0.004
0.71
0.009



BTRC
0.66
0.003
0.58
<.001



C7


0.64
0.006



CADM1
0.61
<.001
0.47
<.001



CCL2


0.73
0.042



CCNH
0.69
0.022



CD44
0.56
<.001
0.58
<.001



CD82


0.72
0.033



CDC25B
0.74
0.028



CDH1
0.75
0.030
0.72
0.010



CDH19


0.56
0.015



CDK3


0.78
0.045



CDKN1C
0.74
0.045
0.70
0.014



CSF1


0.72
0.037



CTSB


0.69
0.048



CTSL2


0.58
0.005



CYP3A5
0.51
<.001
0.30
<.001



DHX9
0.89
0.006
0.87
0.012



DLC1


0.64
0.023



DLGAP1
0.69
0.010
0.49
<.001



DPP4
0.64
<.001
0.56
<.001



DPT


0.63
0.003



EGR1


0.69
0.035



EGR3


0.68
0.025



EIF2S3


0.70
0.021



EIF5
0.71
0.030



ELK4
0.71
0.041
0.60
0.003



EPHA2
0.72
0.036
0.66
0.011



EPHB4


0.65
0.007



ERCC1


0.68
0.023



ESR2


0.64
0.027



FAM107A
0.64
0.003
0.61
0.003



FAM13C
0.68
0.006
0.55
<.001



FGFR2
0.73
0.033
0.59
<.001



FKBP5


0.60
0.006



FLNC
0.68
0.024
0.65
0.012



FLT1


0.71
0.027



FOS


0.62
0.006



FOXO1


0.75
0.010



GADD45B


0.68
0.020



GHR


0.62
0.006



GPM6B


0.57
<.001



GSTM1
0.68
0.015
0.58
<.001



GSTM2
0.65
0.005
0.47
<.001



HGD
0.63
0.001
0.71
0.020



HK1
0.67
0.003
0.62
0.002



HLF


0.59
<.001



HNF1B
0.66
0.004
0.61
0.001



IER3


0.70
0.026



IGF1
0.63
0.005
0.55
<.001



IGF1R


0.76
0.049



IGFBP2
0.59
0.007
0.64
0.003



IL6ST


0.65
0.005



IL8
0.61
0.005
0.66
0.019



ILK


0.64
0.015



ING5
0.73
0.033
0.70
0.009



ITGA7
0.72
0.045
0.69
0.019



ITGB4


0.63
0.002



KLC1


0.74
0.045



KLK1
0.56
0.002
0.49
<.001



KLK10


0.68
0.013



KLK11


0.66
0.003



KLK2
0.66
0.045
0.65
0.011



KLK3
0.75
0.048
0.77
0.014



KRT15
0.71
0.017
0.50
<.001



KRT5
0.73
0.031
0.54
<.001



LAMA5


0.70
0.044



LAMB3
0.70
0.005
0.58
<.001



LGALS3


0.69
0.025



LIG3


0.68
0.022



MDK
0.69
0.035



MGMT
0.59
0.017
0.60
<.001



MGST1


0.73
0.042



MICA


0.70
0.009



MPPED2
0.72
0.031
0.54
<.001



MTSS1
0.62
0.003



MYBPC1


0.50
<.001



NCAPD3
0.62
0.007
0.38
<.001



NCOR1


0.82
0.048



NFAT5
0.60
0.001
0.62
<.001



NRG1
0.66
0.040
0.61
0.029



NUP62
0.75
0.037



OMD
0.54
<.001



PAGE4


0.64
0.005



PCA3


0.66
0.012



PCDHGB7


0.68
0.018



PGR


0.60
0.012



PPAP2B


0.62
0.010



PPP1R12A
0.73
0.031
0.58
0.003



PRIMA1


0.65
0.013



PROM1
0.41
0.013



PTCH1
0.64
0.006



PTEN


0.75
0.047



PTGS2


0.67
0.011



PTK2B


0.66
0.005



PTPN1


0.71
0.026



RAGE
0.70
0.012



RARB


0.68
0.016



RGS10


0.84
0.034



RHOB


0.66
0.016



RND3


0.63
0.004



SDHC
0.73
0.044
0.69
0.016



SERPINA3
0.67
0.011
0.51
<.001



SERPINB5


0.42
<.001



SH3RF2
0.66
0.012
0.51
<.001



SLC22A3
0.59
0.003
0.48
<.001



SMAD4
0.64
0.004
0.49
<.001



SMARCC2


0.73
0.042



SMARCD1
0.73
<.001
0.76
0.035



SMO


0.64
0.006



SNAI1


0.53
0.008



SOD1


0.60
0.003



SRC
0.64
<.001
0.61
<.001



SRD5A2
0.63
0.004
0.59
<.001



STAT3


0.64
0.014



STAT5A


0.70
0.032



STAT5B
0.74
0.034
0.63
0.003



SVIL


0.71
0.028



TGFB1I1


0.68
0.036



TMPRSS2
0.72
0.015
0.67
<.001



TNFRSF10A


0.69
0.010



TNFRSF10B
0.67
0.007
0.64
0.001



TNFRSF18
0.38
0.003



TNFSF10


0.71
0.025



TP53
0.68
0.004
0.57
<.001



TP63
0.75
0.049
0.52
<.001



TPM2


0.62
0.007



TRAF3IP2
0.71
0.017
0.68
0.005



TRO


0.72
0.033



TUBB2A


0.69
0.038



VCL


0.62
<.001



VEGFA


0.71
0.037



WWOX


0.65
0.004



ZFHX3
0.77
0.011
0.73
0.012



ZFP36


0.69
0.018



ZNF827
0.68
0.013
0.49
<.001










Tables 9A and 9B provide genes significantly associated (p<0.05), positively or negatively, with TMPRSS fusion status in the primary Gleason pattern. Increased expression of genes in Table 9A are positively associated with TMPRSS fusion positivity, while increased expression of genes in Table 10A are negatively associated with TMPRSS fusion positivity.









TABLE 9A







Genes significantly (p < 0.05) associated with


TMPRSS fusion status in the primary Gleason pattern


with odds ratio (OR) >1.0 (increased expression


is positively associated with TMPRSS fusion positivity











Official Symbol
p-value
Odds Ratio















ABCC8
<.001
1.86



ALDH18A1
0.005
1.49



ALKBH3
0.043
1.30



ALOX5
<.001
1.66



AMPD3
<.001
3.92



APEX1
<.001
2.00



ARHGDIB
<.001
1.87



ASAP2
0.019
1.48



ATXN1
0.013
1.41



BMPR1B
<.001
2.37



CACNA1D
<.001
9.01



CADPS
0.015
1.39



CD276
0.003
2.25



CDH1
0.016
1.37



CDH7
<.001
2.22



CDK7
0.025
1.43



COL9A2
<.001
2.58



CRISP3
<.001
2.60



CTNND1
0.033
1.48



ECE1
<.001
2.22



EIF5
0.023
1.34



EPHB4
0.005
1.51



ERG
<.001
14.5 



FAM171B
0.047
1.32



FAM73A
0.008
1.45



FASN
0.004
1.50



GNPTAB
<.001
1.60



GPS1
0.006
1.45



GRB7
0.023
1.38



HDAC1
<.001
4.95



HGD
<.001
1.64



HIP1
<.001
1.90



HNF1B
<.001
3.55



HSPA8
0.041
1.32



IGF1R
0.001
1.73



ILF3
<.001
1.91



IMMT
0.025
1.36



ITPR1
<.001
2.72



ITPR3
<.001
5.91



JAG1
0.007
1.42



KCNN2
<.001
2.80



KHDRBS3
<.001
2.63



KIAA0247
0.019
1.38



KLK11
<.001
1.98



LAMC1
0.008
1.56



LAMC2
<.001
3.30



LOX
0.009
1.41



LRP1
0.044
1.30



MAP3K5
<.001
2.06



MAP7
<.001
2.74



MSH2
0.005
1.59



MSH3
0.006
1.45



MUC1
0.012
1.42



MYO6
<.001
3.79



NCOR2
0.001
1.62



NDRG1
<.001
6.77



NETO2
<.001
2.63



ODC1
<.001
1.98



OR51E1
<.001
2.24



PDE9A
<.001
2.21



PEX10
<.001
3.41



PGK1
0.022
1.33



PLA2G7
<.001
5.51



PPP3CA
0.047
1.38



PSCA
0.013
1.43



PSMD13
0.004
1.51



PTCH1
0.022
1.38



PTK2
0.014
1.38



PTK6
<.001
2.29



PTK7
<.001
2.45



PTPRK
<.001
1.80



RAB30
0.001
1.60



REG4
0.018
1.58



RELA
0.001
1.62



RFX1
0.020
1.43



RGS10
<.001
1.71



SCUBE2
0.009
1.48



SEPT9
<.001
3.91



SH3RF2
0.004
1.48



SH3YL1
<.001
1.87



SHH
<.001
2.45



SIM2
<.001
1.74



SIPA1L1
0.021
1.35



SLC22A3
<.001
1.63



SLC44A1
<.001
1.65



SPINT1
0.017
1.39



TFDP1
0.005
1.75



TMPRSS2ERGA
0.002
14E5



TMPRSS2ERGB
<.001
1.97



TRIM14
<.001
1.65



TSTA3
0.018
1.38



UAP1
0.046
1.39



UBE2G1
0.001
1.66



UGDH
<.001
2.22



XRCC5
<.001
1.66



ZMYND8
<.001
2.19

















TABLE 9B







Genes significantly (p < 0.05) associated with


TMPRSS fusion status in the primary Gleason pattern


with odds ratio (OR) <1.0 (increased expression


is negatively associated with TMPRSS fusion positivity)











Official Symbol
p-value
Odds Ratio















ABCC4
0.045
0.77



ABHD2
<.001
0.38



ACTR2
0.027
0.73



ADAMTS1
0.024
0.58



ADH5
<.001
0.58



AGTR2
0.016
0.64



AKAP1
0.013
0.70



AKT2
0.015
0.71



ALCAM
<.001
0.45



ALDH1A2
0.004
0.70



ANPEP
<.001
0.43



ANXA2
0.010
0.71



APC
0.036
0.73



APOC1
0.002
0.56



APOE
<.001
0.44



ARF1
0.041
0.77



ATM
0.036
0.74



AURKB
<.001
0.62



AZGP1
<.001
0.54



BBC3
0.030
0.74



BCL2
0.012
0.70



BIN1
0.021
0.74



BTG1
0.004
0.67



BTG3
0.003
0.63



C7
0.023
0.74



CADM1
0.007
0.69



CASP1
0.011
0.70



CAV1
0.011
0.71



CCND1
0.019
0.72



CCR1
0.022
0.73



CD44
<.001
0.57



CD68
<.001
0.54



CD82
0.002
0.66



CDH5
0.007
0.66



CDKN1A
<.001
0.60



CDKN2B
<.001
0.54



CDKN2C
0.012
0.72



CDKN3
0.037
0.77



CHN1
0.038
0.75



CKS2
<.001
0.48



COL11A1
0.017
0.72



COL1A1
<.001
0.59



COL1A2
0.001
0.62



COL3A1
0.027
0.73



COL4A1
0.043
0.76



COL5A1
0.039
0.74



COL5A2
0.026
0.73



COL6A1
0.008
0.66



COL6A3
<.001
0.59



COL8A1
0.022
0.74



CSF1
0.011
0.70



CTNNB1
0.021
0.69



CTSB
<.001
0.62



CTSD
0.036
0.68



CTSK
0.007
0.70



CTSS
0.002
0.64



CXCL12
<.001
0.48



CXCR4
0.005
0.68



CXCR7
0.046
0.76



CYR61
0.004
0.65



DAP
0.002
0.64



DARC
0.021
0.73



DDR2
0.021
0.73



DHRS9
<.001
0.52



DIAPH1
<.001
0.56



DICER1
0.029
0.75



DLC1
0.013
0.72



DLGAP1
<.001
0.60



DLL4
<.001
0.57



DPT
0.006
0.68



DUSP1
0.012
0.68



DUSP6
0.001
0.62



DVL1
0.037
0.75



EFNB2
<.001
0.32



EGR1
0.003
0.65



ELK4
<.001
0.60



ERBB2
<.001
0.61



ERBB3
0.045
0.76



ESR2
0.010
0.70



ETV1
0.042
0.74



FABP5
<.001
0.21



FAM13C
0.006
0.67



FCGR3A
0.018
0.72



FGF17
0.009
0.71



FGF6
0.011
0.70



FGF7
0.003
0.63



FN1
0.006
0.69



FOS
0.035
0.74



FOXP3
0.010
0.71



GABRG2
0.029
0.74



GADD45B
0.003
0.63



GDF15
<.001
0.54



GPM6B
0.004
0.67



GPNMB
0.001
0.62



GSN
0.009
0.69



HLA-G
0.050
0.74



HLF
0.018
0.74



HPS1
<.001
0.48



HSD17B3
0.003
0.60



HSD17B4
<.001
0.56



HSPB1
<.001
0.38



HSPB2
0.002
0.62



IFI30
0.049
0.75



IFNG
0.006
0.64



IGF1
0.016
0.73



IGF2
0.001
0.57



IGFBP2
<.001
0.51



IGFBP3
<.001
0.59



IGFBP6
<.001
0.57



IL10
<.001
0.62



IL17A
0.012
0.63



IL1A
0.011
0.59



IL2
0.001
0.63



IL6ST
<.001
0.52



INSL4
0.014
0.71



ITGA1
0.009
0.69



ITGA4
0.007
0.68



JUN
<.001
0.59



KIT
<.001
0.64



KRT76
0.016
0.70



LAG3
0.002
0.63



LAPTM5
<.001
0.58



LGALS3
<.001
0.53



LTBP2
0.011
0.71



LUM
0.012
0.70



MAOA
0.020
0.73



MAP4K4
0.007
0.68



MGST1
<.001
0.54



MMP2
<.001
0.61



MPPED2
<.001
0.45



MRC1
0.005
0.67



MTPN
0.002
0.56



MTSS1
<.001
0.53



MVP
0.009
0.72



MYBPC1
<.001
0.51



MYLK3
0.001
0.58



NCAM1
<.001
0.59



NCAPD3
<.001
0.40



NCOR1
0.004
0.69



NFKBIA
<.001
0.63



NNMT
0.006
0.66



NPBWR1
0.027
0.67



OAZ1
0.049
0.64



OLFML3
<.001
0.56



OSM
<.001
0.64



PAGE1
0.012
0.52



PDGFRB
0.016
0.73



PECAM1
<.001
0.55



PGR
0.048
0.77



PIK3CA
<.001
0.55



PIK3CG
0.008
0.71



PLAU
0.044
0.76



PLK1
0.006
0.68



PLOD2
0.013
0.71



PLP2
0.024
0.73



PNLIPRP2
0.009
0.70



PPAP2B
<.001
0.62



PRKAR2B
<.001
0.61



PRKCB
0.044
0.76



PROS1
0.005
0.67



PTEN
<.001
0.47



PTGER3
0.007
0.69



PTH1R
0.011
0.70



PTK2B
<.001
0.61



PTPN1
0.028
0.73



RAB27A
<.001
0.21



RAD51
<.001
0.51



RAD9A
0.030
0.75



RARB
<.001
0.62



RASSF1
0.038
0.76



RECK
0.009
0.62



RHOB
0.004
0.64



RHOC
<.001
0.56



RLN1
<.001
0.30



RND3
0.014
0.72



S100P
0.002
0.66



SDC2
<.001
0.61



SEMA3A
0.001
0.64



SMAD4
<.001
0.64



SPARC
<.001
0.59



SPARCL1
<.001
0.56



SPINK1
<.001
0.26



SRD5A1
0.039
0.76



STAT1
0.026
0.74



STS
0.006
0.64



SULF1
<.001
0.53



TFF3
<.001
0.19



TGFA
0.002
0.65



TGFB1I1
0.040
0.77



TGFB2
0.003
0.66



TGFB3
<.001
0.54



TGFBR2
<.001
0.61



THY1
<.001
0.63



TIMP2
0.004
0.66



TIMP3
<.001
0.60



TMPRSS2
<.001
0.40



TNFSF11
0.026
0.63



TPD52
0.002
0.64



TRAM1
<.001
0.45



TRPC6
0.002
0.64



TUBB2A
<.001
0.49



VCL
<.001
0.57



VEGFB
0.033
0.73



VEGFC
<.001
0.61



VIM
0.012
0.69



WISP1
0.030
0.75



WNT5A
<.001
0.50










A molecular field effect was investigated, and determined that the expression levels of histologically normal-appearing cells adjacent to the tumor exhibited a molecular signature of prostate cancer. Tables 10A and 10B provide genes significantly associated (p<0.05), positively or negatively, with cRFI or bRFI in non-tumor samples. Table 10A is negatively associated with good prognosis, while increased expression of genes in Table 10B is positively associated with good prognosis.









TABLE 10A







Genes significantly (p < 0.05) associated with cRFI or


bRFI in Non-Tumor Samples with hazard ratio (HR) >1.0 (increased


expression is negatively associated with good prognosis)













Official
cRFI

bRFI














Symbol
HR
p-value
HR
p-value

















ALCAM


1.278
0.036



ASPN
1.309
0.032



BAG5
1.458
0.004



BRCA2
1.385
<.001



CACNA1D


1.329
0.035



CD164


1.339
0.020



CDKN2B
1.398
0.014



COL3A1
1.300
0.035



COL4A1
1.358
0.019



CTNND2


1.370
0.001



DARC
1.451
0.003



DICER1


1.345
<.001



DPP4


1.358
0.008



EFNB2


1.323
0.007



FASN


1.327
0.035



GHR


1.332
0.048



HSPA5


1.260
0.048



INHBA
1.558
<.001



KCNN2


1.264
0.045



KRT76


1.115
<.001



LAMC1
1.390
0.014



LAMC2


1.216
0.042



LIG3


1.313
0.030



MAOA


1.405
0.013



MCM6
1.307
0.036



MKI67
1.271
0.008



NEK2


1.312
0.016



NPBWR1
1.278
0.035



ODC1


1.320
0.010



PEX10


1.361
0.014



PGK1
1.488
0.004



PLA2G7


1.337
0.025



POSTN
1.306
0.043



PTK6


1.344
0.005



REG4


1.348
0.009



RGS7


1.144
0.047



SFRP4
1.394
0.009



TARP


1.412
0.011



TFF1


1.346
0.010



TGFBR2
1.310
0.035



THY1
1.300
0.038



TMPRSS2ERGA


1.333
<.001



TPD52


1.374
0.015



TRPC6
1.272
0.046



UBE2C
1.323
0.007



UHRF1
1.325
0.021

















TABLE 10B







Genes significantly (p < 0.05) associated with cRFI or


bRFI in Non-Tumor Samples with hazard ratio (HR) <1.0 (increased


expression is positively associated with good prognosis)













Official
cRFI

bRFI














Symbol
HR
p-value
HR
p-value

















ABCA5
0.807
0.028





ABCC3
0.760
0.019
0.750
0.003



ABHD2
0.781
0.028



ADAM15
0.718
0.005



AKAP1
0.740
0.009



AMPD3


0.793
0.013



ANGPT2


0.752
0.027



ANXA2


0.776
0.035



APC
0.755
0.014



APRT
0.762
0.025



AR
0.752
0.015



ARHGDIB


0.753
<.001



BIN1
0.738
0.016



CADM1
0.711
0.004



CCNH
0.820
0.041



CCR1


0.749
0.007



CDK14


0.772
0.014



CDK3
0.819
0.044



CDKN1C
0.808
0.038



CHAF1A
0.634
0.002
0.779
0.045



CHN1


0.803
0.034



CHRAC1
0.751
0.014
0.779
0.021



COL5A1


0.736
0.012



COL5A2


0.762
0.013



COL6A1


0.757
0.032



COL6A3


0.757
0.019



CSK
0.663
<.001
0.698
<.001



CTSK


0.782
0.029



CXCL12


0.771
0.037



CXCR7


0.753
0.008



CYP3A5
0.790
0.035



DDIT4


0.725
0.017



DIAPH1


0.771
0.015



DLC1
0.744
0.004
0.807
0.015



DLGAP1
0.708
0.004



DUSP1
0.740
0.034



EDN1


0.742
0.010



EGR1
0.731
0.028



EIF3H
0.761
0.024



EIF4E
0.786
0.041



ERBB2
0.664
0.001



ERBB4
0.764
0.036



ERCC1
0.804
0.041



ESR2


0.757
0.025



EZH2


0.798
0.048



FAAH
0.798
0.042



FAM13C
0.764
0.012



FAM171B


0.755
0.005



FAM49B


0.811
0.043



FAM73A
0.778
0.015



FASLG


0.757
0.041



FGFR2
0.735
0.016



FOS
0.690
0.008



FYN
0.788
0.035
0.777
0.011



GPNMB


0.762
0.011



GSK3B
0.792
0.038



HGD
0.774
0.017



HIRIP3
0.802
0.033



HSP90AB1
0.753
0.013



HSPB1
0.764
0.021



HSPE1
0.668
0.001



IFI30


0.732
0.002



IGF2


0.747
0.006



IGFBP5


0.691
0.006



IL6ST


0.748
0.010



IL8


0.785
0.028



IMMT


0.708
<.001



ITGA6
0.747
0.008



ITGAV


0.792
0.016



ITGB3


0.814
0.034



ITPR3
0.769
0.009



JUN
0.655
0.005



KHDRBS3


0.764
0.012



KLF6
0.714
<.001



KLK2
0.813
0.048



LAMA4


0.702
0.009



LAMA5
0.744
0.011



LAPTM5


0.740
0.009



LGALS3
0.773
0.036
0.788
0.024



LIMS1


0.807
0.012



MAP3K5


0.815
0.034



MAP3K7


0.809
0.032



MAP4K4
0.735
0.018
0.761
0.010



MAPKAPK3
0.754
0.014



MICA
0.785
0.019



MTA1


0.808
0.043



MVP


0.691
0.001



MYLK3


0.730
0.039



MYO6
0.780
0.037



NCOA1


0.787
0.040



NCOR1


0.876
0.020



NDRG1
0.761
<.001



NFAT5
0.770
0.032



NFKBIA


0.799
0.018



NME2


0.753
0.005



NUP62


0.842
0.032



OAZ1


0.803
0.043



OLFML2B


0.745
0.023



OLFML3


0.743
0.009



OSM


0.726
0.018



PCA3
0.714
0.019



PECAM1


0.774
0.023



PIK3C2A


0.768
0.001



PIM1
0.725
0.011



PLOD2


0.713
0.008



PPP3CA
0.768
0.040



PROM1


0.482
<.001



PTEN


0.807
0.012



PTGS2
0.726
0.011



PTTG1


0.729
0.006



PYCARD


0.783
0.012



RAB30


0.730
0.002



RAGE
0.792
0.012



RFX1
0.789
0.016
0.792
0.010



RGS10
0.781
0.017



RUNX1


0.747
0.007



SDHC


0.827
0.036



SEC23A


0.752
0.010



SEPT9


0.889
0.006



SERPINA3


0.738
0.013



SLC25A21


0.788
0.045



SMARCD1
0.788
0.010
0.733
0.007



SMO
0.813
0.035



SRC
0.758
0.026



SRD5A2


0.738
0.005



ST5


0.767
0.022



STAT5A


0.784
0.039



TGFB2
0.771
0.027



TGFB3


0.752
0.036



THBS2


0.751
0.015



TNFRSF10B
0.739
0.010



TPX2


0.754
0.023



TRAF3IP2


0.774
0.015



TRAM1
0.868
<.001
0.880
<.001



TRIM14
0.785
0.047



TUBB2A
0.705
0.010



TYMP


0.778
0.024



UAP1
0.721
0.013



UTP23
0.763
0.007
0.826
0.018



VCL


0.837
0.040



VEGFA
0.755
0.009



WDR19
0.724
0.005



YBX1


0.786
0.027



ZFP36
0.744
0.032



ZNF827
0.770
0.043










Table 11 provides genes that are significantly associated (p<0.05) with cRFI or bRFI after adjustment for Gleason pattern or highest Gleason pattern.









TABLE 11







Genes significantly (p < 0.05) associated with cRFI or bRFI


after adjustment for Gleason pattern in the primary Gleason


pattern or highest Gleason pattern Some HR <=1.0 and some HR >1.0











cRFI
bRFI
bRFI


Official
Highest Pattern
Primary Pattern
Highest Pattern













Symbol
HR
p-value
HR
p-value
HR
p-value
















HSPA5
0.710
0.009
1.288
0.030




ODC1
0.741
0.026
1.343
0.004
1.261
0.046









Tables 12A and 12B provide genes that are significantly associated (p<0.05) with prostate cancer specific survival (PCSS) in the primary Gleason pattern. Increased expression of genes in Table 12A is negatively associated with good prognosis, while increased expression of genes in Table 12B is positively associated with good prognosis.









TABLE 12A







Genes significantly (p < 0.05) associated with prostate cancer


specific survival (PCSS) in the Primary Gleason Pattern HR >1.0


(Increased expression is negatively associated with good prognosis)











Official Symbol
HR
p-value















AKR1C3
1.476
0.016



ANLN
1.517
0.006



APOC1
1.285
0.016



APOE
1.490
0.024



ASPN
3.055
<.001



ATP5E
1.788
0.012



AURKB
1.439
0.008



BGN
2.640
<.001



BIRC5
1.611
<.001



BMP6
1.490
0.021



BRCA1
1.418
0.036



CCNB1
1.497
0.021



CD276
1.668
0.005



CDC20
1.730
<.001



CDH11
1.565
0.017



CDH7
1.553
0.007



CDKN2B
1.751
0.003



CDKN2C
1.993
0.013



CDKN3
1.404
0.008



CENPF
2.031
<.001



CHAF1A
1.376
0.011



CKS2
1.499
0.031



COL1A1
2.574
<.001



COL1A2
1.607
0.011



COL3A1
2.382
<.001



COL4A1
1.970
<.001



COL5A2
1.938
0.002



COL8A1
2.245
<.001



CTHRC1
2.085
<.001



CXCR4
1.783
0.007



DDIT4
1.535
0.030



DYNLL1
1.719
0.001



F2R
2.169
<.001



FAM171B
1.430
0.044



FAP
1.993
0.002



FCGR3A
2.099
<.001



FN1
1.537
0.024



GPR68
1.520
0.018



GREM1
1.942
<.001



IFI30
1.482
0.048



IGFBP3
1.513
0.027



INHBA
3.060
<.001



KIF4A
1.355
0.001



KLK14
1.187
0.004



LAPTM5
1.613
0.006



LTBP2
2.018
<.001



MMP11
1.869
<.001



MYBL2
1.737
0.013



NEK2
1.445
0.028



NOX4
2.049
<.001



OLFML2B
1.497
0.023



PLK1
1.603
0.006



POSTN
2.585
<.001



PPFIA3
1.502
0.012



PTK6
1.527
0.009



PTTG1
1.382
0.029



RAD51
1.304
0.031



RGS7
1.251
<.001



RRM2
1.515
<.001



SAT1
1.607
0.004



SDC1
1.710
0.007



SESN3
1.399
0.045



SFRP4
2.384
<.001



SHMT2
1.949
0.003



SPARC
2.249
<.001



STMN1
1.748
0.021



SULF1
1.803
0.004



THBS2
2.576
<.001



THY1
1.908
0.001



TK1
1.394
0.004



TOP2A
2.119
<.001



TPX2
2.074
0.042



UBE2C
1.598
<.001



UGT2B15
1.363
0.016



UHRF1
1.642
0.001



ZWINT
1.570
0.010

















TABLE 12B







Genes significantly (p < 0.05) associated with prostate cancer


specific survival (PCSS) in the Primary Gleason Pattern HR <1.0


(Increased expression is positively associated with good prognosis)











Official Symbol
HR
p-value















AAMP
0.649
0.040



ABCA5
0.777
0.015



ABCG2
0.715
0.037



ACOX2
0.673
0.016



ADH5
0.522
<.001



ALDH1A2
0.561
<.001



AMACR
0.693
0.029



AMPD3
0.750
0.049



ANPEP
0.531
<.001



ATXN1
0.640
0.011



AXIN2
0.657
0.002



AZGP1
0.617
<.001



BDKRB1
0.553
0.032



BIN1
0.658
<.001



BTRC
0.716
0.011



C7
0.531
<.001



CADM1
0.646
0.015



CASP7
0.538
0.029



CCNH
0.674
0.001



CD164
0.606
<.001



CD44
0.687
0.016



CDK3
0.733
0.039



CHN1
0.653
0.014



COL6A1
0.681
0.015



CSF1
0.675
0.019



CSRP1
0.711
0.007



CXCL12
0.650
0.015



CYP3A5
0.507
<.001



CYR61
0.569
0.007



DLGAP1
0.654
0.004



DNM3
0.692
0.010



DPP4
0.544
<.001



DPT
0.543
<.001



DUSP1
0.660
0.050



DUSP6
0.699
0.033



EGR1
0.490
<.001



EGR3
0.561
<.001



EIF5
0.720
0.035



ERBB3
0.739
0.042



FAAH
0.636
0.010



FAM107A
0.541
<.001



FAM13C
0.526
<.001



FAS
0.689
0.030



FGF10
0.657
0.024



FKBP5
0.699
0.040



FLNC
0.742
0.036



FOS
0.556
0.005



FOXQ1
0.666
0.007



GADD45B
0.554
0.002



GDF15
0.659
0.009



GHR
0.683
0.027



GPM6B
0.666
0.005



GSN
0.646
0.006



GSTM1
0.672
0.006



GSTM2
0.514
<.001



HGD
0.771
0.039



HIRIP3
0.730
0.013



HK1
0.778
0.048



HLF
0.581
<.001



HNF1B
0.643
0.013



HSD17B10
0.742
0.029



IER3
0.717
0.049



IGF1
0.612
<.001



IGFBP6
0.578
0.003



IL2
0.528
0.010



IL6ST
0.574
<.001



IL8
0.540
0.001



ING5
0.688
0.015



ITGA6
0.710
0.005



ITGA7
0.676
0.033



JUN
0.506
0.001



KIT
0.628
0.047



KLK1
0.523
0.002



KLK2
0.581
<.001



KLK3
0.676
<.001



KRT15
0.684
0.005



KRT18
0.536
<.001



KRT5
0.673
0.004



KRT8
0.613
0.006



LAMB3
0.740
0.027



LGALS3
0.678
0.007



MGST1
0.640
0.002



MPPED2
0.629
<.001



MTSS1
0.705
0.041



MYBPC1
0.534
<.001



NCAPD3
0.519
<.001



NFAT5
0.536
<.001



NRG1
0.467
0.007



OLFML3
0.646
0.001



OMD
0.630
0.006



OR51E2
0.762
0.017



PAGE4
0.518
<.001



PCA3
0.581
<.001



PGF
0.705
0.038



PPAP2B
0.568
<.001



PPP1R12A
0.694
0.017



PRIMA1
0.678
0.014



PRKCA
0.632
0.001



PRKCB
0.692
0.028



PROM1
0.393
0.017



PTEN
0.689
0.002



PTGS2
0.611
0.004



PTH1R
0.629
0.031



RAB27A
0.721
0.046



RND3
0.678
0.029



RNF114
0.714
0.035



SDHC
0.590
<.001



SERPINA3
0.710
0.050



SH3RF2
0.570
0.005



SLC22A3
0.517
<.001



SMAD4
0.528
<.001



SMO
0.751
0.026



SRC
0.667
0.004



SRD5A2
0.488
<.001



STAT5B
0.700
0.040



SVIL
0.694
0.024



TFF3
0.701
0.045



TGFB1I1
0.670
0.029



TGFB2
0.646
0.010



TNFRSF10B
0.685
0.014



TNFSF10
0.532
<.001



TPM2
0.623
0.005



TRO
0.767
0.049



TUBB2A
0.613
0.003



VEGFB
0.780
0.034



ZFP36
0.576
0.001



ZNF827
0.644
0.014










Analysis of gene expression and upgrading/upstaging was based on univariate ordinal logistic regression models using weighted maximum likelihood estimators for each gene in the gene list (727 test genes and 5 reference genes). P-values were generated using a Wald test of the null hypothesis that the odds ratio (OR) is one. Both unadjusted p-values and the q-value (smallest FDR at which the hypothesis test in question is rejected) were reported. Un-adjusted p-values<0.05 were considered statistically significant. Since two tumor specimens were selected for each patient, this analysis was performed using the 2 specimens from each patient as follows: (1) analysis using the primary Gleason pattern specimen from each patient (Specimens A1 and B2 as described in Table 2); and (2) analysis using the highest Gleason pattern specimen from each patient (Specimens A1 and B1 as described in Table 2). 200 genes were found to be significantly associated (p<0.05) with upgrading/upstaging in the primary Gleason pattern sample (PGP) and 203 genes were found to be significantly associated (p<0.05) with upgrading/upstaging in the highest Gleason pattern sample (HGP).


Tables 13A and 13B provide genes significantly associated (p<0.05), positively or negatively, with upgrading/upstaging in the primary and/or highest Gleason pattern. Increased expression of genes in Table 13A is positively associated with higher risk of upgrading/upstaging (poor prognosis), while increased expression of genes in Table 13B is negatively associated with risk of upgrading/upstaging (good prognosis).









TABLE 13A







Genes significantly (p < 0.05) associated with upgrading/upstaging


in the Primary Gleason Pattern (PGP) and Highest Gleason Pattern


(HGP) OR >1.0 (Increased expression is positively associated


with higher risk of upgrading/upstaging (poor prognosis))












PGP

HGP














Gene
OR
p-value
OR
p-value







ALCAM
1.52
0.0179
1.50
0.0184



ANLN
1.36
0.0451
.
.



APOE
1.42
0.0278
1.50
0.0140



ASPN
1.60
0.0027
2.06
0.0001



AURKA
1.47
0.0108
.
.



AURKB
.
.
1.52
0.0070



BAX
.
.
1.48
0.0095



BGN
1.58
0.0095
1.73
0.0034



BIRC5
1.38
0.0415
.
.



BMP6
1.51
0.0091
1.59
0.0071



BUB1
1.38
0.0471
1.59
0.0068



CACNA1D
1.36
0.0474
1.52
0.0078



CASP7
.
.
1.32
0.0450



CCNE2
1.54
0.0042
.
.



CD276
.
.
1.44
0.0265



CDC20
1.35
0.0445
1.39
0.0225



CDKN2B
.
.
1.36
0.0415



CENPF
1.43
0.0172
1.48
0.0102



CLTC
1.59
0.0031
1.57
0.0038



COL1A1
1.58
0.0045
1.75
0.0008



COL3A1
1.45
0.0143
1.47
0.0131



COL8A1
1.40
0.0292
1.43
0.0258



CRISP3
.
.
1.40
0.0256



CTHRC1
.
.
1.56
0.0092



DBN1
1.43
0.0323
1.45
0.0163



DIAPH1
1.51
0.0088
1.58
0.0025



DICER1
.
.
1.40
0.0293



DIO2
.
.
1.49
0.0097



DVL1
.
.
1.53
0.0160



F2R
1.46
0.0346
1.63
0.0024



FAP
1.47
0.0136
1.74
0.0005



FCGR3A
.
.
1.42
0.0221



HPN
.
.
1.36
0.0468



HSD17B4
.
.
1.47
0.0151



HSPA8
1.65
0.0060
1.58
0.0074



IL11
1.50
0.0100
1.48
0.0113



IL1B
1.41
0.0359
.
.



INHBA
1.56
0.0064
1.71
0.0042



KHDRBS3
1.43
0.0219
1.59
0.0045



KIF4A
.
.
1.50
0.0209



KPNA2
1.40
0.0366
.
.



KRT2
.
.
1.37
0.0456



KRT75
.
.
1.44
0.0389



MANF
.
.
1.39
0.0429



MELK
1.74
0.0016
.
.



MKI67
1.35
0.0408
.
.



MMP11
.
.
1.56
0.0057



NOX4
1.49
0.0105
1.49
0.0138



PLAUR
1.44
0.0185
.
.



PLK1
.
.
1.41
0.0246



PTK6
.
.
1.36
0.0391



RAD51
.
.
1.39
0.0300



RAF1
.
.
1.58
0.0036



RRM2
1.57
0.0080
.
.



SESN3
1.33
0.0465
.
.



SFRP4
2.33
<0.0001 
2.51
0.0015



SKIL
1.44
0.0288
1.40
0.0368



SOX4
1.50
0.0087
1.59
0.0022



SPINK1
1.52
0.0058
.
.



SPP1
.
.
1.42
0.0224



THBS2
.
.
1.36
0.0461



TK1
.
.
1.38
0.0283



TOP2A
1.85
0.0001
1.66
0.0011



TPD52
1.78
0.0003
1.64
0.0041



TPX2
1.70
0.0010
.
.



UBE2G1
1.38
0.0491
.
.



UBE2T
1.37
0.0425
1.46
0.0162



UHRF1
.
.
1.43
0.0164



VCPIP1
.
.
1.37
0.0458

















TABLE 13B







Genes significantly (p < 0.05) associated with upgrading/upstaging


in the Primary Gleason Pattern (PGP) and Highest Gleason Pattern


(HGP) OR <1.0 (Increased expression is negatively associated


with higher risk of upgrading/upstaging (good prognosis))












PGP

HGP














Gene
OR
p-value
OR
p-value







ABCC3
.
.
0.70
0.0216



ABCC8
0.66
0.0121
.
.



ABCG2
0.67
0.0208
0.61
0.0071



ACE
.
.
0.73
0.0442



ACOX2
0.46
0.0000
0.49
0.0001



ADH5
0.69
0.0284
0.59
0.0047



AIG1
.
.
0.60
0.0045



AKR1C1
.
.
0.66
0.0095



ALDH1A2
0.36
<0.0001 
0.36
<0.0001 



ALKBH3
0.70
0.0281
0.61
0.0056



ANPEP
.
.
0.68
0.0109



ANXA2
0.73
0.0411
0.66
0.0080



APC
.
.
0.68
0.0223



ATXN1
.
.
0.70
0.0188



AXIN2
0.60
0.0072
0.68
0.0204



AZGP1
0.66
0.0089
0.57
0.0028



BCL2
.
.
0.71
0.0182



BIN1
0.55
0.0005
.
.



BTRC
0.69
0.0397
0.70
0.0251



C7
0.53
0.0002
0.51
<0.0001 



CADM1
0.57
0.0012
0.60
0.0032



CASP1
0.64
0.0035
0.72
0.0210



CAV1
0.64
0.0097
0.59
0.0032



CAV2
.
.
0.58
0.0107



CD164
.
.
0.69
0.0260



CD82
0.67
0.0157
0.69
0.0167



CDH1
0.61
0.0012
0.70
0.0210



CDK14
0.70
0.0354
.
.



CDK3
.
.
0.72
0.0267



CDKN1C
0.61
0.0036
0.56
0.0003



CHN1
0.71
0.0214
.
.



COL6A1
0.62
0.0125
0.60
0.0050



COL6A3
0.65
0.0080
0.68
0.0181



CSRP1
0.43
0.0001
0.40
0.0002



CTSB
0.66
0.0042
0.67
0.0051



CTSD
0.64
0.0355
.
.



CTSK
0.69
0.0171
.
.



CTSL1
0.72
0.0402
.
.



CUL1
0.61
0.0024
0.70
0.0120



CXCL12
0.69
0.0287
0.63
0.0053



CYP3A5
0.68
0.0099
0.62
0.0026



DDR2
0.68
0.0324
0.62
0.0050



DES
0.54
0.0013
0.46
0.0002



DHX9
0.67
0.0164
.
.



DLGAP1
.
.
0.66
0.0086



DPP4
0.69
0.0438
0.69
0.0132



DPT
0.59
0.0034
0.51
0.0005



DUSP1
.
.
0.67
0.0214



EDN1
.
.
0.66
0.0073



EDNRA
0.66
0.0148
0.54
0.0005



EIF2C2
.
.
0.65
0.0087



ELK4
0.55
0.0003
0.58
0.0013



ENPP2
0.65
0.0128
0.59
0.0007



EPHA3
0.71
0.0397
0.73
0.0455



EPHB2
0.60
0.0014
.
.



EPHB4
0.73
0.0418
.
.



EPHX3
.
.
0.71
0.0419



ERCC1
0.71
0.0325
.
.



FAM107A
0.56
0.0008
0.55
0.0011



FAM13C
0.68
0.0276
0.55
0.0001



FAS
0.72
0.0404
.
.



FBN1
0.72
0.0395
.
.



FBXW7
0.69
0.0417
.
.



FGF10
0.59
0.0024
0.51
0.0001



FGF7
0.51
0.0002
0.56
0.0007



FGFR2
0.54
0.0004
0.47
<0.0001 



FLNA
0.58
0.0036
0.50
0.0002



FLNC
0.45
0.0001
0.40
<0.0001 



FLT4
0.61
0.0045
.
.



FOXO1
0.55
0.0005
0.53
0.0005



FOXP3
0.71
0.0275
0.72
0.0354



GHR
0.59
0.0074
0.53
0.0001



GNRH1
0.72
0.0386
.
.



GPM6B
0.59
0.0024
0.52
0.0002



GSN
0.65
0.0107
0.65
0.0098



GSTM1
0.44
<0.0001 
0.43
<0.0001 



GSTM2
0.42
<0.0001 
0.39
<0.0001 



HLF
0.46
<0.0001 
0.47
0.0001



HPS1
0.64
0.0069
0.69
0.0134



HSPA5
0.68
0.0113
.
.



HSPB2
0.61
0.0061
0.55
0.0004



HSPG2
0.70
0.0359
.
.



ID3
.
.
0.70
0.0245



IGF1
0.45
<0.0001 
0.50
0.0005



IGF2
0.67
0.0200
0.68
0.0152



IGFBP2
0.59
0.0017
0.69
0.0250



IGFBP6
0.49
<0.0001 
0.64
0.0092



IL6ST
0.56
0.0009
0.60
0.0012



ILK
0.51
0.0010
0.49
0.0004



ITGA1
0.58
0.0020
0.58
0.0016



ITGA3
0.71
0.0286
0.70
0.0221



ITGA5
.
.
0.69
0.0183



ITGA7
0.56
0.0035
0.42
<0.0001 



ITGB1
0.63
0.0095
0.68
0.0267



ITGB3
0.62
0.0043
0.62
0.0040



ITPR1
0.62
0.0032
.
.



JUN
0.73
0.0490
0.68
0.0152



KIT
0.55
0.0003
0.57
0.0005



KLC1
.
.
0.70
0.0248



KLK1
.
.
0.60
0.0059



KRT15
0.58
0.0009
0.45
<0.0001 



KRT5
0.70
0.0262
0.59
0.0008



LAMA4
0.56
0.0359
0.68
0.0498



LAMB3
.
.
0.60
0.0017



LGALS3
0.58
0.0007
0.56
0.0012



LRP1
0.69
0.0176
.
.



MAP3K7
0.70
0.0233
0.73
0.0392



MCM3
0.72
0.0320
.
.



MMP2
0.66
0.0045
0.60
0.0009



MMP7
0.61
0.0015
0.65
0.0032



MMP9
0.64
0.0057
0.72
0.0399



MPPED2
0.72
0.0392
0.63
0.0042



MTA1
.
.
0.68
0.0095



MTSS1
0.58
0.0007
0.71
0.0442



MVP
0.57
0.0003
0.70
0.0152



MYBPC1
.
.
0.70
0.0359



NCAM1
0.63
0.0104
0.64
0.0080



NCAPD3
0.67
0.0145
0.64
0.0128



NEXN
0.54
0.0004
0.55
0.0003



NFAT5
0.72
0.0320
0.70
0.0177



NUDT6
0.66
0.0102
.
.



OLFML3
0.56
0.0035
0.51
0.0011



OMD
0.61
0.0011
0.73
0.0357



PAGE4
0.42
<0.0001 
0.36
<0.0001 



PAK6
0.72
0.0335
.
.



PCDHGB7
0.70
0.0262
0.55
0.0004



PGF
0.72
0.0358
0.71
0.0270



PLP2
0.66
0.0088
0.63
0.0041



PPAP2B
0.44
<0.0001 
0.50
0.0001



PPP1R12A
0.45
0.0001
0.40
<0.0001 



PRIMA1
.
.
0.63
0.0102



PRKAR2B
0.71
0.0226
.
.



PRKCA
0.34
<0.0001 
0.42
<0.0001 



PRKCB
0.66
0.0120
0.49
<0.0001 



PROM1
0.61
0.0030
.
.



PTEN
0.59
0.0008
0.55
0.0001



PTGER3
0.67
0.0293
.
.



PTH1R
0.69
0.0259
0.71
0.0327



PTK2
0.75
0.0461
.
.



PTK2B
0.70
0.0244
0.74
0.0388



PYCARD
0.73
0.0339
0.67
0.0100



RAD9A
0.64
0.0124
.
.



RARB
0.67
0.0088
0.65
0.0116



RGS10
0.70
0.0219
.
.



RHOB
.
.
0.72
0.0475



RND3
.
.
0.67
0.0231



SDHC
0.72
0.0443
.
.



SEC23A
0.66
0.0101
0.53
0.0003



SEMA3A
0.51
0.0001
0.69
0.0222



SH3RF2
0.55
0.0002
0.54
0.0002



SLC22A3
0.48
0.0001
0.50
0.0058



SMAD4
0.49
0.0001
0.50
0.0003



SMARCC2
0.59
0.0028
0.65
0.0052



SMO
0.60
0.0048
0.52
<0.0001 



SORBS1
0.56
0.0024
0.48
0.0002



SPARCL1
0.43
0.0001
0.50
0.0001



SRD5A2
0.26
<0.0001 
0.31
<0.0001 



ST5
0.63
0.0103
0.52
0.0006



STAT5A
0.60
0.0015
0.61
0.0037



STAT5B
0.54
0.0005
0.57
0.0008



SUMO1
0.65
0.0066
0.66
0.0320



SVIL
0.52
0.0067
0.46
0.0003



TGFB1I1
0.44
0.0001
0.43
0.0000



TGFB2
0.55
0.0007
0.58
0.0016



TGFB3
0.57
0.0010
0.53
0.0005



TIMP1
0.72
0.0224
.
.



TIMP2
0.68
0.0198
0.69
0.0206



TIMP3
0.67
0.0105
0.64
0.0065



TMPRSS2
.
.
0.72
0.0366



TNFRSF10A
0.71
0.0181
.
.



TNFSF10
0.71
0.0284
.
.



TOP2B
0.73
0.0432
.
.



TP63
0.62
0.0014
0.50
<0.0001 



TPM1
0.54
0.0007
0.52
0.0002



TPM2
0.41
<0.0001 
0.40
<0.0001 



TPP2
0.65
0.0122
.
.



TRA2A
0.72
0.0318
.
.



TRAF3IP2
0.62
0.0064
0.59
0.0053



TRO
0.57
0.0003
0.51
0.0001



VCL
0.52
0.0005
0.52
0.0004



VIM
0.65
0.0072
0.65
0.0045



WDR19
0.66
0.0097
.
.



WFDC1
0.58
0.0023
0.60
0.0026



ZFHX3
0.69
0.0144
0.62
0.0046



ZNF827
0.62
0.0030
0.53
0.0001










Example 3: Identification of MicroRNAs Associated with Clinical Recurrence and Death Due to Prostate Cancer

MicroRNAs function by binding to portions of messenger RNA (mRNA) and changing how frequently the mRNA is translated into protein. They can also influence the turnover of mRNA and thus how long the mRNA remains intact in the cell. Since microRNAs function primarily as an adjunct to mRNA, this study evaluated the joint prognostic value of microRNA expression and gene (mRNA) expression. Since the expression of certain microRNAs may be a surrogate for expression of genes that are not in the assessed panel, we also evaluated the prognostic value of microRNA expression by itself.


Patients and Samples


Samples from the 127 patients with clinical recurrence and 374 patients without clinical recurrence after radical prostatectomy described in Example 2 were used in this study. The final analysis set comprised 416 samples from patients in which both gene expression and microRNA expression were successfully assayed. Of these, 106 patients exhibited clinical recurrence and 310 did not have clinical recurrence. Tissue samples were taken from each prostate sample representing (1) the primary Gleason pattern in the sample, and (2) the highest Gleason pattern in the sample. In addition, a sample of histologically normal-appearing tissue adjacent to the tumor (NAT) was taken. The number of patients in the analysis set for each tissue type and the number of them who experienced clinical recurrence or death due to prostate cancer are shown in Table 14.









TABLE 14







Number of Patients and Events in Analysis Set












Clinical
Deaths Due to



Patients
Recurrences
Prostate Cancer














Primary Gleason
416
106
36


Pattern Tumor Tissue


Highest Gleason
405
102
36


Pattern Tumor Tissue


Normal Adjacent Tissue
364
81
29









Assay Method


Expression of 76 test microRNAs and 5 reference microRNAs were determined from RNA extracted from fixed paraffin-embedded (FPE) tissue. MicroRNA expression in all three tissue type was quantified by reverse transcriptase polymerase chain reaction (RT-PCR) using the crossing point (Cp) obtained from the Taqman® MicroRNA Assay kit (Applied Biosystems, Inc., Carlsbad, Calif.).


Statistical Analysis


Using univariate proportional hazards regression (Cox D R, Journal of the Royal Statistical Society, Series B 34:187-220, 1972), applying the sampling weights from the cohort sampling design, and using variance estimation based on the Lin and Wei method (Lin and Wei, Journal of the American Statistical Association 84:1074-1078, 1989), microRNA expression, normalized by the average expression for the 5 reference microRNAs hsa-miR-106a, hsa-miR-146b-5p, hsa-miR-191, hsa-miR-19b, and hsa-miR-92a, and reference-normalized gene expression of the 733 genes (including the reference genes) discussed above, were assessed for association with clinical recurrence and death due to prostate cancer. Standardized hazard ratios (the proportional change in the hazard associated with a change of one standard deviation in the covariate value) were calculated.


This analysis included the following classes of predictors:


1. MicroRNAs alone


2. MicroRNA-gene pairs Tier 1


3. MicroRNA-gene pairs Tier 2


4. MicroRNA-gene pairs Tier 3


5. All other microRNA-gene pairs Tier 4


The four tiers were pre-determined based on the likelihood (Tier 1 representing the highest likelihood) that the gene-microRNA pair functionally interacted or that the microRNA was related to prostate cancer based on a review of the literature and existing microarray data sets.


False discovery rates (FDR) (Benjamini and Hochberg, Journal of the Royal Statistical Society, Series B 57:289-300, 1995) were assessed using Efron's separate class methodology (Efron, Annals of Applied Statistics 2:197-223., 2008). The false discovery rate is the expected proportion of the rejected null hypotheses that are rejected incorrectly (and thus are false discoveries). Efron's methodology allows separate FDR assessment (q-values) (Storey, Journal of the Royal Statistical Society, Series B 64:479-498, 2002) within each class while utilizing the data from all the classes to improve the accuracy of the calculation. In this analysis, the q-value for a microRNA or microRNA-gene pair can be interpreted as the empirical Bayes probability that the microRNA or microRNA-gene pair identified as being associated with clinical outcome is in fact a false discovery given the data. The separate class approach was applied to a true discovery rate degree of association (TDRDA) analysis (Crager, Statistics in Medicine 29:33-45, 2010) to determine sets of microRNAs or microRNA-gene pairs that have standardized hazard ratio for clinical recurrence or prostate cancer-specific death of at least a specified amount while controlling the FDR at 10%. For each microRNA or microRNA-gene pair, a maximum lower bound (MLB) standardized hazard ratio was computed, showing the highest lower bound for which the microRNA or microRNA-gene pair was included in a TDRDA set with 10% FDR. Also calculated was an estimate of the true standardized hazard ratio corrected for regression to the mean (RM) that occurs in subsequent studies when the best predictors are selected from a long list (Crager, 2010 above). The RM-corrected estimate of the standardized hazard ratio is a reasonable estimate of what could be expected if the selected microRNA or microRNA-gene pair were studied in a separate, subsequent study.


These analyses were repeated adjusting for clinical and pathology covariates available at the time of patient biopsy: biopsy Gleason score, baseline PSA level, and clinical T-stage (T1-T2A vs. T2B or T2C) to assess whether the microRNAs or microRNA-gene pairs have predictive value independent of these clinical and pathology covariates.


Results

The analysis identified 21 microRNAs assayed from primary Gleason pattern tumor tissue that were associated with clinical recurrence of prostate cancer after radical prostatectomy, allowing a false discovery rate of 10% (Table 15). Results were similar for microRNAs assessed from highest Gleason pattern tumor tissue (Table 16), suggesting that the association of microRNA expression with clinical recurrence does not change markedly depending on the location within a tumor tissue sample. No microRNA assayed from normal adjacent tissue was associated with the risk of clinical recurrence at a false discovery rate of 10%. The sequences of the microRNAs listed in Tables 15-21 are shown in Table B.









TABLE 15







MicroRNAs Associated with Clinical Recurrence of Prostate Cancer Primary Gleason Pattern Tumor Tissue









Absolute Standardized Hazard Ratio
















q-valuea
Direction of
Uncorrected
95% Confidence
Max. Lower
RM-Corrected


MicroRNA
p-value
(FDR)
Associationb
Estimate
Interval
Bound @10% FDR
Estimatec

















hsa-miR-93
<0.0001
0.0%
(+)
1.79
(1.38, 2.32)
1.19
1.51


hsa-miR-106b
<0.0001
0.1%
(+)
1.80
(1.38, 2.34)
1.19
1.51


hsa-miR-30e-5p
<0.0001
0.1%
(−)
1.63
(1.30, 2.04)
1.18
1.46


hsa-miR-21
<0.0001
0.1%
(+)
1.66
(1.31, 2.09)
1.18
1.46


hsa-miR-133a
<0.0001
0.1%
(−)
1.72
(1.33, 2.21)
1.18
1.48


hsa-miR-449a
<0.0001
0.1%
(+)
1.56
(1.26, 1.92)
1.17
1.42


hsa-miR-30a
0.0001
0.1%
(−)
1.56
(1.25, 1.94)
1.16
1.41


hsa-miR-182
0.0001
0.2%
(+)
1.74
(1.31, 2.31)
1.17
1.45


hsa-miR-27a
0.0002
0.2%
(+)
1.65
(1.27, 2.14)
1.16
1.43


hsa-miR-222
0.0006
0.5%
(−)
1.47
(1.18, 1.84)
1.12
1.35


hsa-miR-103
0.0036
2.1%
(+)
1.77
(1.21, 2.61)
1.12
1.36


hsa-miR-1
0.0037
2.2%
(−)
1.32
(1.10, 1.60)
1.07
1.26


hsa-miR-145
0.0053
2.9%
(−)
1.34
(1.09, 1.65)
1.07
1.27


hsa-miR-141
0.0060
3.2%
(+)
1.43
(1.11, 1.84)
1.07
1.29


hsa-miR-92a
0.0104
4.8%
(+)
1.32
(1.07, 1.64)
1.05
1.25


hsa-miR-22
0.0204
7.7%
(+)
1.31
(1.03, 1.64)
1.03
1.23


hsa-miR-29b
0.0212
7.9%
(+)
1.36
(1.03, 1.76)
1.03
1.24


hsa-miR-210
0.0223
8.2%
(+)
1.33
(1.03, 1.70)
1.00
1.23


hsa-miR-486-5p
0.0267
9.4%
(−)
1.25
(1.00, 1.53)
1.00
1.20


hsa-miR-19b
0.0280
9.7%
(−)
1.24
(1.00, 1.50)
1.00
1.19


hsa-miR-205
0.0289
10.0%
(−)
1.25
(1.00, 1.53)
1.00
1.20






aThe q-value is the empirical Bayes probability that the microRNA's association with clinical recurrence is a false discovery, given the data.




bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of clinical recurrence.




cRM: regression to the mean.














TABLE 16







MicroRNAs Associated with Clinical Recurrence of Prostate Cancer Highest Gleason Pattern Tumor Tissue









Absolute Standardized Hazard Ratio
















q-valuea
Direction of
Uncorrected
95% Confidence
Max. Lower
RM-Corrected


MicroRNA
p-value
(FDR)
Associationb
Estimate
Interval
Bound @10% FDR
Estimatec

















hsa-miR-93
<0.0001
0.0%
(+)
1.91
(1.48, 2.47)
1.24
1.59


hsa-miR-449a
<0.0001
0.0%
(+)
1.75
(1.40, 2.18)
1.23
1.54


hsa-miR-205
<0.0001
0.0%
(−)
1.53
(1.29, 1.81)
1.20
1.43


hsa-miR-19b
<0.0001
0.0%
(−)
1.37
(1.19, 1.57)
1.15
1.32


hsa-miR-106b
<0.0001
0.0%
(+)
1.84
(1.39, 2.42)
1.22
1.51


hsa-miR-21
<0.0001
0.0%
(+)
1.68
(1.32, 2.15)
1.19
1.46


hsa-miR-30a
0.0005
0.4%
(−)
1.44
(1.17, 1.76)
1.13
1.33


hsa-miR-30e-5p
0.0010
0.6%
(−)
1.37
(1.14, 1.66)
1.11
1.30


hsa-miR-133a
0.0015
0.8%
(−)
1.57
(1.19, 2.07)
1.13
1.36


hsa-miR-1
0.0016
0.8%
(−)
1.42
(1.14, 1.77)
1.11
1.31


hsa-miR-103
0.0021
1.1%
(+)
1.69
(1.21, 2.37)
1.13
1.37


hsa-miR-210
0.0024
1.2%
(+)
1.43
(1.13, 1.79)
1.11
1.31


hsa-miR-182
0.0040
1.7%
(+)
1.48
(1.13, 1.93)
1.11
1.31


hsa-miR-27a
0.0055
2.1%
(+)
1.46
(1.12, 1.91)
1.09
1.30


hsa-miR-222
0.0093
3.2%
(−)
1.38
(1.08, 1.77)
1.08
1.27


hsa-miR-331
0.0126
3.9%
(+)
1.38
(1.07, 1.77)
1.07
1.26


hsa-miR-191*
0.0143
4.3%
(+)
1.38
(1.06, 1.78)
1.07
1.26


hsa-miR-425
0.0151
4.5%
(+)
1.40
(1.06, 1.83)
1.07
1.26


hsa-miR-31
0.0176
5.1%
(−)
1.29
(1.04, 1.60)
1.05
1.22


hsa-miR-92a
0.0202
5.6%
(+)
1.31
(1.03, 1.65)
1.05
1.23


hsa-miR-155
0.0302
7.6%
(−)
1.32
(1.00, 1.69)
1.03
1.22


hsa-miR-22
0.0437
9.9%
(+)
1.30
(1.00, 1.67)
1.00
1.21






aThe q-value is the empirical Bayes probability that the microRNA's association with death due to prostate cancer is a false discovery, given the data.




bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of clinical recurrence.




cRM: regression to the mean.







Table 17 shows microRNAs assayed from primary Gleason pattern tissue that were identified as being associated with the risk of prostate-cancer-specific death, with a false discovery rate of 10%. Table 18 shows the corresponding analysis for microRNAs assayed from highest Gleason pattern tissue. No microRNA assayed from normal adjacent tissue was associated with the risk of prostate-cancer-specific death at a false discovery rate of 10%.









TABLE 17







MicroRNAs Associated with Death Due to Prostate Cancer Primary Gleason Pattern Tumor Tissue









Absolute Standardized Hazard Ratio
















q-valuea
Direction of
Uncorrected
95% Confidence
Max. Lower
RM-Corrected


MicroRNA
p-value
(FDR)
Associationb
Estimate
Interval
Bound @10% FDR
Estimatec

















hsa-miR-30e-5p
0.0001
0.6%
(−)
1.88
(1.37, 2.58)
1.15
1.46


hsa-miR-30a
0.0001
0.7%
(−)
1.78
(1.33, 2.40)
1.14
1.44


hsa-miR-133a
0.0005
1.2%
(−)
1.85
(1.31, 2.62)
1.13
1.41


hsa-miR-222
0.0006
1.4%
(−)
1.65
(1.24, 2.20)
1.12
1.38


hsa-miR-106b
0.0024
2.7%
(+)
1.85
(1.24, 2.75)
1.11
1.35


hsa-miR-1
0.0028
3.0%
(−)
1.43
(1.13, 1.81)
1.08
1.30


hsa-miR-21
0.0034
3.3%
(+)
1.63
(1.17, 2.25)
1.09
1.33


hsa-miR-93
0.0044
3.9%
(+)
1.87
(1.21, 2.87)
1.09
1.32


hsa-miR-26a
0.0072
5.3%
(−)
1.47
(1.11, 1.94)
1.07
1.29


hsa-miR-152
0.0090
6.0%
(−)
1.46
(1.10, 1.95)
1.06
1.28


hsa-miR-331
0.0105
6.5%
(+)
1.46
(1.09, 1.96)
1.05
1.27


hsa-miR-150
0.0159
8.3%
(+)
1.51
(1.07, 2.10)
1.03
1.27


hsa-miR-27b
0.0160
8.3%
(+)
1.97
(1.12, 3.42)
1.05
1.25






aThe q-value is the empirical Bayes probability that the microRNA's association with death due to prostate cancer endpoint is a false discovery, given the data.




bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of death due to prostate cancer.




cRM: regression to the mean.














TABLE 18







MicroRNAs Associated with Death Due to Prostate Cancer Highest Gleason Pattern Tumor Tissue









Absolute Standardized Hazard Ratio
















q-valuea
Direction of
Uncorrected
95% Confidence
Max. Lower
RM-Corrected


MicroRNA
p-value
(FDR)
Associationb
Estimate
Interval
Bound @10% FDR
Estimatec

















hsa-miR-27b
0.0016
6.1%
(+)
2.66
(1.45, 4.88)
1.07
1.32


hsa-miR-21
0.0020
6.4%
(+)
1.66
(1.21, 2.30)
1.05
1.34


hsa-miR-10a
0.0024
6.7%
(+)
1.78
(1.23, 2.59)
1.05
1.34


hsa-miR-93
0.0024
6.7%
(+)
1.83
(1.24, 2.71)
1.05
1.34


hsa-miR-106b
0.0028
6.8%
(+)
1.79
(1.22, 2.63)
1.05
1.33


hsa-miR-150
0.0035
7.1%
(+)
1.61
(1.17, 2.22)
1.05
1.32


hsa-miR-1
0.0104
9.0%
(−)
1.52
(1.10, 2.09)
1.00
1.28






aThe q-value is the empirical Bayes probability that the microRNA's association with clinical endpoint is a false discovery, given the data.




bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of death due to prostate cancer.




cRM: regression to the mean.







Table 19 and Table 20 shows the microRNAs that can be identified as being associated with the risk of clinical recurrence while adjusting for the clinical and pathology covariates of biopsy Gleason score, baseline PSA level, and clinical T-stage. The distributions of these covariates are shown in FIG. 1. Fifteen (15) of the microRNAs identified in Table 15 are also present in Table 19, indicating that these microRNAs have predictive value for clinical recurrence that is independent of the Gleason score, baseline PSA, and clinical T-stage.


Two microRNAs assayed from primary Gleason pattern tumor tissue were found that had predictive value for death due to prostate cancer independent of Gleason score, baseline PSA, and clinical T-stage (Table 21).









TABLE 19







MicroRNAs Associated with Clinical Recurrence of Prostate Cancer Adjusting for Biopsy Gleason


Score, Baseline PSA Level, and Clinical T-Stage Primary Gleason Pattern Tumor Tissue









Absolute Standardized Hazard Ratio
















q-valuea
Direction of
Uncorrected
95% Confidence
Max. Lower
RM-Corrected


MicroRNA
p-value
(FDR)
Associationb
Estimate
Interval
Bound @10% FDR
Estimatec

















hsa-miR-30e-5p
<0.0001
0.0%
(−)
1.80
(1.42, 2.27)
1.23
1.53


hsa-miR-30a
<0.0001
0.0%
(−)
1.75
(1.40, 2.19)
1.22
1.51


hsa-miR-93
<0.0001
0.1%
(+)
1.70
(1.32, 2.20)
1.19
1.44


hsa-miR-449a
0.0001
0.1%
(+)
1.54
(1.25, 1.91)
1.17
1.39


hsa-miR-133a
0.0001
0.1%
(−)
1.58
(1.25, 2.00)
1.17
1.39


hsa-miR-27a
0.0002
0.1%
(+)
1.66
(1.28, 2.16)
1.17
1.41


hsa-miR-21
0.0003
0.2%
(+)
1.58
(1.23, 2.02)
1.16
1.38


hsa-miR-182
0.0005
0.3%
(+)
1.56
(1.22, 1.99)
1.15
1.37


hsa-miR-106b
0.0008
0.5%
(+)
1.57
(1.21, 2.05)
1.15
1.36


hsa-miR-222
0.0028
1.1%
(−)
1.39
(1.12, 1.73)
1.11
1.28


hsa-miR-103
0.0048
1.7%
(+)
1.69
(1.17, 2.43)
1.13
1.32


hsa-miR-486-5p
0.0059
2.0%
(−)
1.34
(1.09, 1.65)
1.09
1.25


hsa-miR-1
0.0083
2.7%
(−)
1.29
(1.07, 1.57)
1.07
1.23


hsa-miR-141
0.0088
2.8%
(+)
1.43
(1.09, 1.87)
1.09
1.27


hsa-miR-200c
0.0116
3.4%
(+)
1.39
(1.07, 1.79)
1.07
1.25


hsa-miR-145
0.0201
5.1%
(−)
1.27
(1.03, 1.55)
1.05
1.20


hsa-miR-206
0.0329
7.2%
(−)
1.40
(1.00, 1.91)
1.05
1.23


hsa-miR-29b
0.0476
9.4%
(+)
1.30
(1.00, 1.69)
1.00
1.20






aThe q-value is the empirical Bayes probability that the microRNA's association with clinical recurrence is a false discovery, given the data.




bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of clinical recurrence.




cRM: regression to the mean.














TABLE 20







MicroRNAs Associated with Clinical Recurrence of Prostate Cancer Adjusting for Biopsy Gleason


Score, Baseline PSA Level, and Clinical T-Stage Highest Gleason Pattern Tumor Tissue









Absolute Standardized Hazard Ratio
















q-valuea
Direction of
Uncorrected
95% Confidence
Max. Lower
RM-Corrected


MicroRNA
p-value
(FDR)
Associationb
Estimate
Interval
Bound @10% FDR
Estimatec

















hsa-miR-30a
<0.0001
0.0%
(−)
1.62
(1.32, 1.99)
1.20
1.43


hsa-miR-30e-5p
<0.0001
0.0%
(−)
1.53
(1.27, 1.85)
1.19
1.39


hsa-miR-93
<0.0001
0.0%
(+)
1.76
(1.37, 2.26)
1.20
1.45


hsa-miR-205
<0.0001
0.0%
(−)
1.47
(1.23, 1.74)
1.18
1.36


hsa-miR-449a
0.0001
0.1%
(+)
1.62
(1.27, 2.07)
1.18
1.38


hsa-miR-106b
0.0003
0.2%
(+)
1.65
(1.26, 2.16)
1.17
1.36


hsa-miR-133a
0.0005
0.2%
(−)
1.51
(1.20, 1.90)
1.16
1.33


hsa-miR-1
0.0007
0.3%
(−)
1.38
(1.15, 1.67)
1.13
1.28


hsa-miR-210
0.0045
1.2%
(+)
1.35
(1.10, 1.67)
1.11
1.25


hsa-miR-182
0.0052
1.3%
(+)
1.40
(1.10, 1.77)
1.11
1.26


hsa-miR-425
0.0066
1.6%
(+)
1.48
(1.12, 1.96)
1.12
1.26


hsa-miR-155
0.0073
1.8%
(−)
1.36
(1.09, 1.70)
1.10
1.24


hsa-miR-21
0.0091
2.1%
(+)
1.42
(1.09, 1.84)
1.10
1.25


hsa-miR-222
0.0125
2.7%
(−)
1.34
(1.06, 1.69)
1.09
1.23


hsa-miR-27a
0.0132
2.8%
(+)
1.40
(1.07, 1.84)
1.09
1.23


hsa-miR-191*
0.0150
3.0%
(+)
1.37
(1.06, 1.76)
1.09
1.23


hsa-miR-103
0.0180
3.4%
(+)
1.45
(1.06, 1.98)
1.09
1.23


hsa-miR-31
0.0252
4.3%
(−)
1.27
(1.00, 1.57)
1.07
1.19


hsa-miR-19b
0.0266
4.5%
(−)
1.29
(1.00, 1.63)
1.07
1.20


hsa-miR-99a
0.0310
5.0%
(−)
1.26
(1.00, 1.56)
1.06
1.18


hsa-miR-92a
0.0348
5.4%
(+)
1.31
(1.00, 1.69)
1.06
1.19


hsa-miR-146b-5p
0.0386
5.8%
(−)
1.29
(1.00, 1.65)
1.06
1.19


hsa-miR-145
0.0787
9.7%
(−)
1.23
(1.00, 1.55)
1.00
1.15






aThe q-value is the empirical Bayes probability that the microRNA's association with clinical clinical recurrence is a false discovery, given the data.




bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of clinical recurrence.




cRM: regression to the mean.














TABLE 21







MicroRNAs Associated with Death Due to Prostate Cancer Adjusting for Biopsy Gleason


Score, Baseline PSA Level, and Clinical T-Stage Primary Gleason Pattern Tumor Tissue









Absolute Standardized Hazard Ratio
















q-valuea
Direction of
Uncorrected
95% Confidence
Max. Lower
RM-Corrected


MicroRNA
p-value
(FDR)
Associationb
Estimate
Interval
Bound @10% FDR
Estimatec

















hsa-miR-30e-5p
0.0001
2.9%
(−)
1.97
(1.40, 2.78)
1.09
1.39


hsa-miR-30a
0.0002
3.3%
(−)
1.90
(1.36, 2.65)
1.08
1.38






aThe q-value is the empirical Bayes probability that the microRNA's association with clinical recurrence is a false discovery, given the data.




bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of clinical recurrence.




cRM: regression to the mean.







Accordingly, the normalized expression levels of hsa-miR-93; hsa-miR-106b; hsa-miR-21; hsa-miR-449a; hsa-miR-182; hsa-miR-27a; hsa-miR-103; hsa-miR-141; hsa-miR-92a; hsa-miR-22; hsa-miR-29b; hsa-miR-210; hsa-miR-331; hsa-miR-191; hsa-miR-425; and hsa-miR-200c are positively associated with an increased risk of recurrence; and hsa-miR-30e-5p; hsa-miR-133a; hsa-miR-30a; hsa-miR-222; hsa-miR-1; hsa-miR-145; hsa-miR-486-5p; hsa-miR-19b; hsa-miR-205; hsa-miR-31; hsa-miR-155; hsa-miR-206; hsa-miR-99a; and hsa-miR-146b-5p are negatively associated with an increased risk of recurrence.


Furthermore, the normalized expression levels of hsa-miR-106b; hsa-miR-21; hsa-miR-93; hsa-miR-331; hsa-miR-150; hsa-miR-27b; and hsa-miR-10a are positively associated with an increased risk of prostate cancer specific death; and the normalized expression levels of hsa-miR-30e-5p; hsa-miR-30a; hsa-miR-133a; hsa-miR-222; hsa-miR-1; hsa-miR-26a; and hsa-miR-152 are negatively associated with an increased risk of prostate cancer specific death.


Table 22 shows the number of microRNA-gene pairs that were grouped in each tier (Tiers 1-4) and the number and percentage of those that were predictive of clinical recurrence at a false discovery rate of 10%.











TABLE 22







Number of Pairs Predictive



Total Number of
of Clinical Recurrence at


Tier
MicroRNA-Gene Pairs
False Discovery Rate 10% (%)


















Tier 1
80
46
(57.5%)


Tier 2
719
591
(82.2%)


Tier 3
3,850
2,792
(72.5%)


Tier 4
54,724
38,264
(69.9%)

























TABLE A







SEQ

SEQ

SEQ

SEQ



Official
Accession
ID
Forward
ID
Reverse
ID

ID



Symbol:
Number:
NO
Primer Sequence:
NO
Primer Sequence:
NO
Probe Sequence:
NO
Amplicon Sequence:
























AAMP
NM_001087
1
GTGTGGCAGGTGGACACTAA
2
CTCCATCCACTCCAGGTCTC
3
CGCTTCAAAGGACCAGACCTCCTC
4
GTGTGGCAGGTGGACACTAAGGAGGAGGTCTGGTCCTT











TGAAGCGGGAGACCTGGAGTGGATGGAG





ABCA5
NM_172232
5
GGTATGGATCCCAAAGCCA
6
CAGCCCGCTTTCTGTTTTTA
7
CACATGTGGCGAGCAATTCGAACT
8
GGTATGGATCCCAAAGCCAAACAGCACATGTGGCGAGC











AATTCGAACTGCATTTAAAAACAGAAAGCGGGCTG





ABCB1
NM_000927
9
AAACACCACTGGAGCATTGA
10
CAAGCCTGGAACCTATAGCC
11
CAAGCCTGGAACCTATAGCC
12
AAACACCACTGGAGCATTGACTACCAGGCTCGCCAATG











ATGCTGCTCAAGTTAAAGGGGCTATAGGTTCCAGGCTT











G





ABCC1
NM_004996
13
TCATGGTGCCCGTCAATG
14
CGATTGTCTTTGCTCTTCAT
15
ACCTGATACGTCTTGGTCTTCATC
16
TCATGGTGCCCGTCAATGCTGTGATGGCGATGAAGACC







GTG

GCCAT

AAGACGTATCAGGTGGCCCACATGAAGAGCAAAGACAA











TCG





ABCC3
NM_003786
17
TCATCCTGGCGATCTACTTC
18
CCGTTGAGTGGAATCAGCAA
19
TCTGTCCTGGCTGGAGTCGCTTTC
20
TCATCCTGGCGATCTACTTCCTCTGGCAGAACCTAGGT





CT



AT

CCCTCTGTCCTGGCTGGAGTCGCTTTCATGGTCTTGCT











GATTCCACTCAACGG





ABCC4
NM_005845
21
AGCGCCTGGAATCTACAACT
22
AGAGCCCCTGGAGAGAAGAT
23
CGGAGTCCAGTGTTTTCCCACTTA
24
AGCGCCTGGAATCTACAACTCGGAGTCCAGTGTTTTCC











CACTTATCATCTTCTCTCCAGGGGCTCT





ABCC8
NM_000352
25
CGTCTGTCACTGTGGAGTGG
26
TGATCCGGTTTAGCAGGC
27
AGTCTCTTGGCCACCTTCAGCCCT
28
CGTCTGTCACTGTGGAGTGGACAGGGCTGAAGGTGGCC











AAGAGACTGCACCGCAGCCTGCTAAACCGGATCA





ABCG2
NM_004827
29
GGTCTCAACGCCATCCTG
30
CTTGGATCTTTCCTTGCAGC
31
ACGAAGATTTGCCTCCACCTGTGG
32
GGTCTCAACGCCATCCTGGGACCCACAGGTGGAGGCAA











ATCTTCGTTATTAGATGTCTTAGCTGCAAGGAAAGATC











CAAG





ABHD2
NM_007011
33
GTAGTGGGTCTGCATGGATG
34
TGAGGGTTGGCACTCAGG
35
CAGGTGGCTCCTTTGATCCCTGA
36
GTAGTGGGTCTGCATGGATGTTTCAGGGATCAAAGGAG





T





CCACCTGGGCGCCTGAGTGCCAACCCTCA





ACE
NM_000789
37
CCGCTGTACGAGGATTTCA
38
CCGTGTCTGTGAAGCCGT
39
TGCCCTCAGCAATGAAGCCTACAA
40
CCGCTGTACGAGGATTTCACTGCCCTCAGCAATGAAGC











CTACAAGCAGGACGGCTTCACAGACACGG





ACOX2
NM_003500
41
ATGGAGGTGCCCAGAACAC
42
ACTCCGGGTAACTGTGGATG
43
TGCTCTCAACTTTCCTGCGGAGTG
44
ATGGAGGTGCCCAGAACACTGCACTCCGCAGGAAAGTT











GAGAGCATCATCCACAGTTACCCGGAGT





ACTR2
NM_005722
45
ATCCGCATTGAAGACCCA
46
ATCCGCTAGAACTGCACCAC
47
CCCGCAGAAAGCACATGGTATTCC
48
ATCCGCATTGAAGACCCACCCCGCAGAAAGCACATGGT











ATTCCTGGGTGGTGCAGTTCTAGCGGAT





ADAM15
NM_003815
49
GGCGGGATGTGGTAACAG
50
ATTTCTGGGCCTCCGAGT
51
TCAGCCACAATCACCAACTCCACA
52
GGCGGGATGTGGTAACAGAGACCAAGACTGTGGAGTTG











GTGATTGTGGCTGATCACTCGGAGGCCCAGAAAT





ADAMTS1
NM_006988
53
GGACAGGTGCAAGCTCATCTG
54
ATCTACAACCTTGGGCTGCA
55
CAAGCCAAAGGCATTGGCTACTTC
56
GGACAGGTGCAAGCTCATCTGCCAAGCCAAAGGCATTG







A

TTCG

GCTACTTCTTCGTTTTGCAGCCCAAGGTTGTAGAT





ADH5
NM_000671
57
ATGCTGTCATCATTGTCACG
58
CTGCTTCCTTTCCCTTTCC
59
TGTCTGCCCATTATCTTCATTCTG
60
ATGCTGTCATCATTGTCACGGTTTGTCTGCCCATTATC









CAA

TTCATTCTGCAAGGGAAAGGGAAAGGAAGCAG





AFAP1
NM_198595
61
GATGTCCATCCTTGAAACAGC
62
CAACCCTGATGCCTGGAG
63
CCTCCAGTGCTGTGTTCCCAGAAG
64
GATGTCCATCCTTGAAACAGCCTCTTCTGGGAACACAG











CACTGGAGGTCTCCAGGCATCAGGGTTG





AGTR1
NM_000685
65
AGCATTGATCGATACCTGGC
66
CTACAAGCATTGTGCGTCG
67
ATTGTTCACCCAATGAAGTCCCGC
68
AGCATTGATCGATACCTGGCTATTGTTCACCCAATGAA











GTCCCGCCTTCGACGCACAATGCTTGTAG





AGTR2
NM_000686
69
ACTGGCATAGGAAATGGTATC
70
ATTGACTGGGTCTCTTTGCC
71
CCACCCAGACCCCATGTAGCAAAA
72
ACTGGCATAGGAAATGGTATCCAGAATGGAATTTTGCT





C





ACATGGGGTCTGGGTGGGGGCAAAGAGACCCAGTCAAT





AIG1
NM_016108
73
CGACGGTTCTGCCCTTTAT
74
TGCTCCTGCTGGGATACTG
75
AATCGAGATGAGGACATCGCACCA
76
CGACGGTTCTGCCCTTTATATTAATCGAGATGAGGACA











TCGCACCATCAGTATCCCAGCAGGAGCA





AKAP1
NM_003488
77
TGTGGTTGGAGATGAAGTGG
78
GTCTACCCACTGGGCAAGG
79
CTCCACCAGGGACCGGTTTATCAA
80
TGTGGTTGGAGATGAAGTGGTGTTGATAAACCGGTCCC











TGGTGGAGCGAGGCCTTGCCCAGTGGGTAGAC





AKR1C1
BC040210
81
GTGTGTGAAGCTGAATGATGG
82
CTCTGCAGGCGCATAGGT
83
CCAAATCCCAGGACAGGCATGAAG
84
GTGTGTGAAGCTGAATGATGGTCACTTCATGCCTGTCC











TGGGATTTGGCACCTATGCGCCTGCAGAG





AKR1C3
NM_003739
85
GCTTTGCCTGATGTCTACCAG
86
GTCCAGTCACCGGCATAGAG
87
TGCGTCACCATCCACACACAGGG
88
GCTTTGCCTGATGTCTACCAGAAGCCCTGTGTGTGGAT





AA

A



GGTGACGCAGAGGACGTCTCTATGCCGGTGACTGGAC





AKT1
NM_005163
89
CGCTTCTATGGCGCTGAGAT
90
TCCCGGTACACCACGTTCTT
91
CAGCCCTGGACTACCTGCACTCGG
92
CGCTTCTATGGCGCTGAGATTGTGTCAGCCCTGGACTA











CCTGCACTCGGAGAAGAACGTGGTGTACCGGGA





AKT2
NM_001626
93
TCCTGCCACCCTTCAAACC
94
GGCGGTAAATTCATCATCGA
95
CAGGTCACGTCCGAGGTCGACACA
96
TCCTGCCACCCTTCAAACCTCAGGTCACGTCCGAGGTC







A



GACACAAGGTACTTCGATGATGAATTTACCGCC





AKT3
NM_005465
97
TTGTCTCTGCCTTGGACTATC
98
CCAGCATTAGATTCTCCAAC
99
TCACGGTACACAATCTTTCCGGA
100
TTGTCTCTGCCTTGGACTATCTACATTCCGGAAAGATT





TACA

TTGA



GTGTACCGTGATCTCAAGTTGGAGAATCTAATGCTGG





ALCAM
NM_001627
101
GAGGAATATGGAATCCAAGGG
102
GTGGCGGAGATCAAGAGG
103
CCAGTTCCTGCCGTCTGCTCTTCT
104
GAGGAATATGGAATCCAAGGGGGCCAGTTCCTGCCGTC











TGCTCTTCTGCCTCTTGATCTCCGCCAC





ALDH18A1
NM_002860
105
GATGCAGCTGGAACCCAA
106
CTCCAGCTCAGTGGGGAA
107
CCTGAAACTTGCATCTCCTGCTGC
108
GATGCAGCTGGAACCCAAGCTGCAGCAGGAGATGCAAG











TTTCAGGATGTTCCCCACTGAGCTGGAG





ALDH1A2
NM_170696
109
CACGTCTGTCCCTCTCTGCT
110
GACCGTGGCTCAACTTTGTA
111
TCTCTGTAGGGCCCAGCTCTCAGG
112
CACGTCTGTCCCTCTCTGCTTTCTCTGTAGGGCCCAGC







T



TCTCAGGAATACAAAGTTGAGCCACGGTC





ALKBH3
NM_139178
113
TCGCTTAGTCTGCACCTCAAC
114
TCTGAGCCCCAGTTTTTCC
115
TAAACAGGGCAGTCACTTTCCGCA
116
TCGCTTAGTCTGCACCTCAACCGTGCGGAAAGTGACTG











CCCTGTTTACTGAGGAAAAACTGGGGCTCAGA





ALOX12
NM_000697
117
AGTTCCTCAATGGTGCCAAC
118
AGCACTAGCCTGGAGGGC
119
CATGCTGTTGAGACGCTCGACCTC
120
AGTTCCTCAATGGTGCCAACCCCATGCTGTTGAGACGC











TCGACCTCTCTGCCCTCCAGGCTAGTGCT





ALOX5
NM_000698
121
GAGCTGCAGGACTTCGTGA
122
GAAGCCTGAGGACTTGCG
123
CCGCATGCCGTACACGTAGACATC
124
GAGCTGCAGGACTTCGTGAACGATGTCTACGTGTACGG











CATGCGGGGCCGCAAGTCCTCAGGCTTC





AMACR
NM_203382
125
GTCTCTGGGCTGTCAGCTTT
126
TGGGTATAAGATCCAGAACT
127
TCCATGTGTTTGATTTCTCCTCAG
128
GTCTCTGGGCTGTCAGCTTTCCTTTCTCCATGTGTTTG







TGC

GC

ATTTCTCCTCAGGCTGGTAGCAAGTTCTGGATCTTATA











CCCA





AMPD3
NM_000480
129
TGGTTCATCCAGCACAAGG
130
CATAAATCCGGGGCACCT
131
TACTCTCCCAACATGCGCTGGATC
132
TGGTTCATCCAGCACAAGGTCTACTCTCCCAACATGCG











CTGGATCATCCAGGTGCCCCGGATTTATG





ANGPT2
NM_001147
133
CCGTGAAAGCTGCTCTGTAA
134
TTGCAGTGGGAAGAACAGTC
135
AAGCTGACACAGCCCTCCCAAGTG
136
CCGTGAAAGCTGCTCTGTAAAAGCTGACACAGCCCTCC











CAAGTGAGCAGGACTGTTCTTCCCACTGCAA





ANLN
NM_018685
137
TGAAAGTCCAAAACCAGGAA
138
CAGAACCAAGGCTATCACCA
139
CCAAAGAACTCGTGTCCCTCGAGC
140
TGAAAGTCCAAAACCAGGAAAATTCCAAAGAACTCGTG











TCCCTCGAGCTGAATCTGGTGATAGCCTTGGTTCTG





ANPEP
NM_001150
141
CCACCTTGGACCAAAGTAAAG
142
TCTCAGCGTCACCTGGTAGG
143
CTCCCCAACACGCTGAAACCCG
144
CCACCTTGGACCAAAGTAAAGCGTGGAATCGTTACCGC





C

A



CTCCCCAACACGCTGAAACCCGATTCCTACCGGGTGAC











GCTGAGA





ANXA2
NM_004039
145
CAAGACACTAAGGGCGACTAC
146
CGTGTCGGGCTTCAGTCAT
147
CCACCACACAGGTACAGCAGCGCT
148
CAAGACACTAAGGGCGACTACCAGAAAGCGCTGCTGTA





CA





CCTGTGTGGTGGAGATGACTGAAGCCCGACACG





APC
NM_000038
149
GGACAGCAGGAATGTGTTTC
150
ACCCACTCGATTTGTTTCTG
151
CATTGGCTCCCCGTGACCTGTA
152
GGACAGCAGGAATGTGTTTCTCCATACAGGTCACGGGG











AGCCAATGGTTCAGAAACAAATCGAGTGGGT





APEX1
NM_001641
153
GATGAAGCCTTTCGCAAGTT
154
AGGTCTCCACACAGCACAAG
155
CTTTCGGGAAGCCAGGCCCTT
156
GATGAAGCCTTTCGCAAGTTCCTGAAGGGCCTGGCTTC











CCGAAAGCCCCTTGTGCTGTGTGGAGACCT





APOC1
NM_001645
157
CCAGCCTGATAAAGGTCCTG
158
CACTCTGAATCCTTGCTGGA
159
AGGACAGGACCTCCCAACCAAGC
160
CCAGCCTGATAAAGGTCCTGCGGGCAGGACAGGACCTC











CCAACCAAGCCCTCCAGCAAGGATTCAGAGTG





APOE
NM_000041
161
GCCTCAAGAGCTGGTTCG
162
CCTGCACCTTCTCCACCA
163
ACTGGCGCTGCATGTCTTCCAC
164
GCCTCAAGAGCTGGTTCGAGCCCCTGGTGGAAGACATG











CAGCGCCAGTGGGCCGGGCTGGTGGAGAAGGTGCAGG





APRT
NM_000485
165
GAGGTCCTGGAGTGCGTG
166
AGGTGCCAGCTTCTCCCT
167
CCTTAAGCGAGGTCAGCTCCACCA
168
GAGGTCCTGGAGTGCGTGAGCCTGGTGGAGCTGACCTC











GCTTAAGGGCAGGGAGAAGCTGGCACCT





AQP2
NM_000486
169
GTGTGGGTGCCAGTCCTC
170
CCCTTCAGCCCTCTCAAAG
171
CTCCTTCCCTTCCCCTTCTCCTGA
172
GTGTGGGTGCCAGTCCTCCTCAGGAGAAGGGGAAGGGA











AGGAGGCCACTTTGAGAGGGCTGAAGGG





AR
NM_000044
173
CGACTTCACCGCACCTGAT
174
TGACACAAGTGGGACTGGGA
175
ACCATGCCGCCAGGGTACCACA
176
CGACTTCACCGCACCTGATGTGTGGTACCCTGGCGGCA







TA



TGGTGAGCAGAGTGCCCTATCCCAGTCCCACTTGTGTC











A





ARF1
NM_001658
177
CAGTAGAGATCCCCGCAACT
178
ACAAGCACATGGCTATGGAA
179
CTTGTCCTTGGGTCACCCTGCA
180
CAGTAGAGATCCCCGCAACTCGCTTGTCCTTGGGTCAC











CCTGCATTCCATAGCCATGTGCTTGT





ARHGAP29
NM_004815
181
CACGGTCTCGTGGTGAAGT
182
CAGTTGCTTGCCCAGGAC
183
ATGCCAGACCCAGACAAAGCATCA
184
CACGGTCTCGTGGTGAAGTCAATGCCAGACCCAGACAA











AGCATCAGCTTGTCCTGGGCAAGCAACTG





ARHGDIB
NM_001175
185
TGGTCCCTAGAACAAGAGGC
186
TGATGGAGGATCAGAGGGAG
187
TAAAACCGGGCTTTCACCCAACCT
188
TGGTCCCTAGAACAAGAGGCTTAAAACCGGGCTTTCAC











CCAACCTGCTCCCTCTGATCCTCCATCA





ASAP2
NM_003887
189
CGGCCCATCAGCTTCTAC
190
CTCTGGCCAAAGATACAGCG
191
CTGGGCTCCAACCAGCTTCAGTCT
192
CGGCCCATCAGCTTCTACCAGCTGGGCTCCAACCAGCT











TCAGTCTAACGCTGTATCTTTGGCCAGAG





ASPN
NM_017680
193
TGGACTAATCTGTGGGAGCA
194
AAACACCCTTCAACACAGTC
195
AGTATCACCCAGGGTGCAGCCAC
196
TGGACTAATCTGTGGGAGCAGTTTATTCCAGTATCACC







C



CAGGGTGCAGCCACACCAGGACTGTGTTGAAGGGTGTT











T





ATM
NM_000051
197
TGCTTTCTACACATGTTCAGG
198
GTTGTGGATCGGCTCGTT
199
CCAGCTGTCTTCGACACTTCTCGC
200
TGCTTTCTACACATGTTCAGGGATTTTTCACCAGCTGT





G





CTTCGACACTTCTCGCAAACGAGCCGATCCACAAC





ATP5E
NM_006886
201
CCGCTTTCGCTACAGCAT
202
TGGGAGTATCGGATGTAGCT
203
TCCAGCCTGTCTCCAGTAGGCCAC
204
CCGCTTTCGCTACAGCATGGTGGCCTACTGGAGACAGG







G



CTGGACTCAGCTACATCCGATACTCCCA





ATP5J
NM_001003703
205
GTCGACCGACTGAAACGG
206
CTCTACTTCCGGCCCTGG
207
CTACCCGCCATCGCAATGCATTAT
208
GTCGACCGACTGAAACGGCGGCCCATAATGCATTGCGA











TGGCGGGTAGGCGTGTGGGGGCGGAGCCAGGGCCGGAA











GTAGAG





ATXN1
NM_000332
209
GATCGACTCCAGCACCGTAG
210
GAACTGTATCACGGCCACG
211
CGGGCTATGGCTGTCTTCAATCCT
212
GATCGACTCCAGCACCGTAGAGAGGATTGAAGACAGCC











ATAGCCCGGGCGTGGCCGTGATACAGTTC





AURKA
NM_003600
213
CATCTTCCAGGAGGACCACT
214
TCCGACCTTCAATCATTTCA
215
CTCTGTGGCACCCTGGACTACCTG
216
CATCTTCCAGGAGGACCACTCTCTGTGGCACCCTGGAC











TACCTGCCCCCTGAAATGATTGAAGGTCGGA





AURKB
NM_004217
217
AGCTGCAGAAGAGCTGCACAT
218
GCATCTGCCAACTCCTCCAT
219
TGACGAGCAGCGAACAGCCACG
220
AGCTGCAGAAGAGCTGCACATTTGACGAGCAGCGAACA











GCCACGATCATGGAGGAGTTGGCAGATGC





AXIN2
NM_004655
221
GGCTATGTCTTTGCACCAGC
222
ATCCGTCAGCGCATCACT
223
ACCAGCGCCAACGACAGTGAGATA
224
GGCTATGTCTTTGCACCAGCCACCAGCGCCAACGACAG











TGAGATATCCAGTGATGCGCTGACGGAT





AZGP1
NM_001185
225
GAGGCCAGCTAGGAAGCAA
226
CAGGAAGGGCAGCTACTGG
227
TCTGAGATCCCACATTGCCTCCAA
228
GAGGCCAGCTAGGAAGCAAGGGTTGGAGGCAATGTGGG











ATCTCAGACCCAGTAGCTGCCCTTCCTG





BAD
NM_032989
229
GGGTCAGGGGCCTCGAGAT
230
CTGCTCACTCGGCTCAAACT
231
TGGGCCCAGAGCATGTTCCAGATC
232
GGGTCAGGGGCCTCGAGATCGGGCTTGGGCCCAGAGCA







C



TGTTCCAGATCCCAGAGTTTGAGCCGAGTGAGCAG





BAG5
NM_001015049
233
ACTCCTGCAATGAACCCTGT
234
ACAAACAGCTCCCCACGA
235
ACACCGGATTTAGCTCTTGTCGGC
236
ACTCCTGCAATGAACCCTGTTGACACCGGATTTAGCTC











TTGTCGGCCTTCGTGGGGAGCTGTTTGT





BAK1
NM_001188
237
CCATTCCCACCATTCTACCT
238
GGGAACATAGACCCACCAAT
239
ACACCCCAGACGTCCTGGCCT
240
CCATTCCCACCATTCTACCTGAGGCCAGGACGTCTGGG











GTGTGGGGATTGGTGGGTCTATGTTCCC





BAX
NM_004324
241
CCGCCGTGGACACAGACT
242
TTGCCGTCAGAAAACATGTC
243
TGCCACTCGGAAAAAGACCTCTCG
244
CCGCCGTGGACACAGACTCCCCCCGAGAGGTCTTTTTC







A

G

CGAGTGGCAGCTGACATGTTTTCTGACGGCAA





BBC3
NM_014417
245
CCTGGAGGGTCCTGTACAAT
246
CTAATTGGGCTCCATCTCG
247
CATCATGGGACTCCTGCCCTTACC
248
CCTGGAGGGTCCTGTACAATCTCATCATGGGACTCCTG











CCCTTACCCAGGGGCCACAGAGCCCCCGAGATGGAGCC











CAATTAG





BCL2
NM_000633
249
CAGATGGACCTAGTACCCACT
250
CCTATGATTTAAGGGCATTT
251
TTCCACGCCGAAGGACAGCGAT
252
CAGATGGACCTAGTACCCACTGAGATTTCCACGCCGAA





GAGA

TTCC



GGACAGCGATGGGAAAAATGCCCTTAAATCATAGG





BDKRB1
NM_000710
253
GTGGCAGAAATCTACCTGGC
254
GAAGGGCAAGCCCAAGAC
255
ACCTGGCAGCCTCTGATCTGGTGT
256
GTGGCAGAAATCTACCTGGCCAACCTGGCAGCCTCTGA











TCTGGTGTTTGTCTTGGGCTTGCCCTTC





BGN
NM_001711
257
GAGCTCCGCAAGGATGAC
258
CTTGTTGTTCACCAGGACGA
259
CAAGGGTCTCCAGCACCTCTACGC
260
GAGCTCCGCAAGGATGACTTCAAGGGTCTCCAGCACCT











CTACGCCCTCGTCCTGGTGAACAACAAG





BIK
NM_001197
261
ATTCCTATGGCTCTGCAATTG
262
GGCAGGAGTGAATGGCTCTT
263
CCGGTTAACTGTGGCCTGTGCCC
264
ATTCCTATGGCTCTGCAATTGTCACCGGTTAACTGTGG





TC

C



CCTGTGCCCAGGAAGAGCCATTCACTCCTGCC





BIN1
NM_004305
265
CCTGCAAAAGGGAACAAGAG
266
CGTGGTTGACTCTGATCTCG
267
CTTCGCCTCCAGATGGCTCCC
268
CCTGCAAAAGGGAACAAGAGCCCTTCGCCTCCAGATGG











CTCCCCTGCCGCCACCCCCGAGATCAGAGTCAACCACG





BIRC5
NM_001012271
269
TTCAGGTGGATGAGGAGACA
270
CACACAGCAGTGGCAAAAG
271
TCTGCCAGACGCTTCCTATCACTC
272
TTCAGGTGGATGAGGAGACAGAATAGAGTGATAGGAAG









TATTC

CGTCTGGCAGATACTCCTTTTGCCACTGCTGTGTG





BMP6
NM_001718
273
GTGCAGACCTTGGTTCACCT
274
CTTAGTTGGCGCACAGCAC
275
TGAACCCCGAGTATGTCCCCAAAC
276
GTGCAGACCTTGGTTCACCTTATGAACCCCGAGTATGT











CCCCAAACCGTGCTGTGCGCCAACTAAG





BMPR1B
NM_001203
277
ACCACTTTGGCCATCCCT
278
GCGGTGTTTGTACCCAGTG
279
ATTCACATTACCATAGCGGCCCCA
280
ACCACTTTGGCCATCCCTGCATTTGGGGCCGCTATGGT











AATGTGAATGCACTGGGTACAAACACCGC





BRCA1
NM_007294
281
TCAGGGGGCTAGAAATCTGT
282
CCATTCCAGTTGATCTGTGG
283
CTATGGGCCCTTCACCAACATGC
284
TCAGGGGGCTAGAAATCTGTTGCTATGGGCCCTTCACC











AACATGCCCACAGATCAACTGGAATGG





BRCA2
NM_000059
285
AGTTCGTGCTTTGCAAGATG
286
AAGGTAAGCTGGGTCTGCTG
287
CATTCTTCACTGCTTCATAAAGCT
288
AGTTCGTGCTTTGCAAGATGGTGCAGAGCTTTATGAAG









CTGCA

CAGTGAAGAATGCAGCAGACCCAGCTTACCTT





BTG1
NM_001731
289
GAGGTCCGAGCGATGTGA
290
AGTTATTTTCGAGACAGGAG
291
CGCTCGTCTCTTCCTCTCTCCTGC
292
GAGGTCCGAGCGATGTGACCAGGCCGCCATCGCTCGTC







GC



TCTTCCTCTCTCCTGCCGCCTCCTGTCTCGAAAATAAC











T





BTG3
NM_006806
293
CCATATCGCCCAATTCCA
294
CCAGTGATTCCGGTCACAA
295
CATGGGTACCTCCTCCTGGAATGC
296
CCATATCGCCCAATTCCAGTGACATGGGTACCTCCTCC











TGGAATGCATTGTGACCGGAATCACTGG





BTRC
NM_033637
297
GTTGGGACACAGTTGGTCTG
298
TGAAGCAGTCAGTTGTGCTG
299
CAGTCGGCCCAGGACGGTCTACT
300
GTTGGGACACAGTTGGTCTGCAGTCGGCCCAGGACGGT











CTACTCAGCACAACTGACTGCTTCA





BUB1
NM_004336
301
CCGAGGTTAATCCAGCACGTA
302
AAGACATGGCGCTCTCAGTT
303
TGCTGGGAGCCTACACTTGGCCC
304
CCGAGGTTAATCCAGCACGTATGGGGCCAAGTGTAGGC







C



TCCCAGCAGGAACTGAGAGCGCCATGTCTT





C7
NM_000587
305
ATGTCTGAGTGTGAGGCGG
306
AGGCCTTATGCTGGTGACAG
307
ATGCTCTGCCCTCTGCATCTCAGA
308
ATGTCTGAGTGTGAGGCGGGCGCTCTGAGATGCAGAGG











GCAGAGCATCTCTGTCACCAGCATAAGGCCT





CACNA1D
NM_000720
309
AGGACCCAGCTCCATGTG
310
CCTACATTCCGTGCCATTG
311
CAGTACACTGGCGTCCATTCCCTG
312
AGGACCCAGCTCCATGTGCGTTCTCAGGGAATGGACGC











CAGTGTACTGCCAATGGCACGGAATGTAGG





CADM1
NM_014333
313
CCACCACCATCCTTACCATC
314
GATCCACTGCCCTGATCG
315
TCTTCACCTGCTCGGGAATCTGTG
316
CCACCACCATCCTTACCATCATCACAGATTCCCGAGCA











GGTGAAGAAGGCTCGATCAGGGCAGTGGATC





CADPS
NM_003716
317
CAGCAAGGAGACTGTGCTGA
318
GGTCCTCTTCTCCACGGTAG
319
CTCCTGGATGGCCAAATTTGATGC
320
CAGCAAGGAGACTGTGCTGAGCTCCTGGATGGCCAAAT







AT



TTGATGCCATCTACCGTGGAGAAGAGGACC





CASP1
NM_001223
321
AACTGGAGCTGAGGTTGACA
322
CATCTACGCTGTACCCCAGA
323
TCACAGGCATGACAATGCTGCTAC
324
AACTGGAGCTGAGGTTGACATCACAGGCATGACAATGC









A

TGCTACAAAATCTGGGGTACAGCGTAGATG





CASP3
NM_032991
325
TGAGCCTGAGCAGAGACATGA
326
CCTTCCTGCGTGGTCCAT
327
TCAGCCTGTTCCATGAAGGCAGAG
328
TGAGCCTGAGCAGAGACATGACTCAGCCTGTTCCATGA









C

AGGCAGAGCCATGGACCACGCAGGAAGG





CASP7
NM_033338
329
GCAGCGCCGAGACTTTTA
330
AGTCTCTCTCCGTCGCTCC
331
CTTTCGCTAAAGGGGCCCCAGAC
332
GCAGCGCCGAGACTTTTAGTTTCGCTTTCGCTAAAGGG











GCCCCAGACCCTTGCTGCGGAGCGACGGAGAGAGACT





CAV1
NM_001753
333
GTGGCTCAACATTGTGTTCC
334
CAATGGCCTCCATTTTACAG
335
ATTTCAGCTGATCAGTGGGCCTCC
336
GTGGCTCAACATTGTGTTCCCATTTCAGCTGATCAGTG











GGCCTCCAAGGAGGGGCTGTAAAATGGAGGCCATTG





CAV2
NM_198212
337
CTTCCCTGGGACGACTTG
338
CTCCTGGTCACCCTTCTGG
339
CCCGTACTGTCATGCCTCAGAGCT
340
CTTCCCTGGGACGACTTGCCAGCTCTGAGGCATGACAG











TACGGGCCCCCAGAAGGGTGACCAGGAG





CCL2
NM_002982
341
CGCTCAGCCAGATGCAATC
342
GCACTGAGATCTTCCTATTG
343
TGCCCCAGTCACCTGCTGTTA
344
CGCTCAGCCAGATGCAATCAATGCCCCAGTCACCTGCT







GTGAA



GTTATAACTTCACCAATAGGAAGATCTCAGTGC





CCL5
NM_002985
345
AGGTTCTGAGCTCTGGCTTT
346
ATGCTGACTTCCTTCCTGGT
347
ACAGAGCCCTGGCAAAGCCAAG
348
AGGTTCTGAGCTCTGGCTTTGCCTTGGCTTTGCCAGGG











CTCTGTGACCAGGAAGGAAGTCAGCAT





CCNB1
NM_031966
349
TTCAGGTTGTTGCAGGAGAC
350
CATCTTCTTGGGCACACAAT
351
TGTCTCCATTATTGATCGGTTCAT
352
TTCAGGTTGTTGCAGGAGACCATGTACATGACTGTCTC









GCA

CATTATTGATCGGTTCATGCAGAATAATTGTGTGCCCA











AGAAGATG





CCND1
NM_001758
353
GCATGTTCGTGGCCTCTAAGA
354
CGGTGTAGATGCACAGCTTC
355
AAGGAGACCATCCCCCTGACGGC
356
GCATGTTCGTGGCCTCTAAGATGAAGGAGACCATCCCC







TC



CTGACGGCCGAGAAGCTGTGCATCTACACCG





CCNE2
NM_057749
357
ATGCTGTGGCTCCTTCCTAAC
358
ACCCAAATTGTGATATACAA
359
TACCAAGCAACCTACATGTCAAGA
360
ATGCTGTGGCTCCTTCCTAACTGGGGCTTTCTTGACAT





T

AAAGGTT

AAGCCC

GTAGGTTGCTTGGTAATAACCTTTTTGTATATCACAAT











TTGGGT





CCNH
NM_001239
361
GAGATCTTCGGTGGGGGTA
362
CTGCAGACGAGAACCCAAAC
363
CATCAGCGTCCTGGCGTAAAACAC
364
GAGATCTTCGGTGGGGGTACGGGTGTTTTACGCCAGGA











CGCTGATGCGTTTGGGTTCTCGTCTGCAG





CCR1
NM_001295
365
TCCAAGACCCAATGGGAA
366
TCGTAGGCTTTCGTGAGGA
367
ACTCACCACACCTGCAGCCTTCAC
368
TCCAAGACCCAATGGGAATTCACTCACCACACCTGCAG











CCTTCACTTTCCTCACGAAAGCCTACGA





CD164
NM_006016
369
CAACCTGTGCGAAAGTCTACC
370
ACACCCAAGACCAGGACAAT
371
CCTCCAATGAAACTGGCTGCATCA
372
CAACCTGTGCGAAAGTCTACCTTTGATGCAGCCAGTTT











CATTGGAGGAATTGTCCTGGTCTTGGGTGT





CD1A
NM_001763
373
GGAGTGGAAGGAACTGGAAA
374
TCATGGGCGTATCTACGAAT
375
CGCACCATTCGGTCATTTGAGG
376
GGAGTGGAAGGAACTGGAAACATTATTCCGTATACGCA











CCATTCGGTCATTTGAGGGAATTCGTAGATACGCCCAT











GA





CD276
NM_001024736
377
CCAAAGGATGCGATACACAG
378
GGATGACTTGGGAATCATGT
379
CCACTGTGCAGCCTTATTTCTCCA
380
CCAAAGGATGCGATACACAGACCACTGTGCAGCCTTAT







C

ATG

TTCTCCAATGGACATGATTCCCAAGTCATCC





CD44
NM_000610
381
GGCACCACTGCTTATGAAGG
382
GATGCTCATGGTGAATGAGG
383
ACTGGAACCCAGAAGCACACCCTC
384
GGCACCACTGCTTATGAAGGAAACTGGAACCCAGAAGC











ACACCCTCCCCTCATTCACCATGAGCATC





CD68
NM_001251
385
TGGTTCCCAGCCCTGTGT
386
CTCCTCCACCCTGGGTTGT
387
CTCCAAGCCCAGATTCAGATTCGA
388
TGGTTCCCAGCCCTGTGTCCACCTCCAAGCCCAGATTC









GTCA

AGATTCGAGTCATGTACACAACCCAGGGTGGAGGAG





CD82
NM_002231
389
GTGCAGGCTCAGGTGAAGTG
390
GACCTCAGGGCGATTCATGA
391
TCAGCTTCTACAACTGGACAGACA
392
GTGCAGGCTCAGGTGAAGTGCTGCGGCTGGGTCAGCTT









ACGCTG

CTACAACTGGACAGACAACGCTGAGCTCATGAATCGCC











CTGAGGTC





CDC20
NM_001255
393
TGGATTGGAGTTCTGGGAATG
394
GCTTGCACTCCACAGGTACA
395
ACTGGCCGTGGCACTGGACAACA
396
TGGATTGGAGTTCTGGGAATGTACTGGCCGTGGCACTG







CA



GACAACAGTGTGTACCTGTGGAGTGCAAGC





CDC25B
NM_021873
397
GCTGCAGGACCAGTGAGG
398
TAGGGCAGCTGGCTTCAG
399
CTGCTACCTCCCTTGCCTTTCGAG
400
GCTGCAGGACCAGTGAGGGGCCTGCGCCAGTCCTGCTA











CCTCCCTTGCCTTTCGAGGCCTGAAGCCAGCTGCCCTA





CDC6
NM_001254
401
GCAACACTCCCCATTTACCTC
402
TGAGGGGGACCATTCTCTTT
403
TTGTTCTCCACCAAAGCAAGGCAA
404
GCAACACTCCCCATTTACCTCCTTGTTCTCCACCAAAG











CAAGGCAAGAAAGAGAATGGTCCCCCTCA





CDH1
NM_004360
405
TGAGTGTCCCCCGGTATCTTC
406
CAGCCGCTTTCAGATTTTCA
407
TGCCAATCCCGATGAAATTGGAAA
408
TGAGTGTCCCCCGGTATCTTCCCCGCCCTGCCAATCCC







T

TTT

GATGAAATTGGAAATTTTATTGATGAAAATCTGAAAGC











GGCTG





CDH10
NM_006727
409
TGTGGTGCAAGTCACAGCTAC
410
TGTAAATGACTCTGGCGCTG
411
ATGCCGATGACCCTTCATATGGGA
412
TGTGGTGCAAGTCACAGCTACAGATGCCGATGACCCTT











CATATGGGAACAGCGCCAGAGTCATTTACA





CDH11
NM_001797
413
GTCGGCAGAAGCAGGACT
414
CTACTCATGGGCGGGATG
415
CCTTCTGCCCATAGTGATCAGCGA
416
GTCGGCAGAAGCAGGACTTGTACCTTCTGCCCATAGTG











ATCAGCGATGGCGGCATCCCGCCCATGAGTAG





CDH19
NM_021153
417
AGTACCATAATGCGGGAACG
418
AGACTGCCTGTATAGGCTCC
419
ACTCGGAAAACCACAAGCGCTGAG
420
AGTACCATAATGCGGGAACGCAAGACTCGGAAAACCAC







TG



AAGCGCTGAGATCAGGAGCCTATACAGGCAGTCT





CDH5
NM_001795
421
ACAGGAGACGTGTTCGCC
422
CAGCAGTGAGGTGGTACTCT
423
TATTCTCCCGGTCCAGCCTCTCAA
424
ACAGGAGACGTGTTCGCCATTGAGAGGCTGGACCGGGA







GA



GAATATCTCAGAGTACCACCTCACTGCTG





CDH7
NM_033646
425
GTTTGACATGGCTGCACTGA
426
AGTCACATCCCTCCGGGT
427
ACCTCAACGTCATCCGAGACACCA
428
GTTTGACATGGCTGCACTGAGAAACCTCAACGTCATCC











GAGACACCAAGACCCGGAGGGATGTGACT





CDK14
NM_012395
429
GCAAGGTAAATGGGAAGTTGG
430
GATAGCTGTGAAAGGTGTCC
431
CTTCCTGCAGCCTGATCACCTTCA
432
GCAAGGTAAATGGGAAGTTGGTAGCTCTGAAGGTGATC







CT



AGGCTGCAGGAAGAAGAAGGGACACCTTTCACAGCTAT











C





CDK2
NM_001798
433
AATGCTGCACTACGACCCTA
434
TTGGTCACATCCTGGAAGAA
435
CCTTGGCCGAAATCCGCTTGT
436
AATGCTGCACTACGACCCTAACAAGCGGATTTCGGCCA











AGGCAGCCCTGGCTCACCCTTTCTTCCAGGATGTGACC











AA





CDK3
NM_001258
437
CCAGGAAGGGACTGGAAGA
438
GTTGCATGAGCAGGTCCC
439
CTCTGGCTCCAGATTGGGCACAAT
440
CCAGGAAGGGACTGGAAGAGATTGTGCCCAATCTGGAG











CCAGAGGGCAGGGACCTGCTCATGCAAC





CDK7
NM_001799
441
GTCTCGGGCAAAGCGTTAT
442
CTCTGGCCTTGTAAACGGTG
443
CCTCCCCAAGGAAGTCCAGCTTCT
444
GTCTCGGGCAAAGCGTTATGAGAAGCTGGACTTCCTTG











GGGAGGGACAGTTTGCCACCGTTTACAAGGCCAGAG





CDKN1A
NM_000389
445
TGGAGACTCTCAGGGTCGAAA
446
GGCGTTTGGAGTGGTAGAAA
447
CGGCGGCAGACCAGCATGAC
448
TGGAGACTCTCAGGGTCGAAAACGGCGGCAGACCAGCA







TC



TGACAGATTTCTACCACTCCAAACGCC





CDKN1C
NM_000076
449
CGGCGATCAAGAAGCTGT
450
CAGGCGCTGATCTCTTGC
451
CGGGCCTCTGATCTCCGATTTCTT
452
CGGCGATCAAGAAGCTGTCCGGGCCTCTGATCTCCGAT











TTCTTCGCCAAGCGCAAGAGATCAGCGCCTG





CDKN2B
NM_004936
453
GACGCTGCAGAGCACCTT
454
GCGGGAATCTCTCCTCAGT
455
CACAGGATGCTGGCCTTTGCTCTT
456
GACGCTGCAGAGCACCTTTGCACAGGATGCTGGCCTTT











GCTCTTACTACACTGAGGAGAGATTCCCGC





CDKN2C
NM_001262
457
GAGCACTGGGCAATCGTTAC
458
CAAAGGCGAACGGGAGTAG
459
CCTGTAACTTGAGGGCCACCGAAC
460
GAGCACTGGGCAATCGTTACGACCTGTAACTTGAGGGC











CACCGAACTGCTACTCCCGTTCGCCTTTG





CDKN3
NM_005192
461
TGGATCTCTACCAGCAATGTG
462
ATGTCAGGAGTCCCTCCATC
463
ATCACCCATCATCATCCAATCGCA
464
TGGATCTCTACCAGCAATGTGGAATTATCACCCATCAT











CATCCAATCGCAGATGGAGGGACTCCTGACAT





CDS2
NM_003818
465
GGGCTTCTTTGCTACTGTGG
466
ACAGGGCAGACAAAGCATCT
467
CCCGGACATCACATAGGACAGCAG
468
GGGCTTCTTTGCTACTGTGGTGTTTGGCCTTCTGCTGT











CCTATGTGATGTCCGGGTACAGATGCTTTGTCTGCCCT











GT





CENPF
NM_016343
469
CTCCCGTCAACAGCGTTC
470
GGGTGAGTCTGGCCTTCA
471
ACACTGGACCAGGAGTGCATCCAG
472
CTCCCGTCAACAGCGTTCTTTCCAAACACTGGACCAGG











AGTGCATCCAGATGAAGGCCAGACTCACCC





CHAF1A
NM_005483
473
GAACTCAGTGTATGAGAAGCG
474
GCTCTGTAGCACCTGCGG
475
TGCACGTACCAGCACATCCTGAAG
476
GAACTCAGTGTATGAGAAGCGGCCTGACTTCAGGATGT





G





GCTGGTACGTGCACCCGCAGGTGCTACAGAGC





CHN1
NM_001822
477
TTACGACGCTCGTGAAAGC
478
TCTCCCTGATGCACATGTCT
479
CCACCATTGGCCGCTTAGTGGTAT
480
TTACGACGCTCGTGAAAGCACATACCACTAAGCGGCCA











ATGGTGGTAGACATGTGCATCAGGGAGA





CHRAC1
NM_017444
481
TCTCGCTGCCTCTATCCC
482
CCTGGTTGATGCTGGACA
483
ATCCGGGTCATCATGAAGAGCTCC
484
TCTCGCTGCCTCTATCCCGCATCCGGGTCATCATGAAG











AGCTCCCCCGAGGTGTCCAGCATCAACCAGG





CKS2
NM_001827
485
GGCTGGACGTGGTTTTGTCT
486
CGCTGCAGAAAATGAAACGA
487
CTGCGCCCGCTCTTCGCG
488
GGCTGGACGTGGTTTTGTCTGCTGCGCCCGCTCTTCGC











GCTCTCGTTTCATTTTCTGCAGCG





CLDN3
NM_001306
489
ACCAACTGCGTGCAGGAC
490
GGCGAGAAGGAACAGCAC
491
CAAGGCCAAGATCACCATCGTGG
492
ACCAACTGCGTGCAGGACGACACGGCCAAGGCCAAGAT











CACCATCGTGGCAGGCGTGCTGTTCCTTCTCGCC





CLTC
NM_004859
493
ACCGTATGGACAGCCACAG
494
TGACTACAGGATCAGCGCTT
495
TCTCACATGCTGTACCCAAAGCCA
496
ACCGTATGGACAGCCACAGCCTGGCTTTGGGTACAGCA







C



TGTGAGATGAAGCGCTGATCCTGTAGTCA





COL11A1
NM_001854
497
GCCCAAGAGGGGAAGATG
498
GGACCTGGGTCTCCAGTTG
499
CTGCTCGACCTTTGGGTCCTTCAG
500
GCCCAAGAGGGGAAGATGGCCCTGAAGGACCCAAAGGT











CGAGCAGGCCCAACTGGAGACCCAGGTCC





COL1A1
NM_000088
501
GTGGCCATCCAGCTGACC
502
CAGTGGTAGGTGATGTTCTG
503
TCCTGCGCCTGATGTCCACCG
504
GTGGCCATCCAGCTGACCTTCCTGCGCCTGATGTCCAC







GGA



CGAGGCCTCCCAGAACATCACCTACCACTG





COL1A2
NM_000089
505
CAGCCAAGAACTGGTATAGGA
506
AAACTGGCTGCCAGCATTG
507
TCTCCTAGCCAGACGTGTTTCTTG
508
CAGCCAAGAACTGGTATAGGAGCTCCAAGGACAAGAAA





GCT



TCCTTG

CACGTCTGGCTAGGAGAAACTATCAATGCTGGCAGCCA











GTTT





COL3A1
NM_000090
509
GGAGGTTCTGGACCTGCTG
510
ACCAGGACTGCCACGTTC
511
CTCCTGGTCCCCAAGGTGTCAAAG
512
GGAGGTTCTGGACCTGCTGGTCCTCCTGGTCCCCAAGG











TGTCAAAGGTGAACGTGGCAGTCCTGGT





COL4A1
NM_001845
513
ACAAAGGCCTCCCAGGAT
514
GAGTCCCAGGAAGACCTGCT
515
CTCCTTTGACACCAGGGATGCCAT
516
ACAAAGGCCTCCCAGGATTGGATGGCATCCCTGGTGTC











AAAGGAGAAGCAGGTCTTCCTGGGACTC





COL5A1
NM_000093
517
CTCCCTGGGAAAGATGGC
518
CTGGACCAGGAAGCCCTC
519
CCAGGGAAACCACGTAATCCTGGA
520
CTCCCTGGGAAAGATGGCCCTCCAGGATTACGTGGTTT











CCCTGGGGACCGAGGGCTTCCTGGTCCAG





COL5A2
NM_000393
521
GGTCGAGGAACCCAAGGT
522
GCCTGGAGGTCCAACTCTG
523
CCAGGAAATCCTGTAGCACCAGGC
524
GGTCGAGGAACCCAAGGTCCGCCTGGTGCTACAGGATT











TCCTGGTTCTGCGGGCAGAGTTGGACCTCCAGGC





COL6A1
NM_001848
525
GGAGACCCTGGTGAAGCTG
526
TCTCCAGGGACACCAACG
527
CTTCTCTTCCCTGATCACCCTGCG
528
GGAGACCCTGGTGAAGCTGGCCCGCAGGGTGATCAGGG











AAGAGAAGGCCCCGTTGGTGTCCCTGGAGA





COL6A3
NM_004369
529
GAGAGCAAGCGAGACATTCTG
530
AACAGGGAACTGGCCCAC
531
CCTCTTTGACGGCTCAGCCAATCT
532
GAGAGCAAGCGAGACATTCTGTTCCTCTTTGACGGCTC











AGCCAATCTTGTGGGCCAGTTCCCTGTT





COL8A1
NM_001850
533
TGGTGTTCCAGGGCTTCT
534
CCCTGTAAACCCTGATCCC
535
CCTAAGGGAGAGCCAGGAATCCCA
536
TGGTGTTCCAGGGCTTCTCGGACCTAAGGGAGAGCCAG











GAATCCCAGGGGATCAGGGTTTACAGGG





COL9A2
NM_001852
537
GGGAACCATCCAGGGTCT
538
ATTCCGGGTGGACAGTTG
539
ACACAGGAAATCCGCACTGCCTTC
540
GGGAACCATCCAGGGTCTGGAAGGCAGTGCGGATTTCC











TGTGTCCAACCAACTGTCCACCCGGAAT





CRISP3
NM_006061
541
TCCCTTATGAACAAGGAGCAC
542
AACCATTGGTGCATAGTCCA
543
TGCCAGTTGCCCAGATAACTGTGA
544
TCCCTTATGAACAAGGAGCACCTTGTGCCAGTTGCCCA







T



GATAACTGTGACGATGGACTATGCACCAATGGTT





CSF1
NM_000757
545
TGCAGCGGCTGATTGACA
546
CAACTGTTCCTGGTCTACAA
547
TCAGATGGAGACCTCGTGCCAAAT
548
TGCAGCGGCTGATTGACAGTCAGATGGAGACCTCGTGC







ACTCA

TACA

CAAATTACATTTGAGTTTGTAGACCAGGAACAGTTG





CSK
NM_004383
549
CCTGAACATGAAGGAGCTGA
550
CATCACGTCTCCGAACTCC
551
TCCCGATGGTCTGCAGCAGCT
552
CCTGAACATGAAGGAGCTGAAGCTGCTGCAGACCATCG











GGAAGGGGGAGTTCGGAGACGTGATG





CSRP1
NM_004078
553
ACCCAAGACCCTGCCTCT
554
GCAGGGGTGGAGTGATGT
555
CCACCCTTCTCCAGGGACCCTTAG
556
ACCCAAGACCCTGCCTCTTCCACTCCACCCTTCTCCAG











GGACCCTTAGATCACATCACTCCACCCCTGC





CTGF
NM_001901
557
GAGTTCAAGTGCCCTGACG
558
AGTTGTAATGGCAGGCACAG
559
AACATCATGTTCTTCTTCATGACC
560
GAGTTCAAGTGCCCTGACGGCGAGGTCATGAAGAAGAA









TCGC

CATGATGTTCATCAAGACCTGTGCCTGCCATTACAACT





CTHRC1
NM_138455
561
TGGCTCACTTCGGCTAAAAT
562
TCAGCTCCATTGAATGTGAA
563
CAACGCTGACAGCATGCATTTCTG
564
TGGCTCACTTCGGCTAAAATGCAGAAATGCATGCTGTC







A



AGCGTTGGTATTTCACATTCAATGGAGCTGA





CTNNA1
NM_001903
565
CGTTCCGATCCTCTATACTGC
566
AGGTCCCTGTTGGCCTTATA
567
ATGCCTACAGCACCCTGATGTCGC
568
CGTTCCGATCCTCTATACTGCATCCCAGGCATGCCTAC





AT

GG

A

AGCACCCTGATGTCGCAGCCTATAAGGCCAACAGGGAC











CT





CTNNB1
NM_001904
569
GGCTCTTGTGCGTACTGTCCT
570
TCAGATGACGAAGAGCACAG
571
AGGCTCAGTGATGTCTTCCCTGTC
572
GGCTCTTGTGCGTACTGTCCTTCGGGCTGGTGACAGGG





T

ATG

ACCAG

AAGACATCACTGAGCCTGCCATCTGTGCTCTTCGTCAT











CTGA





CTNND1
NM_001331
573
CGGAAACTTCGGGAATGTGA
574
CTGAATCCTTCTGCCCAATC
575
TTGATGCCCTCATTTTCATTGTTC
576
CGGAAACTTCGGGAATGTGATGGTTTAGTTGATGCCCT







TC

AGGC

CATTTTCATTGTTCAGGCTGAGATTGGGCAGAAGGATT











CAG





CTNND2
NM_001332
577
GCCCGTCCCTACAGTGAAC
578
CTCACACCCAGGAGTCGG
579
CTATGAAACGAGCCACTACCCGGC
580
GCCCGTCCCTACAGTGAACTGAACTATGAAACGAGCCA











CTACCCGGCCTCCCCCGACTCCTGGGTGTGAG





CTSB
NM_001908
581
GGCCGAGATCTACAAAAACG
582
GCAGGAAGTCCGAATACACA
583
CCCCGTGGAGGGAGCTTTCTC
584
GGCCGAGATCTACAAAAACGGCCCCGTGGAGGGAGCTT











TCTCTGTGTATTCGGACTTCCTGC





CTSD
NM_001909
585
GTACATGATCCCCTGTGAGAA
586
GGGACAGCTTGTAGCCTTTG
587
ACCCTGCCCGCGATCACACTGA
588
GTACATGATCCCCTGTGAGAAGGTGTCCACCCTGCCCG





GGT

C



CGATCACACTGAAGCTGGGAGGCAAAGGCTACAAGCTG











TCCC





CTSK
NM_000396
589
AGGCTTCTCTTGGTGTCCATA
590
CCACCTCTTCACTGGTCATG
591
CCCCAGGTGGTTCATAGCCAGTTC
592
AGGCTTCTCTTGGTGTCCATACATATGAACTGGCTATG





C

T



AACCACCTGGGGGACATGACCAGTGAAGAGGTGG





CTSL2
NM_001333
593
TGTCTCACTGAGCGAGCAGAA
594
ACCATTGCAGCCCTGATTG
595
CTTGAGGACGCGAACAGTCCACCA
596
TGTCTCACTGAGCGAGCAGAATCTGGTGGACTGTTCGC











GTCCTCAAGGCAATCAGGGCTGCAATGGT





CTSS
NM_004079
597
TGACAACGGCTTTCCAGTACA
598
TCCATGGCTTTGTAGGGATA
599
TGATAACAAGGGCATCGACTCAGA
600
TGACAACGGCTTTCCAGTACATCATTGATAACAAGGGC





T

GG

CGCT

ATCGACTCAGACGCTTCCTATCCCTACAAAGCCATGGA





CUL1
NM_003592
601
ATGCCCTGGTAATGTCTGCAT
602
GCGACCACAAGCCTTATCAA
603
CAGCCACAAAGCCAGCGTCATTGT
604
ATGCCCTGGTAATGTCTGCATTCAACAATGACGCTGGC







G



TTTGTGGCTGCTCTTGATAAGGCTTGTGGTCGC





CXCL12
NM_000609
605
GAGCTACAGATGCCCATGC
606
TTTGAGATGCTTGACGTTGG
607
TTCTTCGAAAGCCATGTTGCCAGA
608
GAGCTACAGATGCCCATGCCGATTCTTCGAAAGCCATG











TTGCCAGAGCCAACGTCAAGCATCTCAAA





CXCR4
NM_003467
609
TGACCGCTTCTACCCCAATG
610
AGGATAAGGCCAACCATGAT
611
CTGAAACTGGAACACAACCACCCA
612
TGACCGCTTCTACCCCAATGACTTGTGGGTGGTTGTGT







GT

CAAG

TCCAGTTTCAGCACATCATGGTTGGCCTTATCCT





CXCR7
NM_020311
613
CGCCTCAGAACGATGGAT
614
GTTGCATGGCCAGCTGAT
615
CTCAGAGCCAGGGAACTTCTCGGA
616
CGCCTCAGAACGATGGATCTGCATCTCTTCGACTACTC











AGAGCCAGGGAACTTCTCGGACATCAGCTGGCCATGCA











AC





CYP3A5
NM_000777
617
TCATTGCCCAGTATGGAGATG
618
GACAGGCTTGCCTTTCTCTG
619
TCCCGCCTCAAGTTTCTCACCAAT
620
TCATTGCCCAGTATGGAGATGTATTGGTGAGAAACTTG











AGGCGGGAAGCAGAGAAAGGCAAGCCTGTC





CYR61
NM_001554
621
TGCTCATTCTTGAGGAGCAT
622
GTGGCTGCATTAGTGTCCAT
623
CAGCACCCTTGGCAGTTTCGAAAT
624
TGCTCATTCTTGAGGAGCATTAAGGTATTTCGAAACTG











CCAAGGGTGCTGGTGCGGATGGACACTAATGCAGCCAC





DAG1
NM_004393
625
GTGACTGGGCTCATGCCT
626
ATCCCACTTGTGCTCCTGTC
627
CAAGTCAGAGTTTCCCTGGTGCCC
628
GTGACTGGGCTCATGCCTCCAAGTCAGAGTTTCCCTGG











TGCCCCAGAGACAGGAGCACAAGTGGGAT





DAP
NM_004394
629
CCAGCCTTTCTGGTGCTG
630
GACCAGGTCTGCCTCTGC
631
CTCACCAGCTGGCAGACGTGAACT
632
CCAGCCTTTCTGGTGCTGTTCTCCAGTTCACGTCTGCC











AGCTGGTGAGGGCAGAGGCAGACCTGGTC





DAPK1
NM_004938
633
CGCTGACATCATGAATGTTCC
634
TCTCTTTCAGCAACGATGTG
635
TCATATCCAAACTCGCCTCCAGCC
636
CGCTGACATCATGAATGTTCCTCGACCGGCTGGAGGCG





T

TCTT

G

AGTTTGGATATGACAAAGACACATCGTTGCTGAAAGAG











A





DARC
NM_002036
637
GCCCTCATTAGTCCTTGGCT
638
CAGACAGAAGGGCTGGGAC
639
TCAGCGCCTGTGCTTCCAAGATAA
640
GCCCTCATTAGTCCTTGGCTCTTATCTTGGAAGCACAG











GCGCTGACAGCCGTCCCAGCCCTTCTGTCTG





DDIT4
NM_019058
641
CCTGGCGTCTGTCCTCAC
642
CGAAGAGGAGGTGGACGA
643
CTAGCCTTTGGGACCGCTTCTCGT
644
CCTGGCGTCTGTCCTCACCATGCCTAGCCTTTGGGACC











GCTTCTCGTCGTCGTCCACCTCCTCTTCG





DDR2
NM_001014796
645
CTATTACCGGATCCAGGGC
646
CCCAGCAAGATACTCTCCCA
647
AGTGCTCCCTATCCGCTGGATGTC
648
CTATTACCGGATCCAGGGCCGGGCAGTGCTCCCTATCC











GCTGGATGTCTTGGGAGAGTATCTTGCTGGG





DES
NM_001927
649
ACTTCTCACTGGCCGACG
650
GCTCCACCTTCTCGTTGGT
651
TGAACCAGGAGTTTCTGACCACGC
652
ACTTCTCACTGGCCGACGCGGTGAACCAGGAGTTTCTG











ACCACGCGCACCAACGAGAAGGTGGAGC





DHRS9
NM_005771
653
GGAGAAAGGTCTCTGGGGTC
654
CAGTCAGTGGGAGCCAGC
655
ATCAATAATGCTGGTGTTCCCGGC
656
GGAGAAAGGTCTCTGGGGTCTGATCAATAATGCTGGTG











TTCCCGGCGTGCTGGCTCCCACTGACTG





DHX9
NM_001357
657
GTTCGAACCATCTCAGCGAC
658
TCCAGTTGGATTGTGGAGGT
659
CCAAGGAACCACACCCACTTGGTT
660
GTTCGAACCATCTCAGCGACAAAACCAAGTGGGTGTGG











TTCCTTGGTCACCTCCACAATCCAACTGGA





DIAPH1
NM_005219
661
CAAGCAGTCAAGGAGAACCA
662
AGTTTTGCTCGCCTCATCTT
663
TTCTTCTGTCTCCCGCCGCTTC
664
CAAGCAGTCAAGGAGAACCAGAAGCGGCGGGAGACAGA











AGAAAAGATGAGGCGAGCAAAACT





DICER1
NM_177438
665
TCCAATTCCAGCATCACTGT
666
GGCAGTGAAGGCGATAAAGT
667
AGAAAAGCTGTTTGTCTCCCCAGC
668
TCCAATTCCAGCATCACTGTGGAGAAAAGCTGTTTGTC









A

TCCCCAGCATACTTTATCGCCTTCACTGCC





DIO2
NM_013989
669
CTCCTTTCACGAGCCAGC
670
AGGAAGTCAGCCACTGAGGA
671
ACTCTTCCACCAGTTTGCGGAAGG
672
CTCCTTTCACGAGCCAGCTGCCAGCCTTCCGCAAACTG











GTGGAAGAGTTCTCCTCAGTGGCTGACTTCCT





DLC1
NM_006094
673
GATTCAGACGAGGATGAGCC
674
CACCTCTTGCTGTCCCTTTG
675
AAAGTCCATTTGCCACTGATGGCA
676
GATTCAGACGAGGATGAGCCTTGTGCCATCAGTGGCAA











ATGGACTTTCCAAAGGGACAGCAAGAGGTG





DLGAP1
NM_004746
677
CTGCTGAGCCCAGTGGAG
678
AGCCTGGAAGGAGTTCCG
679
CGCAGACCACCCATACTACACCCA
680
CTGCTGAGCCCAGTGGAGCACCACCCCGCAGACCACCC











ATACTACACCCAGCGGAACTCCTTCCAGGCT





DLL4
NM_019074
681
CACGGAGGTATAAGGCAGGAG
682
AGAAGGAAGGTCCAGCCG
683
CTACCTGGACATCCCTGCTCAGCC
684
CACGGAGGTATAAGGCAGGAGCCTACCTGGACATCCCT











GCTCAGCCCCGCGGCTGGACCTTCCTTCT





DNM3
NM_015569
685
CTTTCCCACCCGGCTTAC
686
AAGGACCTTCTGCAGGTGTG
687
CATATCGCTGACCGAATGGGAACC
688
CTTTCCCACCCGGCTTACAGACATATCGCTGACCGAAT











GGGAACCCCACACCTGCAGAAGGTCCTT





DPP4
NM_001935
689
GTCCTGGGATCGGGAAGT
690
GTACTCCCACCGGGATACAG
691
CGGCTATTCCACACTTGAACACGC
692
GTCCTGGGATCGGGAAGTGGCGTGTTCAAGTGTGGAAT











AGCCGTGGCGCCTGTATCCCGGTGGGAGTAC





DPT
NM_001937
693
CACCTAGAAGCCTGCCCAC
694
CAGTAGCTCCCCAGGGTTC
695
TTCCTAGGAAGGCTGGCAGACACC
696
CACCTAGAAGCCTGCCCACGATTCCTAGGAAGGCTGGC











AGACACCCTGGAACCCTGGGGAGCTACTG





DUSP1
NM_004417
697
AGACATCAGCTCCTGGTTCA
698
GACAAACACCCTTCCTCCAG
699
CGAGGCCATTGACTTCATAGACTC
700
AGACATCAGCTCCTGGTTCAACGAGGCCATTGACTTCA









CA

TAGACTCCATCAAGAATGCTGGAGGAAGGGTGTTTGTC





DUSP6
NM_001946
701
CATGCAGGGACTGGGATT
702
TGCTCCTACCCTATCATTTG
703
TCTACCCTATGCGCCTGGAAGTCC
704
CATGCAGGGACTGGGATTCGAGGACTTCCAGGCGCATA







G



GGGTAGAACCAAATGATAGGGTAGGAGCA





DVL1
NM_004421
705
TCTGTCCCACCTGCTGCT
706
TCAGACTGTTGCCGGATG
707
CTTGGAGCAGCCTGCACCTTCTCT
708
TCTGTCCCACCTGCTGCTGCCCCTTGGAGCAGCCTGCA











CCTTCTCTCCTCCCATCCGGCAACAGTCTGA





DYNLL1
NM_001037494
709
GCCGCCTACCTCACAGAC
710
GCCTGACTCCAGCTCTCCT
711
ACCCACGTCAGTGAGTGCTCACAA
712
GCCGCCTACCTCACAGACTTGTGAGCACTCACTGACGT











GGGTAGCGCCCAGGGCCTGCGGGGCGCAGGAGAGCTGG











AGTCAGGC





EBNA1BP2
NM_006824
713
TGCGGCGAGATGGACACT
714
GTGACAAGGGATTCATCGGA
715
CCCGCTCTCGGATTCGGAGTCG
716
TGCGGCGAGATGGACACTCCCCCGCTCTCGGATTCGGA







TT



GTCGGAATCCGATGAATCCCTTGTCAC





ECE1
NM_001397
717
ACCTTGGGATCTGCCTCC
718
GGACCAGGACCTCCATCTG
719
TCCACTCTCGATACCCTGCACCAG
720
ACCTTGGGATCTGCCTCCAAGCTGGTGCAGGGTATCGA











GAGTGGATTCCAGATGGAGGTCCTGGTCC





EDN1
NM_001955
721
TGCCACCTGGACATCATTTG
722
TGGACCTAGGGCTTCCAAGT
723
CACTCCCGAGCACGTTGTTCCGT
724
TGCCACCTGGACATCATTTGGGTCAACACTCCCGAGCA







C



CGTTGTTCCGTATGGACTTGGAAGCCCTAGGTCCA





EDNRA
NM_001957
725
TTTCCTCAAATTTGCCTCAAG
726
TTACACATCCAACCAGTGCC
727
CCTTTGCCTCAGGGCATCCTTTT
728
TTTCCTCAAATTTGCCTCAAGATGGAAACCCTTTGCCT











CAGGGCATCCTTTTGGCTGGCACTGGTTGGATGTGTAA





EFNB2
NM_004093
729
TGACATTATCATCCCGCTAAG
730
GTAGTCCCCGCTGACCTTCT
731
CGGACAGCGTCTTCTGCCCTCACT
732
TGACATTATCATCCCGCTAAGGACTGCGGACAGCGTCT





GA

C



TCTGCCCTCACTACGAGAAGGTCAGCGGGGACTAC





EGF
NM_001963
733
CTTTGCCTTGCTCTGTCACAG
734
AAATACCTGACACCCTTATG
735
AGAGTTTAACAGCCCTGCTCTGGC
736
CTTTGCCTTGCTCTGTCACAGTGAAGTCAGCCAGAGCA





T

ACAAATT

TGACTT

GGGCTGTTAAACTCTGTGAAATTTGTCATAAGGGTGTC











AGGTATTT





EGR1
NM_001964
737
GTCCCCGCTGCAGATCTCT
738
CTCCAGCTTAGGGTAGTTGT
739
CGGATCCTTTCCTCACTCGCCCA
740
GTCCCCGCTGCAGATCTCTGACCCGTTCGGATCCTTTC







CCAT



CTCACTCGCCCACCATGGACAACTACCCTAAGCTGGAG





EGR3
NM_004430
741
CCATGTGGATGAATGAGGTG
742
TGCCTGAGAAGAGGTGAGGT
743
ACCCAGTCTCACCTTCTCCCCACC
744
CCATGTGGATGAATGAGGTGTCTCCTTTCCATACCCAG











TCTCACCTTCTCCCCACCCTACCTCACCTCTTCTCAGG











CA





EIF2C2
NM_012154
745
GCACTGTGGGCAGATGAA
746
ATGTTTGGTGACTGGCGG
747
CGGGTCACATTGCAGACACGGTAC
748
GCACTGTGGGCAGATGAAGAGGAAGTACCGCGTCTGCA











ATGTGACCCGGCGGCCCGCCAGTCACCAAACAT





EIF2S3
NM_001415
749
CTGCCTCCCTGATTCAAGTG
750
GGTGGCAAGTGCCTGTAATA
751
TCTCGTGCTTCAGCCTCCCATGTA
752
CTGCCTCCCTGATTCAAGTGATTCTCGTGCTTCAGCCT







TC



CCCATGTAGCTGATATTACAGGCACTTGCCACC





EIF3H
NM_003756
753
CTCATTGCAGGCCAGATAAA
754
GCCATGAAGAGCTTGCCTA
755
CAGAACATCAAGGAGTTCACTGCC
756
CTCATTGCAGGCCAGATAAACACTTACTGCCAGAACAT









CA

CAAGGAGTTCACTGCCCAAAACTTAGGCAAGCTCTTCA











TGGC





EIF4E
NM_001968
757
GATCTAAGATGGCGACTGTCG
758
TTAGATTCCGTTTTCTCCTC
759
ACCACCCCTACTCCTAATCCCCCG
760
GATCTAAGATGGCGACTGTCGAACCGGAAACCACCCCT





AA

TTCTG

ACT

ACTCCTAATCCCCCGACTACAGAAGAGGAGAAAACGGA











ATCTAA





EIF5
NM_001969
761
GAATTGGTCTCCAGCTGCC
762
TCCAGGTATATGGCTCCTGC
763
CCACTTGCACCCGAATCTTGATCA
764
GAATTGGTCTCCAGCTGCCTTTGATCAAGATTCGGGTG











CAAGTGGAGCAGGAGCCATATACCTGGA





ELK4
NM_001973
765
GATGTGGAGAATGGAGGGAA
766
AGTCATTGCGGCTAGAGGTC
767
ATAAACCACCTCAGCCTGGTGCCA
768
GATGTGGAGAATGGAGGGAAAGATAAACCACCTCAGCC











TGGTGCCAAGACCTCTAGCCGCAATGACT





ENPP2
NM_006209
769
CTCCTGCGCACTAATACCTTC
770
TCCCTGGATAATTGGGTCTG
771
TAACTTCCTCTGGCATGGTTGGCC
772
CTCCTGCGCACTAATACCTTCAGGCCAACCATGCCAGA











GGAAGTTACCAGACCCAATTATCCAGGGA





ENY2
NM_020189
773
CCTCAAAGAGTTGCTGAGAGC
774
CCTCTTTACAGTGTGCCTTC
775
CTGATCCTTCCAGCCACATTCAAT
776
CCTCAAAGAGTTGCTGAGAGCTAAATTAATTGAATGTG







A

TAATTT

GCTGGAAGGATCAGTTGAAGGCACACTGTAAAGAGG





EPHA2
NM_004431
777
CGCCTGTTCACCAAGATTGAC
778
GTGGCGTGCCTCGAAGTC
779
TGCGCCCGATGAGATCACCG
780
CGCCTGTTCACCAAGATTGACACCATTGCGCCCGATGA











GATCACCGTCAGCAGCGACTTCGAGGCACGCCAC





EPHA3
NM_005233
781
CAGTAGCCTCAAGCCTGACA
782
TTCGTCCCATATCCAGCG
783
TATTCCAAATCCGAGCCCGAACAG
784
CAGTAGCCTCAAGCCTGACACTATATACGTATTCCAAA











TCCGAGCCCGAACAGCCGCTGGATATGGGACGAA





EPHB2
NM_004442
785
CAACCAGGCAGCTCCATC
786
GTAATGCTGTCCACGGTGC
787
CACCTGATGCATGATGGACACTGC
788
CAACCAGGCAGCTCCATCGGCAGTGTCCATCATGCATC











AGGTGAGCCGCACCGTGGACAGCATTAC





EPHB4
NM_004444
789
TGAACGGGGTATCCTCCTTA
790
AGGTACCTCTCGGTCAGTGG
791
CGTCCCATTTGAGCCTGTCAATGT
792
TGAACGGGGTATCCTCCTTAGCCACGGGGCCCGTCCCA











TTTGAGCCTGTCAATGTCACCACTGACCGAGAGGTACC











T





ERBB2
NM_004448
793
CGGTGTGAGAAGTGCAGCAA
794
CCTCTCGCAAGTGCTCCAT
795
CCAGACCATAGCACACTCGGGCAC
796
CGGTGTGAGAAGTGCAGCAAGCCCTGTGCCCGAGTGTG











CTATGGTCTGGGCATGGAGCACTTGCGAGAGG





ERBB3
NM_001982
797
CGGTTATGTCATGCCAGATAC
798
GAACTGAGACCCACTGAAGA
799
CCTCAAAGGTACTCCCTCCTCCCG
800
CGGTTATGTCATGCCAGATACACACCTCAAAGGTACTC





AC

AAGG

G

CCTCCTCCCGGGAAGGCACCCTTTCTTCAGTGGGTCTC











AGTTC





ERBB4
NM_005235
801
TGGCTCTTAATCAGTTTCGTT
802
CAAGGCATATCGATCCTCAT
803
TGTCCCACGAATAATGCGTAAATT
804
TGGCTCTTAATCAGTTTCGTTACCTGCCTCTGGAGAAT





ACCT

AAAGT

CTCCAG

TTACGCATTATTCGTGGGACAAAACTTTATGAGGATCG











ATATGCCTTG





ERCC1
NM_001983
805
GTCCAGGTGGATGTGAAAGA
806
CGGCCAGGATACACATCTTA
807
CAGCAGGCCCTCAAGGAGCTG
808
GTCCAGGTGGATGTGAAAGATCCCCAGCAGGCCCTCAA











GGAGCTGGCTAAGATGTGTATCCTGGCCG





EREG
NM_001432
809
TGCTAGGGTAAACGAAGGCA
810
TGGAGACAAGTCCTGGCAC
811
TAAGCCATGGCTGACCTCTGGAGC
812
TGCTAGGGTAAACGAAGGCATAATAAGCCATGGCTGAC











CTCTGGAGCACCAGGTGCCAGGACTTGTCTCCA





ERG
NM_004449
813
CCAACACTAGGCTCCCCA
814
CCTCCGCCAGGTCTTTAGT
815
AGCCATATGCCTTCTCATCTGGGC
816
CCAACACTAGGCTCCCCACCAGCCATATGCCTTCTCAT











CTGGGCACTTACTACTAAAGACCTGGCGGAGG





ESR1
NM_000125
817
CGTGGTGCCCCTCTATGAC
818
GGCTAGTGGGCGCATGTAG
819
CTGGAGATGCTGGACGCCC
820
CGTGGTGCCCCTCTATGACCTGCTGCTGGAGATGCTGG











ACGCCCACCGCCTACATGCGCCCACTAGCC





ESR2
NM_001437
821
TGGTCCATCGCCAGTTATCA
822
TGTTCTAGCGATCTTGCTTC
823
ATCTGTATGCGGAACCTCAAAAGA
824
TGGTCCATCGCCAGTTATCACATCTGTATGCGGAACCT







ACA

GTCCCT

CAAAAGAGTCCCTGGTGTGAAGCAAGATCGCTAGAACA





ETV1
NM_004956
825
TCAAACAAGAGCCAGGAATG
826
AACTGCCAGAGCTGAAGTGA
827
ATCGGGAAGGACCCACATACCAAC
828
TCAAACAAGAGCCAGGAATGTATCGGGAAGGACCCACA











TACCAACGGCGAGGATCACTTCAGCTCTGGCAGTT





ETV4
NM_001986
829
TCCAGTGCCTATGACCCC
830
ACTGTCCAAGGGCACCAG
831
CAGACAAATCGCCATCAAGTCCCC
832
TCCAGTGCCTATGACCCCCCCAGACAAATCGCCATCAA











GTCCCCTGCCCCTGGTGCCCTTGGACAGT





EZH2
NM_004456
833
TGGAAACAGCGAAGGATACA
834
CACCGAACACTCCCTAGTCC
835
TCCTGACTTCTGTGAGCTCATTGC
836
TGGAAACAGCGAAGGATACAGCCTGTGCACATCCTGAC









G

TTCTGTGAGCTCATTGCGCGGGACTAGGGAGTGTTCGG











TG





F2R
NM_001992
837
AAGGAGCAAACCATCCAGG
838
GCAGGGTTTCATTGAGCAC
839
CCCGGGCTCAACATCACTACCTGT
840
AAGGAGCAAACCATCCAGGTGCCCGGGCTCAACATCAC











TACCTGTCATGATGTGCTCAATGAAACCCTGC





FAAH
NM_001441
841
GACAGCGTAGTGGTGCATGT
842
AGCTGAACATGGACTGTGGA
843
TGCCCTTCGTGCACACCAATG
844
GACAGCGTAGTGGTGCATGTGCTGAAGCTGCAGGGTGC











CGTGCCCTTCGTGCACACCAATGTTCCACAGTCCATGT











TCAGCT





FABP5
NM_001444
845
GCTGATGGCAGAAAAACTCA
846
CTTTCCTTCCCATCCCACT
847
CCTGATGCTGAACCAATGCACCAT
848
GCTGATGGCAGAAAAACTCAGACTGTCTGCAACTTTAC











AGATGGTGCATTGGTTCAGCATCAGGAGTGGGATGGGA











AGGAAAG





FADD
NM_003824
849
GTTTTCGCGAGATAACGGTC
850
CTCCGGTGCCTGATTCAC
851
AACGCGCTCTTGTCGATTTCCTGT
852
GTTTTCGCGAGATAACGGTCGAAAACGCGCTCTTGTCG











ATTTCCTGTAGTGAATCAGGCACCGGAG





FAM107A
NM_007177
853
AAGTCAGGGAAAACCTGCG
854
GCTGGCCCTACAGCTCTCT
855
AATTGCCACACTGACCAGCGAAGA
856
AAGTCAGGGAAAACCTGCGGAGAATTGCCACACTGACC











AGCGAAGAGAGAGAGCTGTAGGGCCAGC





FAM13C
NM_198215
857
ATCTTCAAAGCGGAGAGCG
858
GCTGGATACCACATGCTCTG
859
TCCTGACTTTCTCCGTGGCTCCTC
860
ATCTTCAAAGCGGAGAGCGGGAGGAGCCACGGAGAAAG











TCAGGAGACAGAGCATGTGGTATCCAGC





FAM171B
NM_177454
861
CCAGGAAGGAAAAGCACTGT
862
GTGGTCTGCCCCTTCTTTTA
863
TGAAGATTTTGAAGCTAATACATC
864
CCAGGAAGGAAAAGCACTGTTGAAGATTTTGAAGCTAA









CCCCAC

TACATCCCCCACTAAAAGAAGGGGCAGACCAC





FAM49B
NM_016623
865
AGATGCAGAAGGCATCTTGG
866
GCTGGATTGCCTCTCGTATT
867
TGGCCAGCTCCTCTGTATGACTGC
868
AGATGCAGAAGGCATCTTGGAGGACTTGCAGTCATACA











GAGGAGCTGGCCACGAAATACGAGAGGCAATCCAGC





FAM73A
NM_198549
869
TGAGAAGGTGCGCTATTCAA
870
GGCCATTAAAAGCTCAGTGC
871
AAGACCTCATGCAGTTACTCATTC
872
TGAGAAGGTGCGCTATTCAAGTACAGAGACTTTAGCTG









GCC

AAGACCTCATGCAGTTACTCATTCGCCGCACTGAGCTT











TTAATGGCC





FAP
NM_004460
873
GTTGGCTCACGTGGGTTAC
874
GACAGGACCGAAACATTCTG
875
AGCCACTGCAAACATACTCGTTCA
876
GTTGGCTCACGTGGGTTACTGATGAACGAGTATGTTTG









TCA

CAGTGGCTAAAAAGAGTCCAGAATGTTTCGGTCCTGTC





FAS
NM_000043
877
GGATTGCTCAACAACCATGCT
878
GGCATTAACACTTTTGGACG
879
TCTGGACCCTCCTACCTCTGGTTC
880
GGATTGCTCAACAACCATGCTGGGCATCTGGACCCTCC







ATAA

TTACGT

TACCTCTGGTTCTTACGTCTGTTGCTAGATTATCGTCC











AAAAGTGTTAATGCC





FASLG
NM_000639
881
GCACTTTGGGATTCTTTCCAT
882
GCATGTAAGAAGACCCTCAC
883
ACAACATTCTCGGTGCCTGTAACA
884
GCACTTTGGGATTCTTTCCATTATGATTCTTTGTTACA





TAT

TGAA

AAGAA

GGCACCGAGAATGTTGTATTCAGTGAGGGTCTTCTTAC











ATGC





FASN
NM_004104
885
GCCTCTTCCTGTTCGACG
886
GCTTTGCCCGGTAGCTCT
887
TCGCCCACCTACGTACTGGCCTAC
888
GCCTCTTCCTGTTCGACGGCTCGCCCACCTACGTACTG











GCCTACACCCAGAGCTACCGGGCAAAGC





FCGR3A
NM_000569
889
GTCTCCAGTGGAAGGGAAAA
890
AGGAATGCAGCTACTCACTG
891
CCCATGATCTTCAAGCAGGGAAGC
892
GTCTCCAGTGGAAGGGAAAAGCCCATGATCTTCAAGCA







G



GGGAAGCCCCAGTGAGTAGCTGCATTCCT





FGF10
NM_004465
893
TCTTCCGTCCCTGTCACCT
894
AGAGTTGGTGGCCTCTGGT
895
ACACCATGTCCTGACCAAGGGCTT
896
TCTTCCGTCCCTGTCACCTGCCAAGCCCTTGGTCAGGA











CATGGTGTCACCAGAGGCCACCAACTCT





FGF17
NM_003867
897
GGTGGCTGTCCTCAAAATCT
898
TCTAGCCAGGAGGAGTTTGG
899
TTCTCGGATCTCCCTCAGTCTGCC
900
GGTGGCTGTCCTCAAAATCTGCTTCTCGGATCTCCCTC











AGTCTGCCCCCAGCCCCCAAACTCCTCCTGGCTAGA





FGF5
NM_004464
901
GCATCGGTTTCCATCTGC
902
AACATATTGGCTTCGTGGGA
903
CCATTGACTTTGCCATCCGGGTAG
904
GCATCGGTTTCCATCTGCAGATCTACCCGGATGGCAAA











GTCAATGGATCCCACGAAGCCAATATGTT





FGF6
NM_020996
905
GGGCCATTAATTCTGACCAC
906
CCCGGGACATAGTGATGAA
907
CATCCACCTTGCCTCTCAGGCAC
908
GGGCCATTAATTCTGACCACGTGCCTGAGAGGCAAGGT











GGATGGCCCTGGGACAGAAACTGTTCATCACTATGTCC











CGGG





FGF7
NM_002009
909
CCAGAGCAAATGGCTACAAA
910
TCCCCTCCTTCCATGTAATC
911
CAGCCCTGAGCGACACACAAGAAG
912
CCAGAGCAAATGGCTACAAATGTGAACTGTTCCAGCCC











TGAGCGACACACAAGAAGTTATGATTACATGGAAGGAG











GGGA





FGFR2
NM_000141
913
GAGGGACTGTTGGCATGCA
914
GAGTGAGAATTCGATCCAAG
915
TCCCAGAGACCAACGTTCAAGCAG
916
GAGGGACTGTTGGCATGCAGTGCCCTCCCAGAGACCAA







TCTTC

TTG

CGTTCAAGCAGTTGGTAGAAGACTTGGATCGAATTCTC











ACTC





FGFR4
NM_002011
917
CTGGCTTAAGGATGGACAGG
918
ACGAGACTCCAGTGCTGATG
919
CCTTTCATGGGGAGAACCGCATT
920
CTGGCTTAAGGATGGACAGGCCTTTCATGGGGAGAACC











GCATTGGAGGCATTCGGCTGCGCCATCAGCACTGGAGT











CTCGT





FKBP5
NM_004117
921
CCCACAGTAGAGGGGTCTCA
922
GGTTCTGGCTTTCACGTCTG
923
TCTCCCCAGTTCCACAGCAGTGTC
924
CCCACAGTAGAGGGGTCTCATGTCTCCCCAGTTCCACA











GCAGTGTCACAGACGTGAAAGCCAGAACC





FLNA
NM_001456
925
GAACCTGCGGTGGACACT
926
GAAGACACCCTGGCCCTC
927
TACCAGGCCCATAGCACTGGACAC
928
GAACCTGCGGTGGACACTTCCGGTGTCCAGTGCTATGG











GCCTGGTATTGAGGGCCAGGGTGTCTTC





FLNC
NM_001458
929
CAGGACAATGGTGATGGCT
930
TGATGGTGTACTCGCCAGG
931
ATGTGCTGTCAGCTACCTGCCCAC
932
CAGGACAATGGTGATGGCTCATGTGCTGTCAGCTACCT











GCCCACGGAGCCTGGCGAGTACACCATCA





FLT1
NM_002019
933
GGCTCCTGAATCTATCTTTG
934
TCCCACAGCAATACTCCGTA
935
CTACAGCACCAAGAGCGACGTGTG
936
GGCTCCTGAATCTATCTTTGACAAAATCTACAGCACCA











AGAGCGACGTGTGGTCTTACGGAGTATTGCTGTGGGA





FLT4
NM_002020
937
ACCAAGAAGCTGAGGACCTG
938
CCTGGAAGCTGTAGCAGACA
939
AGCCCGCTGACCATGGAAGATCT
940
ACCAAGAAGCTGAGGACCTGTGGCTGAGCCCGCTGACC











ATGGAAGATCTTGTCTGCTACAGCTTCCAGG





FN1
NM_002026
941
GGAAGTGACAGACGTGAAGGT
942
ACACGGTAGCCGGTCACT
943
ACTCTCAGGCGGTGTCCACATGAT
944
GGAAGTGACAGACGTGAAGGTCACCATCATGTGGACAC











CGCCTGAGAGTGCAGTGACCGGCTACCGTGT





FOS
NM_005252
945
CGAGCCCTTTGATGACTTCCT
946
GGAGCGGGCTGTCTCAGA
947
TCCCAGCATCATCCAGGCCCAG
948
CGAGCCCTTTGATGACTTCCTGTTCCCAGCATCATCCA











GGCCCAGTGGCTCTGAGACAGCCCGCTCC





FOXO1
NM_002015
949
GTAAGCACCATGCCCCAC
950
GGGGCAGAGGCACTTGTA
951
TATGAACCGCCTGACCCAAGTGAA
952
GTAAGCACCATGCCCCACACCTCGGGTATGAACCGCCT











GACCCAAGTGAAGACACCTGTACAAGTGCCTCTGCCCC





FOXP3
NM_014009
953
CTGTTTGCTGTCCGGAGG
954
GTGGAGGAACTCTGGGAATG
955
TGTTTCCATGGCTACCCCACAGGT
956
CTGTTTGCTGTCCGGAGGCACCTGTGGGGTAGCCATGG











AAACAGCACATTCCCAGAGTTCCTCCAC





FOXQ1
NM_033260
957
TGTTTTTGTCGCAACTTCCA
958
TGGAAAGGTTCCCTGATGTA
959
TGATTTATGTCCCTTCCCTCCCCC
960
TGTTTTTGTCGCAACTTCCATTGATTTATGTCCCTTCC







CT



CTCCCCCCTAAGTACATCAGGGAACCTTTCCA





FSD1
NM_024333
961
AGGCCTCCTGTCCTTCTACA
962
TGTGTGAACCTGGTCTTGAA
963
CGCACCAAACAAGTGCTGCACA
964
AGGCCTCCTGTCCTTCTACAATGCCCGCACCAAACAAG







A



TGCTGCACACTTTCAAGACCAGGTTCACACA





FYN
NM_002037
965
GAAGCGCAGATCATGAAGAA
966
CTCCTCAGACACCACTGCAT
967
CTGAAGCACGACAAGCTGGTCCAG
968
GAAGCGCAGATCATGAAGAAGCTGAAGCACGACAAGCT











GGTCCAGCTCTATGCAGTGGTGTCTGAGGAG





G6PD
NM_000402
969
AATCTGCCTGTGGCCTTG
970
CGAGATGTTGCTGGTGACA
971
CCAGCCTCAGTGCCACTTGACATT
972
AATCTGCCTGTGGCCTTGCCCGCCAGCCTCAGTGCCAC











TTGACATTCCTTGTCACCAGCAACATCTCG





GABRG2
NM_198904
973
CCACTGTCCTGACAATGACC
974
GAGATCCATCGCTGTGACAT
975
CTCAGCACCATTGCCCGGAAAT
976
CCACTGTCCTGACAATGACCACCCTCAGCACCATTGCC











CGGAAATCGCTCCCCAAGGTCTCCTATGTCACAGCGAT











GGATCTC





GADD45A
NM_001924
977
GTGCTGGTGACGAATCCA
978
CCCGGCAAAAACAAATAAGT
979
TTCATCTCAATGGAAGGATCCTGC
980
GTGCTGGTGACGAATCCACATTCATCTCAATGGAAGGA









C

TCCTGCCTTAAGTCAACTTATTTGTTTTTGCCGGG





GADD45B
NM_015675
981
ACCCTCGACAAGACCACACT
982
TGGGAGTTCATGGGTACAGA
983
TGGGAGTTCATGGGTACAGA
984
ACCCTCGACAAGACCACACTTTGGGACTTGGGAGCTGG











GGCTGAAGTTGCTCTGTACCCATGAACTCCCA





GDF15
NM_004864
985
CGCTCCAGACCTATGATGACT
986
ACAGTGGAAGGACCAGGACT
987
TGTTAGCCAAAGACTGCCACTGCA
988
CGCTCCAGACCTATGATGACTTGTTAGCCAAAGACTGC











CACTGCATATGAGCAGTCCTGGTCCTTCCACTGT





GHR
NM_000163
989
CCACCTCCCACAGGTTCA
990
GGTGCGTGCCTGTAGTCC
991
CGTGCCTCAGCCTCCTGAGTAGCT
992
CCACCTCCCACAGGTTCAGGCGATTCCCGTGCCTCAGC











CTCCTGAGTAGCTGGGACTACAGGCACGCACC





GNPTAB
NM_024312
993
GGATTCACATCGCGGAAA
994
GTTCTTGCATAACAATCCGG
995
CCCTGCTCACATGCCTCACATGAT
996
GGATTCACATCGCGGAAAGTCCCTGCTCACATGCCTCA







TC



CATGATTGACCGGATTGTTATGCAAGAAC





GNRH1
NM_000825
997
AAGGGCTAAATCCAGGTGTG
998
CTGGATCTCTGTGGCTGGT
999
TCCTGTCCTTCACTGTCCTTGCCA
1000
AAGGGCTAAATCCAGGTGTGACGGTATCTAATGATGTC











CTGTCCTTCACTGTCCTTGCCATCACCAGCCACAGAGA











TCCAG





GPM6B
NM_001001994
1001
ATGTGCTTGGAGTGGCCT
1002
TGTAGAACATAAACACGGGC
1003
CGCTGAGAAACCAAACACACCCAG
1004
ATGTGCTTGGAGTGGCCTGGCTGGGTGTGTTTGGTTTC







A



TCAGCGGTGCCCGTGTTTATGTTCTACA





GPNMB
NM_001005340
1005
CAGCCTCGCCTTTAAGGAT
1006
TGACAAATATGGCCAAGCAG
1007
CAAACAGTGCCCTGATCTCCGTTG
1008
CAGCCTCGCCTTTAAGGATGGCAAACAGTGCCCTGATC











TCCGTTGGCTGCTTGGCCATATTTGTCA





GPR68
NM_003485
1009
CAAGGACCAGATCCAGCG
1010
GGTAGGGCAGGAAGCAGG
1011
CTCAGCACCGTGGTCATCTTCCTG
1012
CAAGGACCAGATCCAGCGGCTGGTGCTCAGCACCGTGG











TCATCTTCCTGGCCTGCTTCCTGCCCTACC





GPS1
NM_004127
1013
AGTACAAGCAGGCTGCCAAG
1014
GCAGCTCAGGGAAGTCACA
1015
CCTCCTGCTGGCTTCCTTTGATCA
1016
AGTACAAGCAGGCTGCCAAGTGCCTCCTGCTGGCTTCC











TTTGATCACTGTGACTTCCCTGAGCTGC





GRB7
NM_005310
1017
CCATCTGCATCCATCTTGTT
1018
GGCCACCAGGGTATTATCTG
1019
CTCCCCACCCTTGAGAAGTGCCT
1020
CCATCTGCATCCATCTTGTTTGGGCTCCCCACCCTTGA











GAAGTGCCTCAGATAATACCCTGGTGGCC





GREM1
NM_013372
1021
GTGTGGGCAAGGACAAGC
1022
GACCTGATTTGGCCTCACC
1023
TCCACCCTCCCTTTCTCACTCCAC
1024
GTGTGGGCAAGGACAAGCAGGATAGTGGAGTGAGAAAG











GGAGGGTGGAGGGTGAGGCCAAATCAGGTC





GSK3B
NM_002093
1025
GACAAGGACGGCAGCAAG
1026
TTGTGGCCTGTCTGGACC
1027
CCAGGAGTTGCCACCACTGTTGTC
1028
GACAAGGACGGCAGCAAGGTGACAACAGTGGTGGCAAC











TCCTGGGCAGGGTCCAGACAGGCCACAA





GSN
NM_000177
1029
CTTCTGCTAAGCGGTACATCG
1030
GGCTCAAAGCCTTGCTTCAC
1031
ACCCAGCCAATCGGGATCGGC
1032
CTTCTGCTAAGCGGTACATCGAGACGGACCCAGCCAAT





A





CGGGATCGGCGGACGCCCATCACCGTGGTGAAGCAAGG











CTTTGAGCC





GSTM1
NM_000561
1033
AAGCTATGAGGAAAAGAAGTA
1034
GGCCCAGCTTGAATTTTTCA
1035
TCAGCCACTGGCTTCTGTCATAAT
1036
AAGCTATGAGGAAAAGAAGTACACGATGGGGGACGCTC





CACGAT



CAGGAG

CTGATTATGACAGAAGCCAGTGGCTGAATGAAAAATTC











AAGCTGGGCC





GSTM2
NM_000848
1037
CTGCAGGCACTCCCTGAAAT
1038
CCAAGAAACCATGGCTGCTT
1039
CTGAAGCTCTACTCACAGTTTCTG
1040
CTGCAGGCACTCCCTGAAATGCTGAAGCTCTACTCACA









GG

GTTTCTGGGGAAGCAGCCATGGTTTCTTGG





HDAC1
NM_004964
1041
CAAGTACCACAGCGATGACTA
1042
GCTTGCTGTACTCCGACATG
1043
TTCTTGCGCTCCATCCGTCCAGA
1044
CAAGTACCACAGCGATGACTACATTAAATTCTTGCGCT





CATTAA

TT



CCATCCGTCCAGATAACATGTCGGAGTACAGCAAGC





HDAC9
NM_178423
1045
AACCAGGCAGTCACCTTGAG
1046
CTCTGTCTTCCTGCATCGC
1047
CCCCCTGAAGCTCTTCCTCTGCTT
1048
AACCAGGCAGTCACCTTGAGGAAGCAGAGGAAGAGCTT











CAGGGGGACCAGGCGATGCAGGAAGACAGAG





HGD
NM_000187
1049
CTCAGGTCTGCCCCTACAAT
1050
TTATTGGTGCTCCGTGGAC
1051
CTGAGCAGCTCTCAGGATCGGCTT
1052
CTCAGGTCTGCCCCTACAATCTCTATGCTGAGCAGCTC











TCAGGATCGGCTTTCACTTGTCCACGGAGCACCAATAA





HIP1
NM_005338
1053
CTCAGAGCCCCACCTGAG
1054
GGGTTTCCCTGCCATACTG
1055
CGACTCACTGACCGAGGCCTGTAA
1056
CTCAGAGCCCCACCTGAGCCTGCCGACTCACTGACCGA











GGCCTGTAAGCAGTATGGCAGGGAAACCC





HIRIP3
NM_003609
1057
GGATGAGGAAAAGGGGGAT
1058
TCCCTAGCTGACTTTCTCCG
1059
CCATTGCTCCTGGTTCTGGGTTTC
1060
GGATGAGGAAAAGGGGGATTGGAAACCCAGAACCAGGA











GCAATGGCCGGAGAAAGTCAGCTAGGGA





HK1
NM_000188
1061
TACGCACAGAGGCAAGCA
1062
GAGAGAAGTGCTGGAGAGGC
1063
TAAGAGTCCGGGATCCCCAGCCTA
1064
TACGCACAGAGGCAAGCAGCTAAGAGTCCGGGATCCCC











AGCCTACTGCCTCTCCAGCACTTCTCTC





HLA-G
NM_002127
1065
CCATCCCCATCATGGGTATC
1066
CCGCAGCTCCAGTGACTACA
1067
CTGCAAGGACAACCAGGCCAGCAA
1068
CCTGCGCGGCTACTACAACCAGAGCGAGGCCAGTTCTC











ACACCCTCCAGTGGATGATTGGCTGCGACCTG





HLF
NM_002126
1069
CACCCTGCAGGTGTCTGAG
1070
GGTACCTAGGAGCAGAAGGT
1071
TAAGTGATCTGCCCTCCAGGTGGC
1072
CACCCTGCAGGTGTCTGAGACTAAGTGATCTGCCCTCC







GA



AGGTGGCGATCACCTTCTGCTCCTAGGTACC





HNF1B
NM_000458
1073
TCCCAGCATCTCAACAAGG
1074
CGTACCAGGTGTACAGAGCG
1075
CCCCTATGAAGACCCAGAAGCGTG
1076
TCCCAGCATCTCAACAAGGGCACCCCTATGAAGACCCA











GAAGCGTGCCGCTCTGTACACCTGGTACG





HPS1
NM_000195
1077
GCGGAAGCTGTATGTGCTC
1078
TTCGGATAAGATGACCGTCC
1079
CAGTCACCAGCCCAAAGTGCACTT
1080
GCGGAAGCTGTATGTGCTCAAGTACCTGTTTGAAGTGC











ACTTTGGGCTGGTGACTGTGGACGGTCATCTTATCCGA











A





HRAS
NM_005343
1081
GGACGAATACGACCCCACT
1082
GCACGTCTCCCCATCAAT
1083
ACCACCTGCTTCCGGTAGGAATCC
1084
GGACGAATACGACCCCACTATAGAGGATTCCTACCGGA











AGCAGGTGGTCATTGATGGGGAGACGTGC





HSD17B10
NM_004493
1085
CCAGCGAGTTCTTGATGTGA
1086
ATCTCACCAGCCACCAGG
1087
TCATGGGCACCTTCAATGTGATCC
1088
CCACCAGACAAGACCGATTCGCTGGCCTCCATTTCTTC











AACCCAGTGCCTGTCATGAAACTTGTGG





HSD17B2
NM_002153
1089
GCTTTCCAAGTGGGGAATTA
1090
TGCCTGCGATATTTGTTAGG
1091
AGTTGCTTCCATCCAACCTGGAGG
1092
GCTTTCCAAGTGGGGAATTAAAGTTGCTTCCATCCAAC











CTGGAGGCTTCCTAACAAATATCGCAGGCA





HSD17B3
NM_000197
1093
GGGACGTCCTGGAACAGT
1094
TGGAGAATCTCACGCACTTC
1095
CTTCATCCTCACAGGGCTGCTGGT
1096
GGGACGTCCTGGAACAGTTCTTCATCCTCACAGGGCTG











CTGGTGTGCCTGGCCTGCCTGGCGAAGTGCGTGAGATT











CTCCA





HSD17B4
NM_000414
1097
CGGGAAGCTTCAGAGTACCTT
1098
ACCTCAGGCCCAATATCCTT
1099
AGGCGGCGTCCTATTTCCTCAAAT
1100
CGGGAAGCTTCAGAGTACCTTTGTATTTGAGGAAATAG











GACGCCGCCTAAAGGATATTGGGCCTGAGGT





HSD3B2
NM_000198
1101
GCCTTCCTTTAACCCTGATG
1102
GGAGTAAATTGGGCTGAGTA
1103
ACTTCCAGCAGGAAGCCAATCCAG
1104
GCCTTCCTTTAACCCTGATGTACTGGATTGGCTTCCTG







GG



CTGGAAGTAGTGAGCTTCCTACTCAGCCCAATTTACTC











C





HSP90AB1
NM_007355
1105
GCATTGTGACCAGCACCTAC
1106
GAAGTGCCTGGGCTTTCAT
1107
ATCCGCTCCATATTGGCTGTCCAG
1108
GCATTGTGACCAGCACCTACGGCTGGACAGCCAATATG











GAGCGGATCATGAAAGCCCAGGCACTTC





HSPA5
NM_005347
1109
GGCTAGTAGAACTGGATCCCA
1110
GGTCTGCCCAAATGCTTTTC
1111
TAATTAGACCTAGGCCTCAGCTGC
1112
GGCTAGTAGAACTGGATCCCAACACCAAACTCTTAATT





ACA



ACTGCC

AGACCTAGGCCTCAGCTGCACTGCCCGAAAAGCATTTG











GGCAGACC





HSPA8
NM_006597
1113
CCTCCCTCTGGTGGTGCTT
1114
GCTACATCTACACTTGGTTG
1115
CTCAGGGCCCACCATTGAAGAGGT
1116
CCTCCCTCTGGTGGTGCTTCCTCAGGGCCCACCATTGA







GCTTAA

TG

AGAGGTTGATTAAGCCAACCAAGTGTAGATGTAGC





HSPB1
NM_001540
1117
CCGACTGGAGGAGCATAAA
1118
ATGCTGGCTGACTCTGCTC
1119
CGCACTTTTCTGAGCAGACGTCCA
1120
CCGACTGGAGGAGCATAAAAGCGCAGCCGAGCCCAGCG











CCCCGCACTTTTCTGAGCAGACGTCCAGAGCAGAGTCA











GCCAGCAT





HSPB2
NM_001541
1121
CACCACTCCAGAGGTAGCAG
1122
TGGGACCAAACCATACATTG
1123
CACCTTTCCCTTCCCCCAAGGAT
1124
CACCACTCCAGAGGTAGCAGCATCCTTGGGGGAAGGGA











AAGGTGCATGGTCCACAATGTATGGTTTGGTCCCA





HSPE1
NM_002157
1125
GCAAGCAACAGTAGTCGCTG
1126
CCAACTTTCACGCTAACTGG
1127
TCTCCACCCTTTCCTTTAGAACCC
1128
GCAAGCAACAGTAGTCGCTGTTGGATCGGGTTCTAAAG







T

G

GAAAGGGTGGAGAGATTCAACCAGTTAGCGTGAAAGTT











GG





HSPG2
NM_005529
1129
GAGTACGTGTGCCGAGTGTT
1130
CTCAATGGTGACCAGGACA
1131
CAGCTCCGTGCCTCTAGAGGCCT
1132
GAGTACGTGTGCCGAGTGTTGGGCAGCTCCGTGCCTCT











AGAGGCCTCTGTCCTGGTCACCATTGAG





ICAM1
NM_000201
1133
GCAGACAGTGACCATCTACAG
1134
CTTCTGAGACCTCTGGCTTC
1135
CCGGCGCCCAACGTGATTCT
1136
GCAGACAGTGACCATCTACAGCTTTCCGGCGCCCAACG





CTT

GT



TGATTCTGACGAAGCCAGAGGTCTCAGAAG





IER3
NM_003897
1137
GTACCTGGTGCGCGAGAG
1138
GCGTCTCCGCTGTAGTGTT
1139
TCAAGTTGCCTCGGAAGTCCCAGT
1140
GTACCTGGTGCGCGAGAGCGTATCCCCAACTGGGACTT











CCGAGGCAACTTGAACTCAGAACACTACAGCGGAGACG











C





IFI30
NM_006332
1141
ATCCCATGAAGCCCAGATAC
1142
GCACCATTCTTAGTGGAGCA
1143
AAAATTCCACCCCATGATCAAGAA
1144
ATCCCATGAAGCCCAGATACACAAAATTCCACCCCATG









TCC

ATCAAGAATCCTGCTCCACTAAGAATGGTGC





IFIT1
NM_001548
1145
TGACAACCAAGCAAATGTGA
1146
CAGTCTGCCCATGTGGTAAT
1147
AAGTTGCCCCAGGTCACCAGACTC
1148
TGACAACCAAGCAAATGTGAGGAGTCTGGTGACCTGGG











CGCAATTTGCCTGGATGTATTACCACATGGGCAGACTG





IFNG
NM_000619
1149
GCTAAAACAGGGAAGCGAAA
1150
CAACCATTACTGGGATGCTC
1151
TCGACCTCGAAACAGCATCTGACT
1152
GCTAAAACAGGGAAGCGAAAAAGGAGTCAGATGCTGTT









CC

TCGAGGTCGAAGAGCATCCCAGTAATGGTTG





IGF1
NM_000618
1153
TCCGGAGCTGTGATCTAAGGA
1154
CGGACAGAGCGAGCTGACTT
1155
TGTATTGCGCACCCCTCAAGCCTG
1156
TCCGGAGCTGTGATCTAAGGAGGCTGGAGATGTATTGC











GCACCCCTCAAGCCTGCCAAGTCAGCTCGCTCTGTCCG





IGF1R
NM_000875
1157
GCATGGTAGCCGAAGATTTCA
1158
TTTCCGGTAATAGTCTGTCT
1159
CGCGTCATACCAAAATCTCCGATT
1160
GCATGGTAGCCGAAGATTTCACAGTCAAAATCGGAGAT







CATAGATATC

TTGA

TTTGGTATGACGCGAGATATCTATGAGACAGACTATTA











CCGGAAA





IGF2
NM_000612
1161
CCGTGCTTCCGGACAACTT
1162
TGGACTGCTTCCAGGTGTCA
1163
TACCCCGTGGGCAAGTTCTTCCAA
1164
CCGTGCTTCCGGACAACTTCCCCAGATACCCCGTGGGC











AAGTTCTTCCAATATGACACCTGGAAGCAGTCCA





IGFBP2
NM_000597
1165
GTGGACAGCACCATGAACA
1166
CCTTCATACCCGACTTGAGG
1167
CTTCCGGCCAGCACTGCCTC
1168
GTGGACAGCACCATGAACATGTTGGGCGGGGGAGGCAG











TGCTGGCCGGAAGCCCCTCAAGTCGGGTATGAAGG





IGFBP3
NM_000598
1169
ACATCCCAACGCATGCTC
1170
CCACGCCCTTGTTTCAGA
1171
ACACCACAGAAGGCTGTGAGCTCC
1172
ACATCCCAACGCATGCTCCTGGAGCTCACAGCCTTCTG











TGGTGTCATTTCTGAAACAAGGGCGTGG





IGFBP5
NM_000599
1173
TGGACAAGTACGGGATGAAGC
1174
CGAAGGTGTGGCACTGAAAG
1175
CCCGTCAACGTACTCCATGCCTGG
1176
TGGACAAGTACGGGATGAAGCTGCCAGGCATGGAGTAC





T

T



GTTGACGGGGACTTTCAGTGCCACACCTTCG





IGFBP6
NM_002178
1177
TGAACCGCAGAGACCAACAG
1178
GTCTTGGACACCCGCAGAAT
1179
ATCCAGGCACCTCTACCACGCCCT
1180
TGAACCGCAGAGACCAACAGAGGAATCCAGGCACCTCT









C

ACCACGCCCTCCCAGCCCAATTCTGCGGGTGTCCAAGA











C





IL10
NM_000572
1181
CTGACCACGCTTTCTAGCTG
1182
CCAAGCCCAGAGACAAGATA
1183
TTGAGCTGTTTTCCCTGACCTCCC
1184
CTGACCACGCTTTCTAGCTGTTGAGCTGTTTTCCCTGA







A



CCTCCCTCTAATTTATCTTGTCTCTGGGCTTGG





IL11
NM_000641
1185
TGGAAGGTTCCACAAGTCAC
1186
TCTTGACCTTGCAGCTTTGT
1187
CCTGTGATCAACAGTACCCGTATG
1188
TGGAAGGTTCCACAAGTCACCCTGTGATCAACAGTACC









GG

CGTATGGGACAAAGCTGCAAGGTCAAGA





IL17A
NM_002190
1189
TCAAGCAACACTCCTAGGGC
1190
CAGCTCCTTTCTGGGTTGTG
1191
TGGCTTCTGTCTGATCAAGGCACC
1192
TCAAGCAACACTCCTAGGGCCTGGCTTCTGTCTGATCA











AGGCACCACACAACCCAGAAAGGAGCTG





IL1A
NM_000575
1193
GGTCCTTGGTAGAGGGCTACT
1194
GGATGGAGCTTCAGGAGAGA
1195
TCTCCACCCTGGCCCTGTTACAGT
1196
GGTCCTTGGTAGAGGGCTACTTTACTGTAACAGGGCCA





T





GGGTGGAGAGTTCTCTCCTGAAGCTCCATCC





IL1B
NM_000576
1197
AGCTGAGGAAGATGCTGGTT
1198
GGAAAGAAGGTGCTCAGGTC
1199
TGCCCACAGACCTTCCAGGAGAAT
1200
AGCTGAGGAAGATGCTGGTTCCCTGCCCACAGACCTTC











CAGGAGAATGACCTGAGCACCTTCTTTCC





IL2
NM_000586
1201
ACCTCAACTCCTGCCACAAT
1202
CACTGTTTGTGACAAGTGCA
1203
TGCAACTCCTGTCTTGCATTGCAC
1204
ACCTCAACTCCTGCCACAATGTACAGGATGCAACTCCT







AG



GTCTTGCATTGCACTAAGTCTTGCACTTGTCACAAACA











GTG





IL6
NM_000600
1205
CCTGAACCTTCCAAAGATGG
1206
ACCAGGCAAGTCTCCTCATT
1207
CCAGATTGGAAGCATCCATCTTTT
1208
CCTGAACCTTCCAAAGATGGCTGAAAAAGATGGATGCT









TCA

TCCAATCTGGATTCAATGAGGAGACTTGCCTGGT





IL6R
NM_000565
1209
CCAGCTTATCTCAGGGGTGT
1210
CTGGCGTAGAACCTTCCG
1211
CCTTTGGCTTCACGGAAGAGCCTT
1212
CCAGCTTATCTCAGGGGTGTGCGGCCTTTGGCTTCACG











GAAGAGCCTTGCGGAAGGTTCTACGCCAG





IL6ST
NM_002184
1213
GGCCTAATGTTCCAGATCCT
1214
AAAATTGTGCCTTGGAGGAG
1215
CATATTGCCCAGTGGTCACCTCAC
1216
GGCCTAATGTTCCAGATCCTTCAAAGAGTCATATTGCC









A

CAGTGGTCACCTCACACTCCTCCAAGGCACAATTTT





IL8
NM_000584
1217
AAGGAACCATCTCACTGTGTG
1218
ATCAGGAAGGCTGCCAAGAG
1219
TGACTTCCAAGCTGGCCGTGGC
1220
AAGGAACCATCTCACTGTGTGTAAACATGACTTCCAAG





TAAAC





CTGGCCGTGGCTCTCTTGGCAGCCTTCCTGAT





ILF3
NM_004516
1221
GACACGCCAAGTGGTTCC
1222
CTCAAGACCCGGATCACAA
1223
ACACAAGACTTCAGCCCGTTGGCT
1224
GACACGCCAAGTGGTTCCAGGCCAGAGCCAACGGGCTG











AAGTCTTGTGTCATTGTGATCCGGGTCTTGAG





ILK
NM_001014794
1225
CTCAGGATTTTCTCGCATCC
1226
AGGAGCAGGTGGAGACTGG
1227
ATGTGCTCCCAGTGCTAGGTGCCT
1228
CTCAGGATTTTCTCGCATCCAAATGTGCTCCCAGTGCT











AGGTGCCTGCCAGTCTCCACCTGCTCCT





IMMT
NM_006839
1229
CTGCCTATGCCAGACTCAGA
1230
GCTTTTCTGGCTTCCTCTTC
1231
CAACTGCATGGCTCTGAACAGCCT
1232
CTGCCTATGCCAGACTCAGAGGAATCGAACAGGCTGTT











CAGAGCCATGCAGTTGCTGAAGAGGAAGCCAGAAAAGC





ING5
NM_032329
1233
CCTACAGCAAGTGCAAGGAA
1234
CATCTCGTAGGTCTGCATGG
1235
CCAGCTGCACTTTGTCGTCACTGT
1236
CCTACAGCAAGTGCAAGGAATACAGTGACGACAAAGTG











CAGCTGGCCATGCAGACCTACGAGATG





INHBA
NM_002192
1237
GTGCCCGAGCCATATAGCA
1238
CGGTAGTGGTTGATGACTGT
1239
ACGTCCGGGTCCTCACTGTCCTTC
1240
GTGCCCGAGCCATATAGCAGGCACGTCCGGGTCCTCAC







TGA

C

TGTCCTTCCACTCAACAGTCATCAACCACTACCG





INSL4
NM_002195
1241
CTGTCATATTGCCCCATGC
1242
CAGATTCCAGCAGCCACC
1243
TGAGAAGACATTCACCACCACCCC
1244
CTGTCATATTGCCCCATGCCTGAGAAGACATTCACCAC











CACCCCAGGAGGGTGGCTGCTGGAATCTG





ITGA1
NM_181501
1245
GCTTCTTCTGGAGATGTGCTC
1246
CCTGTAGATAATGACCTGGC
1247
TTGCTGGACAGCCTCGGTACAATC
1248
GCTTCTTCTGGAGATGTGCTCTATATTGCTGGACAGCC





T

CT



TCGGTACAATCATACAGGCCAGGTCATTATCTACAGG





ITGA3
NM_002204
1249
CCATGATCCTCACTCTGCTG
1250
GAAGCTTTGTAGCCGGTGAT
1251
CACTCCAGACCTCGCTTAGCATGG
1252
CCATGATCCTCACTCTGCTGGTGGACTATACACTCCAG











ACCTCGCTTAGCATGGTAAATCACCGGCTACAAAGCTT











C





ITGA4
NM_000885
1253
CAACGCTTCAGTGATCAATCC
1254
GTCTGGCCGGGATTCTTT
1255
CGATCCTGCATCTGTAAATCGCCC
1256
CAACGCTTCAGTGATCAATCCCGGGGCGATTTACAGAT











GCAGGATCGGAAAGAATCCCGGCCAGAC





ITGA5
NM_002205
1257
AGGCCAGCCCTACATTATCA
1258
GTCTTCTCCACAGTCCAGCA
1259
TCTGAGCCTTGTCCTCTATCCGGC
1260
AGGCCAGCCCTACATTATCAGAGCAAGAGCCGGATAGA











GGACAAGGCTCAGATCTTGCTGGACTGTGGAGAAGAC





ITGA6
NM_000210
1261
CAGTGACAAACAGCCCTTCC
1262
GTTTAGCCTCATGGGCGTC
1263
TCGCCATCTTTTGTGGGATTCCTT
1264
CAGTGACAAACAGCCCTTCCAACCCAAGGAATCCCACA











AAAGATGGCGATGACGCCCATGAGGCTAAAC





ITGA7
NM_002206
1265
GATATGATTGGTCGCTGCTTT
1266
AGAACTTCCATTCCCCACCA
1267
CAGCCAGGACCTGGCCATCCG
1268
GATATGATTGGTCGCTGCTTTGTGCTCAGCCAGGACCT





G

T



GGCCATCCGGGATGAGTTGGATGGTGGGGAATGGAAGT











TCT





ITGAD
NM_005353
1269
GAGCCTGGTGGATCCCAT
1270
ACTGTCAGGATGCCCGTG
1271
CAACTGAAAGGCCTGACGTTCACG
1272
GAGCCTGGTGGATCCCATCGTCCAACTGAAAGGCCTGA











CGTTCACGGCCACGGGCATCCTGACAGT





ITGB3
NM_000212
1273
ACCGGGAGCCCTACATGAC
1274
CCTTAAGCTCTTTCACTGAC
1275
AAATACCTGCAACCGTTACTGCCG
1276
ACCGGGGAGCCCTACATGACGAAAATACCTGCAACCGT







TCAATCT

TGAC

TACTGCCGTGACGAGATTGAGTCAGTGAAAGAGCTTAA











GG





ITGB4
NM_000213
1277
CAAGGTGCCCTCAGTGGA
1278
GCGCACACCTTCATCTCAT
1279
CACCAACCTGTACCCGTATTGCGA
1280
CAAGGTGCCCTCAGTGGAGCTCACCAACCTGTACCCGT











ATTGCGACTATGAGATGAAGGTGTGCGC





ITGB5
NM_002213
1281
TCGTGAAAGATGACCAGGAG
1282
GGTGAACATCATGACGCAGT
1283
TGCTATGTTTCTACAAAACCGCCA
1284
TCGTGAAAGATGACCAGGAGGCTGTGCTATGTTTCTAC









AGG

AAAACCGCCAAGGACTGCGTCATGATGTTCACC





ITPR1
NM_002222
1285
GAGGAGGTGTGGGTGTTCC
1286
GTAATCCCATGTCCGCGA
1287
CCATCCTAACGGAACGAGCTCCCT
1288
GAGGAGGTGTGGGTGTTCCGCTTCCATCCTAACGGAAC











GAGCTCCCTCTTCGCGGACATGGGATTAC





ITPR3
NM_002224
1289
TTGCCATCGTGTCAGTGC
1290
ATGGAGCTGGCGTCATTG
1291
TCCAGGTCTCGGATCTCAGACACG
1292
TTGCCATCGTGTCAGTGCCCGTGTCTGAGATCCGAGAC











CTGGACTTTGCCAATGACGCCAGCTCCAT





ITSN1
NM_003024
1293
TAACTGGGATGCATGGGC
1294
CTCTGCCTTAACTGGCCG
1295
AGCCCTCTCTCACCGTTCCAAGTG
1296
TAACTGGGATGCATGGGCAGCCCAGCCCTCTCTCACCG











TTCCAAGTGCCGGCCAGTTAAGGCAGAG





JAG1
NM_000214
1297
TGGCTTACACTGGCAATGG
1298
GCATAGCTGTGAGATGCGG
1299
ACTCGATTTCCCAGCCAACCACAG
1300
TGGCTTACACTGGCAATGGTAGTTTCTGTGGTTGGCTG











GGAAATCGAGTGCCGCATCTCACAGCTATGC





JUN
NM_002228
1301
GACTGCAAAGATGGAAACGA
1302
TAGCCATAAGGTCCGCTCTC
1303
CTATGACGATGCCCTCAACGCCTC
1304
GACTGCAAAGATGGAAACGACCTTCTATGACGATGCCC











TCAACGCCTCGTTCCTCCCGTCCGAGAGCGGACCTTAT











GGCTA





JUNB
NM_002229
1305
CTGTCAGCTGCTGCTTGG
1306
AGGGGGTGTCCGTAAAGG
1307
CAAGGGACACGCCTTCTGAACGT
1308
CTGTCAGCTGCTGCTTGGGGTCAAGGGACACGCCTTCT











GAACGTCCCCTGCCCCTTTACGGACACCCCCT





KCNN2
NM_021614
1309
TGTGCTATTCATCCCATACCT
1310
GGGCATAGGAGAAGGCAAG
1311
TTATACATTCACATGGACGGCCCG
1312
TGTGCTATTCATCCCATACCTGGGAATTATACATTCAC





G





AATGGCGGCCCGGCTTGCCTTCTCCTATGCCC





KCTD12
NM_138444
1313
AGCAGTTACTGGCAAGAGGG
1314
TGGAGACCTGAGCAGCCT
1315
ACTCTTAGGCGGCAGCGTCCTTTC
1316
AGCAGTTACTGGCAAGAGGGAGAAAGGACGCTGCCGCC











TAAGAGTGCAAGGCTGCTCAGGTCTCCA





KHDRBS3
NM_006558
1317
CGGGCAAGAAGAGTGGAC
1318
CTGTAGACGCCCTTTGCTGT
1319
CAAGACACAAGGCACCTTCAGCGA
1320
CGGGCAAGAAGAGTGGACTAACTCAAGACACAAGGCAC











CTTCAGCGAGGACAGCAAAGGGCGTCTACAG





KIAA0196
NM_014846
1321
CAGACACCAGCTCTGAGGC
1322
AACATTGTGAGGCGGACC
1323
TCCCCAGTGTCCAGGCACAGAGTA
1324
CAGACACCAGCTCTGAGGCCAGTTAATCATCCCCAGTG











TCCAGGCACAGAGTAGTCGGTCCGCCTCACAATGTT





KIAA0247
NM_014734
1325
CCGTGGGACATGGAGTGT
1326
GAAGCAAGTCCGTCTCCAAG
1327
TCCGCTAGTGATCCTTTGCACCCT
1328
CCGTGGGACATGGAGTGTTCCTTCCGCTAGTGATCCTT











TGCACCCTGCTTGGAGACGGACTTGCTTC





KIF4A
NM_012310
1329
AGAGCTGGTCTCCTCCAAAA
1330
GCTGGTCTTGCTCTGTTTCA
1331
CAGGTCAGCAAACTTGAAAGCAGC
1332
AGAGCTGGTCTCCTCCAAAATACAGGTCAGCAAACTTG









C

AAAGCAGCCTGAAACAGAGCAAGACCAGC





KIT
NM_000222
1333
GAGGCAACTGCTTATGGCTTA
1334
GGCACTCGGCTTGAGCAT
1335
TTACAGCGACAGTCATGGCCGCAT
1336
GAGGCAACTGCTTATGGCTTAATTAAGTCAGATGCGGC





ATTA





CATGACTGTCGCTGTAAAGATGCTCAAGCCGAGTGCC





KLC1
NM_182923
1337
AGTGGCTACGGGATGAACTG
1338
TGAGCCACAGACTGCTCACT
1339
CAACACGCAGCAGAAACTGCAGAA
1340
AGTGGCTACGGGATGAACTGGCCAACACGCAGCAGAAA











ACTGCGAAGAGTGAGCAGTCTGTGGCTCA





KLF6
NM_001300
1341
CACGAGACCGGCTACTTCTC
1342
GCTCTAGGCAGGTCTGTTGC
1343
AGTACTCCTCCAGAGACGGCAGCG
1344
CACGAGACCGGCTACTTCTCGGCGCTGCCGTCTCTGGA











GGAGTACTGGCAACAGACCTGCCTAGAGC





KLK1
NM_002257
1345
AACACAGCCCAGTTTGTTCA
1346
CCAGGAGGCTCATGTTGAAG
1347
TCAGTGAGAGCTTCCCACACCCTG
1348
AACACAGCCCAGTTTGTTCATGTCAGTGAGAGCTTCCC











CACACCTGGCTTCAACATGAGCCTCCTGG





KLK10
NM_002776
1349
GCCCAGAGGCTCCATCGT
1350
CAGAGGTTTGAACAGTGCAG
1351
CCTCTTCCTCCCCAGTCGGCTGA
1352
GCCCAGAGGCTCCATCGTCCATCCTCTTCCTCCCCAGT







ACA



CGGCTGAACTCTCCCCTTGTCTGCACTGTTCAAACCTC











TG





KLK11
NM_006853
1353
CACCCCGGCTTCAACAAC
1354
CATCTTCACCAGCATGATGT
1355
CCTCCCCAACAAAGACCACCGCA
1356
CACCCCGGCTTCAACAACAGCCTCCCCAACAAAGACCA







CA



CCGCAATGACATCATGCTGGTGAAGATG





KLK14
NM_022046
1357
CCCCTAAAATGTTCCTCCTG
1358
CTCATCCTCTTGGCTCTGTG
1359
CAGCACTTCAAGTCCTGGCTATAG
1360
CCCCTAAAATGTTCCTCCTGCTGACAGCACTTCAAGTC









CCA

CTGGCTATAGCCATGACACAGAGCCAAGAGGATGAG





KLK2
NM_005551
1361
AGTCTCGGATTGTGGGAGG
1362
TGTACACAGCCACCTGCC
1363
TTGGGAATGCTTCTCACACTCCCA
1364
AGTCTCGGATTGTGGGAGGCTGGGAGTGTGAGAAGCAT











TCCCAACCCTGGCAGGTGGCTGTGTACA





KLK3
NM_001648
1365
CCAAGCTTACCACCTGCAC
1366
AGGGTGAGGAAGACAACCG
1367
ACCCACATGGTGACACAGCTCTCC
1368
CCAAGCTTACCACCTGCACCCGGAGAGCTGTGTCACCA











TGTGGGTCCCGGTTGTCTTCCTCACCCT





KLRK1
NM_007360
1369
TGAGAGCCAGGCTTCTTGTA
1370
ATCCTGGTCCTCTTTGCTGT
1371
TGTCTCAAAATGCCAGCCTTCTGA
1372
TGAGAGCCAGGCTTCTTGTATGTCTCAAAATGCCAGCC









A

TTCTGAAAGTATACAGCAAAGAGGACCAGGAT





KPNA2
NM_002266
1373
TGATGGTCCAAATGAACGAA
1374
AAGCTTCACAAGTTGGGGC
1375
ACTCCTGTTTTCACCACCATGCCA
1376
TGATGGTCCAAATGAACGAATTGGCATGGTGGTGAAAA











CAGGAGTTGTGCCCCAACTTGTGAAGCTT





KRT1
NM_006121
1377
TGGACAACAACCGCAGTC
1378
TATCCTCGTACTGGGCCTTG
1379
CCTCAGCAATGATGCTGTCCAGGT
1380
TGGACAACAACCGCAGTCTCGACCTGGACAGCATCATT











GCTGAGGTCAAGGCCCAGTACGAGGATA





KRT15
NM_002275
1381
GCCTGGTTCTTCAGCAAGAC
1382
CTTGCTGGTCTGGATCATTT
1383
TGAACAAAGAGGTGGCCTCCAACA
1384
GCCTGGTTCTTCAGCAAGACTGAGGAGCTGAACAAAGA







C



GGTGGCCTCCAACACAGAAATGATCCAGACCAGCAAG





KRT18
NM_000224
1385
AGAGATCGAGGCTCTCAAGG
1386
GGCCTTTTACTTCCTCTTCG
1387
TGGTTCTTCTTCATGAAGAGCAGC
1388
AGAGATCGAGGCTCTCAAGGAGGAGCTGCTCTTCATGA









TCC

AGAAGAACCACGAAGAGGAAGTAAAAGGCC





KRT2
NM_000423
1389
CCAGTGACGCCTCTGTGTT
1390
GGGCATGGCTAGAAGCAC
1391
ACCTAGACAGCACAGATTCCGCCC
1392
CCAGTGACGCCTCTGTGTTCTGGGGCGGAATCTGTGCT











GTCTAGGTTTGTGCTTCTAGCCATGCCC





KRT5
NM_000424
1393
TCAGTGGAGAAGGAGTTGGA
1394
TGCCATATCCAGAGGAAACA
1395
CCAGTCAACATCTCTGTTGTCACA
1396
TCAGTGGAGAAGGAGTTGGACCAGTCAACATCTCTGTT









AGCA

GTCACAAGCAGTGTTTCCTCTGGATATGGCA





KRT75
NM_004693
1397
TCAAAGTCAGGTACGAAGATG
1398
ACGTCCTTTTTCAGGGCTAC
1399
TTCATTCTCAGCAGCTGTGCGCTT
1400
TCAAAGTCAGGTACGAAGATGAAATTAACAAGCGCACA





AAATT

AA

GT

GCTGCTGAGAATGAATTTGTAGCCCTGAAAAAGGACGT





KRT76
NM_015848
1401
ATCTCCAGACTGCTGGTTCC
1402
TCAGGGAATTAGGGGACAGA
1403
TCTGGGCTTCAGATCCTGACTCCC
1404
ATCTCCAGACTGCTGGTTCCCAGGGAACCCTCCCTACA











TCTGGGCTTCAGATCCTGACTCCCTTCTGTCCCCTAAT











TCCCTGA





KRT8
NM_002273
1405
GGATGAAGCTTACATGAACAA
1406
CATATAGCTGCCTGAGGAAG
1407
CGTCGGTCAGCCCTTCCAGGC
1408
GGATGAAGCTTACATGAACAAGGTAGAGCTGGAGTCTC





GGTAGA

TTGAT



GCCTGGAAGGGCTGACCGACGAGATCAACTTCCTCAGG











CAGCTATATG





L1CAM
NM_000425
1409
CTTGCTGGCCAATGCCTA
1410
TGATTGTCCGCAGTCAGG
1411
ATCTACGTTGTCCAGCTGCCAGCC
1412
CTTGCTGGCCAATGCCTACATCTACGTTGTCCAGCTGC











CAGCCAAGATCCTGACTGCGGACAATCA





LAG3
NM_002286
1413
GCCTTAGAGCAAGGGATTCA
1414
CGGTTCTTGCTCCAGCTC
1415
TCTATCTTGCTCTGAGCCTGCGGA
1416
GCCTTAGAGCAAGGGATTCACCCTCCGCAGGCTCAGAG











CAAGATAGAGGAGCTGGAGCAAGAACCG





LAMA3
NM_000227
1417
CCTGTCACTGAAGCCTTGG
1418
TGGGTTACTGGTCAGGACAA
1419
ATTCAGACTGACAGGCCCCTGGAC
1420
CCTGTCACTGAAGCCTTGGAAGTCCAGGGGCCTGTCAG







C



TCTGAATGGTTGTCCTGACCAGTAACCCA





LAMA4
NM_002290
1421
GATGCACTGCGGTTAGCAG
1422
CAGAGGATACGCTCAGCACC
1423
CTCTCCATCGAGGAAGGCAAATCC
1424
GATGCACTGCGGTTAGCAGCGCTCTCCATCGAGGAAGG











CAAATCCGGGGTGCTGAGCGTATCCTCTG





LAMA5
NM_005560
1425
CTCCTGGCCAACAGCACT
1426
ACACAAGGCCCAGCCTCT
1427
CTGTTCCTGGAGCATGGCCTCTTC
1428
CTCCTGGCCAACAGCACTGCACTAGAAGAGGCCATGCT











CCAGGAACAGCAGAGGCTGGGCCTTGTGT





LAMB1
NM_002291
1429
CAAGGAGACTGGGAGGTGTC
1430
CGGCAGAACTGACAGTGTTC
1431
CAAGTGCCTGTACCACACGGAAGG
1432
CAAGGAGACTGGGAGGTGTCTCAAGTGCCTGTACCACA











CGGAAGGGGAACACTGTCAGTTCTGCCG





LAMB3
NM_000228
1433
ACTGACCAAGCCTGAGACCT
1434
GTCACACTTGCAGCATTTCA
1435
CCACTCGCCATACTGGGTGCAGT
1436
ACTGACCAAGCCTGAGACCTACTGCACCCAGTATGGCG











AGTGGCAGATGAAATGCTGCAAGTGTGAC





LAMC1
NM_002293
1437
GCCGTGATCTCAGACAGCTAC
1438
ACCTGCTTGCCCAAGAACT
1439
CCTCGGTACTTCATTGCTCCTGCA
1440
GCCGTGATCTCAGACAGCTACTTTCCTCGGTACTTCAT











TGCTCCTGCAAAGTTCTTGGGCAAGCAGGT





LAMC2
NM_005562
1441
ACTCAAGCGGAAATTGAAGCA
1442
ACTCCCTGAAGCCGAGACAC
1443
AGGTCTTATCAGCACAGTCTCCGC
1444
ACTCAAGCGGAAATTGAAGCAGATAGGTCTTATCAGCA







T

CTCC

CAGTCTCCGCCTCCTGGATTCAGTGTCTCGGCTTCAGG











GAGT





LAPTM5
NM_006762
1445
TGCTGGACTTCTGCCTGAG
1446
TGAGATAGGTGGGCACTTCC
1447
TCCTGACCCTCTGCAGCTCCTACA
1448
TGCTGGACTTCTGCCTGAGCATCCTGACCCTCTGCAGC











TCCTACATGGAAGTGCCCACCTATCTCA





LGALS3
NM_002306
1449
AGCGGAAAATGGCAGACAAT
1450
CTTGAGGGTTTGGGTTTCCA
1451
ACCCAGATAACGCATCATGGAGCG
1452
AGCGGAAAATGGCAGACAATTTTTCGCTCCATGATGCG









A

TTATCTGGGTCTGGAAACCCAAACCCTCAAG





LIG3
NM_002311
1453
GGAGGTGGAGAAGGAGCC
1454
ACAGGTGTCATCAGCGAGG
1455
CTGGACGCTCAGAGCTCGTCTCTG
1456
GGAGGTGGAGAAGGAGCCGGGCCAGAGACGAGCTCTGA











GCGTCCAGGCCTCGCTGATGACACCTGT





LIMS1
NM_004987
1457
TGAACAGTAATGGGGAGCTG
1458
TTCTGGGAACTGCTGGAAG
1459
ACTGAGCGCACACGAAACACTGCT
1460
TGAACAGTAATGGGGAGCTGTACCATGAGCAGTGTTTC











GTGTGCGCTCAGTGCTTCCAGCAGTTCCCAGAA





LOX
NM_002317
1461
CCAATGGGAGAACAACGG
1462
CGCTGAGGCTGGTACTGTG
1463
CAGGCTCAGCAAGCTGAACACCTG
1464
CCAATGGGAGAACAACGGGCAGGTGTTCAGCTTGCTGA











GCCTGGGCTCACAGTACCAGCCTCAGCG





LRP1
NM_002332
1465
TTTGGCCCAATGGGCTAAG
1466
GTCTCGATGCGGTCGTAGAA
1467
TCCCGGCTGGGCGCCTCTACT
1468
TTTGGCCCAATGGGCTAAGCCTGGACATCCCGGCTGGG







G



CGCCTCTACTGGGTGGATGCCTTCTACGACCGCATCGA











GAC





LTBP2
NM_000428
1469
GCACACCCATCCTTGAGTCT
1470
GATGGCTGGCCACGTAGT
1471
CTTTGCAGCCCTCAGAACTCCAGC
1472
GCACACCCATCCTTGAGTCTCCTTTGCAGCCCTCAGAA











CTCCAGCCCCACTACGTGGCCAGCCATC





LUM
NM_002345
1473
GGCTCTTTTGAAGGATTGGTA
1474
AAAAGCAGCTGAAACAGCAT
1475
CCTGACCTTCATCCATCTCCAGCA
1476
GGCTCTTTTGAAGGATTGGTAAACCTGACCTTCATCCA





A

C



TCTCCAGCACAATCGGCTGAAAGAGGATGCTGTTTCAG











CTGCTTTT





MAGEA4
NM_002362
1477
GCATCTAACAGCCCTGTGC
1478
CAGAGTGAAGAATGGGCCTC
1479
CAGCTTCCCTTGCCTCGTGTAACA
1480
GCATCTAACAGCCCTGTGCAGCAGCTTCCCTTGCCTCG











TGTAACATGAGGCCCATTCTTCACTCTG





MANF
NM_006010
1481
CAGATGTGAAGCCTGGAGC
1482
AAGGGAATCCCCTCATGG
1483
TTCCTGATGATGCTGGCCCTACAG
1484
CAGATGTGAAGCCTGGAGCTTTCCTGATGATGCTGGCC











CTACAGTACCCCCATGAGGGGATTCCCTT





MAOA
NM_000240
1485
GTGTCAGCCAAAGCATGGA
1486
CGACTACGTCGAACATGTGG
1487
CCGCGATACTCGCCTTCTCTTGAT
1488
GTGTCAGCCAAAGCATGGAGAATCAAGAGAAGGCGAGT











ATCGCGGGCCACATGTTCGACGTAGTCG





MAP3K5
NM_005923
1489
AGGACCAAGAGGCTACGGA
1490
CCTGTGGCCATTTCAATGAT
1491
CAGCCCAGAGACCAGATGTCTGCT
1492
AGGACCAAGAGGCTACGGAAAAGCAGCAGACATCTGGT











CTCTGGGCTGTACAATCATTGAAATGGCCACAGG





MAP3K7
NM_145333
1493
CAGGCAAGAACTAGTTGCAGA
1494
CCTGTACCAGGCGAGATGTA
1495
TGCTGGTCCTTTTCATCCTGGTCC
1496
CAGGCAAGAACTAGTTGCAGAACTGGACCAGGATGAAA





A

T



AGGACCAGCAAAATACATCTCGCCTGGTACAGG





MAP4K4
NM_004834
1497
TCGCCGAGATTTCCTGAG
1498
CTGTTGTCTCCGAAGAGCCT
1499
AACGTTCCTTGTTCTCCTGCTGCA
1500
TCGCCGAGATTTCCTGAGACTGCAGCAGGAGAACAAGG











AACGTTCCGAGGCTCTTCGGAGACAACAG





MAP7
NM_003980
1501
GAGGAACAGAGGTGTCTGCAC
1502
CTGCCAACTGGCTTTCCA
1503
CATGTACAACAAACGCTCCGGGAA
1504
GAGGAACAGAGGTGTCTGCACTTCCATGTACAACAAAC











GCTCCGGGAAATGGAAAGCCAGTTGGCAG





MAPKAPK3
NM_004635
1505
AAGCTGCAGAGATAATGCGG
1506
GTGGGCAATGTTATGGCTG
1507
ATTGGCACTGCCATCCAGTTTCTG
1508
AAGCTGCAGAGATAATGCGGGATATTGGCACTGCCATC











CAGTTTCTGCACAGCCATAACATTGCCCAC





MCM2
NM_004526
1509
GACTTTTGCCCGCTACCTTTC
1510
GCCACTAACTGCTTCAGTAT
1511
ACAGCTCATTGTTGTCACGCCGGA
1512
GACTTTTGCCCGCTACCTTTCATTCCGGCGTGACAACA







GAAGAG



ATGAGCTGTTGCTCTTCATACTGAAGCAGTTAGTGGC





MCM3
NM_002388
1513
GGAGAACAATCCCCTTGAGA
1514
ATCTCCTGGATGGTGATGGT
1515
TGGCCTTTCTGTCTACAAGGATCA
1516
GGAGAACAATCCCCTTGAGACAGAATATGGCCTTTCTG









CCA

TCTACAAGGATCACCAGACCATCACCATCCAGGAGAT





MCM6
NM_005915
1517
TGATGGTCCTATGTGTCACAT
1518
TGGGACAGGAAACACACCAA
1519
CAGGTTTCATACCAACACAGGCTT
1520
TGATGGTCCTATGTGTCACATTCATCACAGGTTTCATA





TCA



CAGCAC

CCAACACAGGCTTCAGCACTTCCTTTGGTGTGTTTCCT











GTCCCA





MDK
NM_002391
1521
GGAGCCGACTGCAAGTACA
1522
GACTTTGGTGCCTGTGCC
1523
ATCACACGCACCCCAGTTCTCAAA
1524
GGAGCCGACTGCAAGTACAAGTTTGAGAACTGGGGTGC











GTGTGATGGGGGCACAGGCACCAAAGTC





MDM2
NM_002392
1525
CTACAGGGACGCCATCGAA
1526
ATCCAACCAATCACCTGAAT
1527
CTTACACCAGCATCAAGATCCGG
1528
CTACAGGGACGCCATCGAATCCGGATCTTGATGCTGGT







GTT



GTAAGTGAACATTCAGGTGATTGGTTGGAT





MELK
NM_014791
1529
AGGATCGCCTGTCAGAAGAG
1530
TGCACATAAGCAACAGCAGA
1531
CCCGGGTTGTCTTCCGTCAGATAG
1532
AGGATCGCCTGTCAGAAGAGGAGACCCGGGTTGTCTTC











CGTCAGATAGTATCTGCTGTTGCTTATGTGCA





MET
NM_000245
1533
GACATTTCCAGTCCTGCAGTC
1534
CTCCGATCGCACACATTTGT
1535
TGCCTCTCTGCCCCACCCTTTGT
1536
GACATTTCCAGTCCTGCAGTCAATGCCTCTCTGCCCCA





A





CCCTTTGTTCAGTGTGGCTGGTGCCACGACAAATGTGT











GCGATCGGAG





MGMT
NM_002412
1537
GTGAAATGAAACGCACCACA
1538
GACCCTGCTCACAACCAGAC
1539
CAGCCCTTTGGGGAAGCTGG
1540
GTGAAATGAAACGCACCACACTGGACAGCCCTTTGGGG











AAGCTGGAGCTGTCTGGTTGTGAGCAGGGTC





MGST1
NM_020300
1541
ACGGATCTACCACACCATTGC
1542
TCCATATCCAACAAAAAAAC
1543
TTTGACACCCCTTCCCCAGCCA
1544
ACGGATCTACCACACCATTGCATATTTGACACCCCTTC







TCAAAG



CCCAGCCAAATAGAGCTTTGAGTTTTTTTGTTGGATAT











GGA





MICA
NM_000247
1545
ATGGTGAATGTCACCCGC
1546
AAGCCAGAAGCCCTGCAT
1547
CGAGGCCTCAGAGGGCAACATTAC
1548
ATGGTGAATGTCACCCGCAGCGAGGCCTCAGAGGGCAA











CATTACCGTGACATGCAGGGCTTCTGGCTT





MKI67
NM_002417
1549
GATTGCACCAGGGCAGAA
1550
TCCAAAGTGCCTCTGCTAAG
1551
CCACTCTTCCTTGAACACCCTCCC
1552
GATTGCACCAGGGCAGAACAGGGGAGGGTGTTCAAGGA







A



AGAGTGGCTCTTAGCAGAGGCACTTTGGA





MLXIP
NM_014938
1553
TGCTTAGCTGGCATGTGG
1554
CAGCCTACTCTCCATGGGC
1555
CATGAGATGCCAGGAGACCCTTCC
1556
TGCTTAGCTGGCATGTGGCCGCATGAGATGCCAGGAGA











CCCTTCCCTGCCCATGGAGAGTAGGCTG





MMP11
NM_005940
1557
CCTGGAGGCTGCAACATACC
1558
TACAATGGCTTTGGAGGATA
1559
ATCCTCCTGAAGCCCTTTTCGCAG
1560
CCTGGAGGCTGCAACATACCTCAATCCTGTCCCAGGCC







GCA

C

GGATCCTCCTGAAGCCCTTTTCGCAGCACTGCTATCCT











CCAAAGCCATTGTA





MMP2
NM_004530
1561
CAGCCAGAAGCGGAAACTTA
1562
AGACACCATCACCTGTGCC
1563
AAGTCCGAATCTCTGCTCCCTGCA
1564
CAGCCAGAAGCGGAAACTTAAAAAGTCCGAATCTCTGC











TCCCTGCAGGGCACAGGTGATGGTGTCT





MMP7
NM_002423
1565
GGATGGTAGCAGTCTAGGGAT
1566
GGAATGTCCCATACCCAAAG
1567
CCTGTATGCTGCAACTCATGAACT
1568
GGATGGTAGCAGTCTAGGGATTAACTTCCTGTATGCTG





TAACT

AA

TGGC

CAACTCATGAACTTGGCCATTCTTTGGGTATGGGACAT











TCC





MMP9
NM_004994
1569
GAGAACCAATCTCACCGACA
1570
CACCCGAGTGTAACCATAGC
1571
ACAGGTATTCCTCTGCCAGCTGCC
1572
GAGAACCAATCTCACCGACAGGCAGCTGGCAGAGGAAT











ACCTGTACCGCTATGGTTACACTCGGGTG





MPPED2
NM_001584
1573
CCGACCAACCCTCCAATTA
1574
AGGGCATTTAGAGCTTCAGG
1575
ATTTGACCTTCCAAACCCACAGGG
1576
CCGACCAACCCTCCAATTATATTTGACCTTCCAAACCC







A



ACAGGGTTCCTGAAGCTCTAAATGCCCT





MRC1
NM_002438
1577
CTTGACCTCAGGACTCTGGAT
1578
GGACTGCGGTCACTCCAC
1579
CCAACCGCTGTTGAAGCTCAGACT
1580
CTTGACCTCAGGACTCTGGATTGGACTTAACAGTCTGA





T





GCTTCAACAGCGGTTGGCAGTGGAGTGACCGCAGTCC





MRPL13
NM_014078
1581
TCCGGTTCCCTTCGTTTAG
1582
GTGGAAAAACTGCGGAAAAC
1583
CGGCTGGAAATTATGTCCTCCGTC
1584
TCCGGTTCCCTTCGTTTAGGTCGGCTGGAAATTATGTC











CTCCGTCGGTTTTCCGCAGTTTTTCCAC





MSH2
NM_000251
1585
GATGCAGAATTGAGGCAGAC
1586
TCTTGGCAAGTCGGTTAAGA
1587
CAAGAAGATTTACTTCGTCGATTC
1588
GATGCAGAATTGAGGCAGACTTTACAAGAAGATTTACT









CCAGA

TCGTCGATTCCCAGATCTTAACCGACTTGCCAAGA





MSH3
NM_002439
1589
TGATTACCATCATGGCTCAGA
1590
CTTGTGAAAATGCCATCCAC
1591
TCCCAATTGTCGCTTCTTCTGCAG
1592
TGATTACCATCATGGCTCAGATTGGCTCCTATGTTCCT











GCAGAAGAAGCGACAATTGGGATTGTGGATGGCATTTT











CACAAG





MSH6
NM_000179
1593
TCTATTGGGGGATTGGTAGG
1594
CAAATTGCGAGTGGTGAAAT
1595
CCGTTACCAGCTGGAAATTCCTGA
1596
TCTATTGGGGGATTGGTAGGAACCGTTACCAGCTGGAA









GA

ATTCCTGAGAATTTCACCACTCGCAATTTG





MTA1
NM_004689
1597
CCGCCCTCACCTGAAGAGA
1598
GGAATAAGTTAGCCGCGCTT
1599
CCCAGTGTCCGCCAAGGAGCG
1600
CCGCCCTCACCTGCAGAGAAACGCGCTCCTTGGCGGAC







CT



ACTGGGGGAGGAGAGGAAGAAGCGCGGCTAACTTATTC











C





MTPN
NM_145808
1601
GGTGGAAGGAAACCTCTTCA
1602
CAGCAGCAGAAATTCCAGG
1603
AAGCTGCCCACAATCTGCTGCATA
1604
GGTGGAAGGAAACCTCTTCATTATGCAGCAGATTGTGG











GCAGCTTGAAATCCTGGAATTTCTGCTGCTG





MTSS1
NM_014751
1605
TTCGACAAGTCCTCCACCAT
1606
CTTGGAACATCCGTCGGTAG
1607
CCAAGAAACAGCGACATCAGCCAG
1608
TTCGACAAGTCCTCCACCATTCCAAGAAACAGCGACAT











CAGCCAGTCCTACCGACGGATGTTCCAAG





MUC1
NM_002456
1609
GGCCAGGATCTGTGGTGGTA
1610
CTCCACGTCGTGGACATTGA
1611
CTCTGGCCTTCCGAGAAGGTACC
1612
GGCCAGGATCTGTGGTGGTACAATTGACTCTGGCCTTC











CGAGAAGGTACCATCAATGTCCACGACGTGGAG





MVP
NM_017458
1613
ACGAGAACGAGGGCATCTATG
1614
GCATGTAGGTGCTTCCAATC
1615
CGCACCTTTCCGGTCTTGACATCC
1616
ACGAGAACGAGGGCATCTATGTGCAGGATGTCAAGACC





T

AC

T

GGAAAGGTGCGCGCTGTGATTGGAAGCACCTACATGC





MYBL2
NM_002466
1617
GCCGAGATCGCCAAGATG
1618
CTTTTGATGGTAGAGTTCCA
1619
CAGCATTGTCTGTCCTCCCTGGCA
1620
GCCGAGATCGCCAAGATGTTGCCAGGGAGGACAGACAA







GTGATTC



TGCTGTGAAGAATCACTGGAACTCTACCATCAAAAG





MYBPC1
NM_002465
1621
CAGCAACCAGGGAGTCTGTA
1622
CAGCAGTAAGTGCCTCCATC
1623
AAATTCGCAAGCCCAGCCCCTAT
1624
CAGCAACCAGGGAGTCTGTACCCTGGAAATTCGCAAGC











CCAGCCCCTATGATGGAGGCACTTACTGCTG





MYC
NM_002467
1625
TCCCTCCACTCGGAAGGACTA
1626
CGGTTGTTGCTGATCTGTCT
1627
TCTGACACTGTCCAACTTGACCCT
1628
TCCCTCCACTCGGAAGGACTATCCTGCTGCCAAGAGGG







CA

CTT

TCAAGTTGGACAGTGTCAGAGTCCTGAGACAGATCAGC











AACAACCG





MYLK3
NM_182493
1629
CACCTGACTGAGCTGGATGT
1630
GATGTAGTGCTGGTGCAGGT
1631
CACACCCTCACAGATCTGCCTGGT
1632
CACCTGACTGAGCTGGATGTGGTCCTGTTCACCAGGCA











GATCTGTGAGGGTGTGCATTACCTGCACCAGCACTACA











TC





MYO6
NM_004999
1633
AAGCAGTTCTGGAGCAGGAG
1634
GATGAGCTCGGCTTCACTCT
1635
CAATCCTCAGGGCCAGCTCCC
1636
AAGCAGTTCTGGAGCAGGAGCGCAGGGACCGGGAGCTG











GCCCTGAGGATTGCCCAGAGTGAAGCCGAGCTCATC





NCAM1
NM_000615
1637
TAGTTCCCAGCTGACCATCA
1638
CAGCCTTGTTCTCAGCAATG
1639
CTCAGCCTCGTCGTTCTTATCCAC
1640
TAGTTCCCAGCTGACCATCAAAAAGGTGGATAAGAACG









C

ACGAGGCTGAGTACATCTGCATTGCTGAGAACAAGGCT











G





NCAPD3
NM_015261
1641
TCGTTGCTTAGACAAGGCG
1642
CTCCAGACAGTGTGCAAAGC
1643
CTACTGTCCGCAGCAAGGCACTGT
1644
TCGTTGCTTAGACAAGGCGCCTACTGTCCGCAGCAAGG











CACTGTCCAGCTTTGCACACTGTCTGGAG





NCOR1
NM_006311
1645
AACCGTTACAGCCCAGAATC
1646
TCTGGAGAGACCCTTGAACC
1647
CCAGGCTCAGTCTGTCCATCATCA
1648
AACCGTTACAGCCCAGAATCCCAGGCTCAGTCTGTCCA











TCATCAAAGACCAGGTTCAAGGGTCTCTCCAGA





NCOR2
NM_006312
1649
CGTCATCTACGAAGGCAAGA
1650
GAGCACTGGGTCACAGACAT
1651
CCTCATAGGACAAGACGTGGCCCT
1652
CGTCATCTACGAAGGCAAGAAGGGCCACGTCTTGTCCT











ATGAGGGTGGCATGTCTGTGACCCAGTGCTC





NDRG1
NM_006096
1653
AGGGCAACATTCCACAGC
1654
CAGTGCTCCTACTCCGGC
1655
CTGCAAGGACACTCATCACAGCCA
1656
AGGGCAACATTCCACAGCTGCCCTGGCTGTGATGAGTG











TCCTTGCAGGGGCCGGAGTAGGAGCACTG





NDUFS5
NM_004552
1657
AGAAGAGTCAAGGGCACGAG
1658
AGGCCGAACCTTTTCTGG
1659
TGTCCAAGAAAGGCATGGCTACCC
1660
AGAAGAGTCAAGGGCACGAGCATCGGGTAGCCATGCCT











TTCTTGGACATCCAGAAAAGGTTCGGCCT





NEK2
NM_002497
1661
GTGAGGCAGCGCGACTCT
1662
TGCCAATGGTGTACAACACT
1663
TGCCTTCCCGGGCTGAGGACT
1664
GTGAGGCAGCGCGACTCTGGCGACTGGCCGGCCATGCC







TCA



TTCCCGGGCTGAGGACTATGAAGTGTTGTACACCATTG











GCA





NETO2
NM_018092
1665
CCAGGGCACCATACTGTTTC
1666
AACGGTAAATCAAGGTCTTC
1667
AGCCAACCCTTTTCTCCCATCACA
1668
CCAGGGCACCATACTGTTTCCAGCAGCCAACCCTTTTC







GT



TCCCATCACAACTACGAAGACCTTGATTTACCGTT





NEXN
NM_144573
1669
AGGAGGAGGAAGAAGGTAGCA
1670
GAGCTCCTGATCTGGTTTGC
1671
TCATCTTCAGCAGTGGAGCCATTC
1672
AGGAGGAGGAAGAAGGTAGCATCATGAATGGCTCCACT









A

GCTGAAGATGAAGAGCAAACCAGATCAGGAGCTC





NFAT5
NM_006599
1673
CTGAACCCCTCTCCTGGTC
1674
AGGAAACGATGGCGAGGT
1675
CGAGAATCAGTCCCCGTGGAGTTC
1676
CTGAACCCCTCTCCTGGTCACCGAGAATCAGTCCCCGT











GGAGTTCCCCCTCCACCTCGCCATCGTTTCCT





NFATC2
NM_173091
1677
CAGTCAAGGTCAGAGGCTGAG
1678
CTTTGGCTCGTGGCATTC
1679
CGGGTTCCTACCCCACAGTCATTC
1680
CAGTCAAGGTCAGAGGCTGAGCCCGGGTTCCTACCCCA











CAGTCATTCAGCAGCAGAATGCCACGAGCCAAAG





NFKB1
NM_003998
1681
CAGACCAAGGAGATGGACCT
1682
AGCTGCCAGTGCTATCCG
1683
AAGCTGTAAACATGAGCCGCACCA
1684
CAGACCAAGGAGATGGACCTCAGCGTGGTGCGGCTCAT











GTTTACAGCTTTTCTTCCGGATAGCACTGGCAGCT





NFKBIA
NM_020529
1685
CTACTGGACGACCGCCAC
1686
CCTTGACCATCTGCTCGTAC
1687
CTCGTCTTTCATGGAGTCCAGGCC
1688
CTACTGGACGACCGCCACGACAGCGGCCTGGACTCCAT







T



GAAAGACGAGGAGTACGAGCAGATGGTCAAGG





NME1
NM_000269
1689
CCAACCCTGCAGACTCCAA
1690
ATGTATAATGTTCCTGCCAA
1691
CCTGGGACCATCCGTGGAGACTTC
1692
CCAACCCTGCAGACTCCAAGCCTGGGACCATCCGTGGA







CTTGTATG

T

GACTTCTGCATACAAGTTGGCAGGAACATTATACAT





NNMT
NM_006169
1693
CCTAGGGCAGGGATGGAG
1694
CTAGTCCAGCCAAACATCCC
1695
CCCTCTCCTCATGCCCAGACTCTC
1696
CCTAGGGCAGGGATGGAGAGAGAGTCTGGGCATGAGGA











GAGGGTCTCGGGATGTTTGGCTGGACTAG





NOS3
NM_000603
1697
ATCTCCGCCTCGCTCATG
1698
TCGGAGCCATACAGGATTGT
1699
TTCACTCGCTTCGCCATCACCG
1700
ATCTCCGCCTCGCTCATGGGCACGGTGATGGCGAAGCG







C



AGTGAAGGCGACAATCCTGTATGGCTCCGA





NOX4
NM_016931
1701
CCTCAACTGCAGCCTTATCC
1702
TGCTTGGAACCTTCTGTGAT
1703
CCGAACACTCTTGGCTTACCTCCG
1704
CCTCAACTGCAGCCTTATCCTTTTACCCATGTGCCGAA











CACTCTTGGCTTACCTCCGAGGATCACAGAAGGTTCCA











AGCA





NPBWR1
NM_005285
1705
TCACCAACCTGTTCATCCTC
1706
GATGTTGATGGGCAGCAC
1707
ATCGCCGACGAGCTCTTCACG
1708
TCACCAACCTGTTCATCCTCAACCTGGCCATCGCCGAC











GAGCTCTTCACGCTGGTGCTGCCCATCAACATC





NPM1
NM_002520
1709
AATGTTGTCCAGGTTCTATTG
1710
CAAGCAAAGGGTGGAGTTC
1711
AACAGGCATTTTGGACAACACATT
1712
AATGTTGTCCAGGTTCTATTGCCAAGAATGTGTTGTCC





C



CTTG

AAAATGCCTGTTTAGTTTTTAAAGATGGAACTCCACCC











TTTGCTTG





NRG1
NM_013957
1713
CGAGACTCTCCTCATAGTGAA
1714
CTTGGCGTGTGGAAATCTAC
1715
ATGACCACCCCGGCTCGTATGTCA
1716
CGAGACTCTCCTCATAGTGAAAGGTATGTGTCAGCCAT





AGGTAT

AG



GACCACCCCGGCTCGTATGTCACCTGTAGATTTCCACA











CGCCAAG





NRIP3
NM_020645
1717
CCCACAAGCATGAAGGAGA
1718
TGCTCAATCTGGCCCACTA
1719
AGCTTTCTCTACCCCGGCATCTCA
1720
CCCACAAGCATGAAGGAGAAAAGCTTTCTCTACCCCGG











CATCTCAAAGTAGTGGGCCAGATTGAGCA





NRP1
NM_003873
1721
CAGCTCTCTCCACGCGATTC
1722
CCCAGCAGCTCCATTCTGA
1723
CAGGATCTACCCCGAGAGAGCCAC
1724
CAGCTCTCTCCACGCGATTCATCAGGATCTACCCCGAG









TCAT

AGAGCCACTCATGGCGGACTGGGGCTCAGAATGGAGCT











GCTGGG





NUP62
NM_153719
1725
AGCCTCTTTGCGTCAATAGC
1726
CTGTGGTCACAGGGGTACAG
1727
TCATCTGCCACCACTGGACTCTCC
1728
AGCCTCTTTGCGTCAATAGCAACTGCTCCAACCTCATC











TGCCACCACTGGACTCTCCCTCTGTACCCCTGTGACCA











CAG





OAZ1
NM_004152
1729
AGCAAGGACAGCTTTGCAGT
1730
GAAGACATGGTCGGCTCG
1731
CTGCTCCTCAGCGAACTCCAGGAG
1732
AGCAAGGACAGCTTTGCAGTTCTCCTGGAGTTCGCTGA











GGAGCAGCTGCGAGCCGACCATGTCTTC





OCLN
NM_002538
1733
CCCTCCCATCCGAGTTTC
1734
GACGCGGGAGTGTAGGTG
1735
CTCCTCCCTCGGTGACCAATTCAC
1736
CCCTCCCATCCGAGTTTCAGGTGAATTGGTCACCGAGG











GAGGAGGCCGACACACCACACCTACACTCCCGCGTC





ODC1
NM_002539
1737
AGAGATCACCGGCGTAATCAA
1738
CGGGCTCAGCTATGATTCTC
1739
CCAGCGTTGGACAAATACTTTCCG
1740
AGAGATCACCGGCGTAATCAACCCAGCGTTGGACAAAT







A

TCA

ACTTTCCGTCAGACTCTGGAGTGAGAATCATAGCTGAG











CCCG





OLFML2B
NM_015441
1741
CATGTTGGAAGGAGCGTTCT
1742
CACCAGTTTGGTGGTGACTG
1743
TGGCCTGGATCTCCTGAAGCTACA
1744
CATGTTGGAAGGAGCGTTCTATGGCCTGGATCTCCTGA











AGCTACATTCAGTCACCACCAAACTGGTG





OLFML3
NM_020190
1745
TCAGAACTGAGGCCGACAC
1746
CCAGATAGTCTACCTCCCGC
1747
CAGACGATCCACTCTCCCGGAGAT
1748
TCAGAACTGAGGCCGACACCATCTCCGGGAGAGTGGAT







T



CGTCTGGAGCGGGAGGTAGACTATCTGG





OMD
NM_005014
1749
CGCAAACTCAAGACTATCCCA
1750
CAGTCACAGCCTCAATTTCA
1751
TCCGATGCACATTCAGCAACTCTA
1752
CGCAAACTCAAGACTATCCCAAATATTCCGATGCACAT







TT

CC

TCAGCAACTCTACCTTCAGTTCAATGAAATTGAGGCTG











TGACTG





OR51E1
NM_152430
1753
GCATGCTTTCAGGCATTGA
1754
AGAAGATGGCCAGCATTTTG
1755
TCCTCATCTCCACCTCATCCATGC
1756
GCATGCTTTCAGGCATTGACATCCTCATCTCCACCTCA











TCCATGCCCAAAATGCTGGCCATCTTCT





OR51E2
NM_030774
1757
TATGGTGCCAAAACCAAACA
1758
GTCCTTGTCACAGCTGATCT
1759
ACATAGCCAGCACCCGTGTTCTGA
1760
TATGGTGCCAAAACCAAACAGATCAGAACACGGGTGCT







TG



GGCTATGTTCAAGATCAGCTGTGACAAGGAC





OSM
NM_020530
1761
GTTTCTGAAGGGGAGGTCAC
1762
AGGTGTCTGGTTTGGGACA
1763
CTGAGCTGGCCTCCTATGCCTCAT
1764
GTTTCTGAAGGGGAGGTCACAGCCTGAGCTGGCCTCCT











ATGCCTCATCATGTCCCAAACCAGACACCT





PAGE1
NM_003785
1765
CAACCTGACGAAGTGGAATC
1766
CAGATGCTCCCTCATCCTCT
1767
CCAACTCAAAGTCAGGATTCTACA
1768
CAACCTGACGAAGTGGAATCACCAACTCAAAGTCAGGA









CCTGC

TTCTACACCTGCTGAAGAGAGAGAGGATGAGGGAGCAT











CTG





PAGE4
NM_007003
1769
GAATCTCAGCAAGAGGAACCA
1770
GTTCTTCGATCGGAGGTGTT
1771
CCAACTGACAATCAGGATATTGAA
1772
GAATCTCAGCAAGAGGAACCACCAACTGACAATCAGGA









CCTGG

TATTGAACCTGGACAAGAGAGAGAAGGAACACCTCCGA











TCGAAGAAC





PAK6
NM_020168
1773
CCTCCAGGTCACCCACAG
1774
GTCCCTTCAGGCCAGAACTT
1775
AGTTTCAGGAAGGCTGCCCCTCTC
1776
CCTCCAGGTCACCCACAGCCAGTTTCAGGAAGGCTGCC











CCTCTCTCCCACTAAGTTCTGGCCTGAAGGGAC





PATE1
NM_138294
1777
TGGTAATCCCTGGTTAACCTT
1778
TCCACCTTATGCCTTTCACA
1779
CAGCACAGTTCTTTAGGCAGCCCA
1780
TGGTAATCCCTGGTTAACCTTCATGGGCTGCCTAAAGA





C





ACTGTGCTGATGTGAAAGGCATAAGGTGGA





PCA3
NR_015342
1781
CGTGATTGTCAGGAGCAAGA
1782
AGAAAGGGGAGATGCAGAGG
1783
CTGAGATGCTCCCTGCCTTCAGTG
1784
CGTGATTGTCAGGAGCAAGACCTGAGATGCTCCCTGCC











TTCATGTCGCTCTGCATCTCCCCTTTCT





PCDHGB7
NM_018927
1785
CCCAGCGTTGAAGCAGAT
1786
GAAACGCCAGTCCGTGTT
1787
ATTCTTAAACAGCAAGCCCCGCC
1788
CCCAGCGTTGAAGCAGATAAGAAGATTCTTAAACAGCA











AGCCCCGCCCAACACGGACTGGCGTTTC





PCNA
NM_002592
1789
GAAGGTGTTGGAGGCACTCAA
1790
GGTTTACACCGCTGGAGCTA
1791
ATCCCAGCAGGCCTCGTTGATGAG
1792
GAAGGTGTTGGAGGCACTCAAGGACCTCATCAACGAGG





G

A



CCTGCTGGGATATTAGCTCCAGCGGTGTAAACC





PDE9A
NM_001001570
1793
TTCCACAACTTCCGGCAC
1794
AGACTGCAGAGCCAGACCA
1795
TACATCATCTGGGCCACGCAGAAG
1796
TTCCACAACTTCCGGCACTGCTTCTGCGTGGCCCAGAT











GATGTACAGCATGGTCTGGCTCTGCAGTCT





PDGFRB
NM_002609
1797
CCAGCTCTCCTTCCAGCTAC
1798
GGGTGGCTCTCACTTAGCTC
1799
ATCAATGTCCCTGTCCGAGTGCTG
1800
CCAGCTCTCCTTCCAGCTACAGATCAATGTCCCTGTCC











GAGTGCTGGAGCTAAGTGAGAGCCACCC





PECAM1
NM_000442
1801
TGTATTTCAAGACCTCTGTGC
1802
TTAGCCTGAGGAATTGCTGT
1803
TTTATGAACCTGCCCTGCTCCCAC
1804
TGTATTTCAAGACCTCTGTGCACTTATTTATGAACCTG





ACTT

GTT

A

CCCTGCTCCCACAGAACACAGCAATTCCTCAGGCTAA





PEX10
NM_153818
1805
GGAGAAGTTCCCTCCCCAG
1806
ATCTGTGTCCAGGCCCAC
1807
CTACCTTCGGCACTACCGCTGAGC
1808
GGAGAAGTTCCCTCCCCAGAAGCTCATCTACCTTCGGC











ACTACCGCTGAGCCGGCGCCCGGGTGGGCCTGGACACA











GAT





PGD
NM_002631
1809
ATTCCCATGCCCTGTTTTAC
1810
CTGGCTGGAAGCATCTCAT
1811
ACTGCCCTCTCCTTCTATGACGGG
1812
ATTCCCATGCCCTGTTTTACCACTGCCCTCTCCTTCTA









T

TGACGGGTACAGACATGAGATGCTTCCAGCCAG





PGF
NM_002632
1813
GTGGTTTTCCCTCGGAGC
1814
AGCAAGGGAACAGCCTCAT
1815
ATCTTCTCAGACGTCCCGAGCCAG
1816
GTGGTTTTCCCTCGGAGCCCCCTGGCTCGGGACGTCTG











AGAAGATGCCGGTCATGAGGCTGTTCCCTTGCT





PGK1
NM_000291
1817
AGAGCCAGTTGCTGTAGAACT
1818
CTGGGCCTACACAGTCCTTC
1819
TCTCTGCTGGGCAAGGATGTTCTG
1820
AGAGCCAGTTGCTGTAGAACTCAAATCTCTGCTGGGCA





CAA

A

TTC

AGGATGTTCTGTTCTTGAAGGACTGTGTAGGCCCAG





PGR
NM_000926
1821
GATAAAGGAGCCGCGTGTCA
1822
TCACAAGTCCGGCACTTGAG
1823
TAAATTGCCGTCGCAGCCGCA
1824
GATAAAGGAGCCGCGTGTCACTAAATTGCCGTCGCAGC











CGCAGCCACTCAAGTGCCGGACTTGTGA





PHTF2
NM_020432
1825
GATATGGCTGATGCTGCTCC
1826
GGTTTGGGTGTTCTTGTGGA
1827
ACAATCTGGCAATGCACAGTTCCC
1828
GATATGGCTGATGCTGCTCCTGGGAACTGTGCATTGCC











AGATTGTTTCCACAAGAACACCCAAACC





PIK3C2A
NM_002645
1829
ATACCAATCACCGCACAAACC
1830
CACACTAGCATTTTCTCCGC
1831
TGTGCTGTGACTGGACTTAACAAA
1832
ATACCAATCACCGCACAAACCCAGGCTATTTGTTAAGT







ATA

TAGCCT

CCAGTCACAGCACAAAGAAACATATGCGGAGAAAATGC











TAGTGTG





PIK3CA
NM_006218
1833
GTGATTGAAGAGCATGCCAA
1834
GTCCTGCGTGGGAATAGC
1835
TCCTGCTTCTCGGGATACAGACCA
1836
GTGATTGAAGAGCATGCCAATTGGTCTGTATCCCGAGA











AGCAGGATTTAGCTATTCCCACGCAGGAC





PIK3CG
NM_002649
1837
GGAGAACTCAATGTCCATCTC
1838
TGATGCTTAGGCAGGGCT
1839
TTCTGGACAATTACTGCCACCCGA
1840
GGAGAACTCAATGTCCATCTCCATTCTTCTGGACAATT





C





ACTGCCACCCGATAGCCCTGCCTAAGCATCA





PIM1
NM_002648
1841
CTGCTCAAGGACACCGTCTA
1842
GGATCCACTCTGGAGGGC
1843
TACACTCGGGTCCCATCGAAGTCC
1844
CTGCTCAAGGACACCGTCTACACGGACTTCGATGGGAC











CCGAGTGTATAGCCCTCCAGAGTGGATCC





PLA2G7
NM_005084
1845
CCTGGCTGTGGTTTATCCTT
1846
TGACCCATGCTGATGATTTC
1847
TGGCAATACATAAATCCTGTTGCC
1848
CCTGGCTGTGGTTTATCCTTTTGACTGGCAATACATAA









CA

ATCCTGTTGCCCATATGAAATCATCAGCATGGGTCA





PLAU
NM_002658
1849
GTGGATGTGCCCTGAAGGA
1850
CTGCGGATCCAGGGTAAGAA
1851
AAGCCAGGCGTCTACACGAGAGTC
1852
GTGGATGTGCCCTGAAGGACAAGCCAGGCGTCTACACG









TCAC

AGAGTCTCACACTTCTTACCCTGGATCCGCAG





PLAUR
NM_002659
1853
CCCATGGATGCTCCTCTGAA
1854
CCGGTGGCTACCAGACATTG
1855
CATTGACTGCCGAGGCCCCATG
1856
CCCATGGATGCTCCTCTGAAGAGACTTTCCTCATTGAC











TGCCGAGGCCCCATGAATCAATGTCTGGTAGCCACCGG





PLG
NM_000301
1857
GGCAAAATTTCCAAGACCAT
1858
ATGTATCCATGAGCGTGTGG
1859
TGCCAGGCCTGGGACTCTCA
1860
GGCAAAATTTCCAAGACCATGTCTGGACTGGAATGCCA











GGCCTGGGACTCTCAGAGCCCACACGCTCATGGATACA











T





PLK1
NM_005030
1861
AATGAATACAGTATTCCCAAG
1862
TGTCTGAAGCATCTTCTGGA
1863
AACCCCGTGGCCGCCTCC
1864
AATGAATACAGTATTCCCAAGCACATCAACCCCGTGGC





CACAT

TGA



CGCCTCCCTCATCCAGAAGATGCTTCAGACA





PLOD2
NM_000935
1865
CAGGGAGGTGGTTGCAAAT
1866
TCTCCCAGGATGCATGAAG
1867
TCCAGCCTTTTCGTGGTGACTCAA
1868
CAGGGAGGTGGTTGCAAATTTCTAAGGTACAATTGCTC











TATTGAGTCACCACGAAAAGGCTGGAGCTTCATGCATC











CTGGGAGA





PLP2
NM_002668
1869
CCTGATCTGCTTCAGTGCC
1870
GCAGCAAGGATCATCTCAAT
1871
ACACCAGGCTACTCCTCCCTGTCG
1872
CCTGATCTGCTTCAGTGCCTCCACACCAGGCTACTCCT







C



CCCTGTCGGTGATTGAGATGATCCTTGCTGC





PNLIPRP2
NM_005396
1873
TGGAGAAGGTGAACTGCATC
1874
CACGGCTTGGGTGTACATT
1875
ACCCGTGCCTCCAGTCCACAC
1876
TGGAGAAGGTGAACTGCATCTGTGTGGACTGGAGGCAC











GGGTCCCGGGCAATGTACACCCAAGCCGTG





POSTN
NM_006475
1877
GTGGCCCAATTAGGCTTG
1878
TCACAGGTGCCAGCAAAG
1879
TTCTCCATCTGGCCTCAGAGCAGA
1880
GTGGCCCAATTAGGCTTGGCATCTGCTCTGAGGCCAGA











TGGAGAATACACTTTGCTGGCACCTGTGA





PPAP2B
NM_003713
1881
ACAAGCACCATCCCAGTGA
1882
CACGAAGAAAACTATGCAGC
1883
ACCAGGGCTCCTTGAGCAAATCCT
1884
ACAAGCACCATCCCAGTGATGTTCTGGCAGGATTTGCT







AG



CAAGGAGCCCTGGTGGCCTGCTGCATAGTTTTCTTCGT











G





PPFIA3
NM_003660
1885
CCTGGAGCTCCGTTACTCTC
1886
AGCCACATAGGGATCCAGG
1887
CACCCACTTTACCTTCTGGTGCCC
1888
CCTGGAGCTCCGTTACTCTCAGGCACCCACTTTACCTT











CTGGTGCCCACCTGGATCCCTATGTGGCT





PPP1R12A
NM_002480
1889
CGGCAAGGGGTTGATATAGA
1890
TGCCTGGCATCTCTAAGCA
1891
CCGTTCTTCTTCCTTTCGAGCTGC
1892
CGGCAAGGGGTTGATATAGAAGCAGCTCGAAAGGAAGA











AGAACGGATCATGCTTAGAGATGCCAGGCA





PPP3CA
NM_000944
1893
ATACTCCGAGCCCACGAA
1894
GGAAGCCTGTTGTTTGGC
1895
TACATGCGGTACCCTGCATCTTGG
1896
ATACTCCGAGCCCACGAAGCCCAAGATGCAGGGTACCG











CATGTACAGGAAAAGCCAAACAACAGGCTTCC





PRIMA1
NM_178013
1897
ATCCTCTTCCCTGAGCCG
1898
CCCAGCTGAGAGGGAATTTA
1899
TGACGCATCCAGGGCTCTAGTCTG
1900
ATCCTCTTCCCTGAGCCGCTGACGCATCCAGGGCTCTA











GTCTGCACATAAATTCCCTCTCAGCTGGG





PRKAR1B
NM_002735
1901
ACAAAACCATGACTGCGCT
1902
TGTCATCCAGGTGAGCGA
1903
AAGGCCATCTCCAAGAACGTGCTC
1904
ACAAAACCATGACTGCGCTGGCCAAGGCCATCTCCAAG











AACGTGCTCTTCGCTCACCTGGATGACA





PRKAR2B
NM_002736
1905
TGATAATCGTGGGAGTTTCG
1906
GCACCAGGAGAGGTAGCAGT
1907
CGAACTGGCCTTAATGTACAATAC
1908
TGATAATCGTGGGAGTTTCGGCGAACTGGCCTTAATGT









ACCCA

ACAATACACCCAGAGCAGCTACAATCACTGCTACCTCT











CCTGGTGC





PRKCA
NM_002737
1909
CAAGCAATGCGTCATCAATGT
1910
GTAAATCCGCCCCCTCTTCT
1911
CAGCCTCTGCGGAATGGATCACAC
1912
CAAGCAATGCGTCATCAATGTCCCCAGCCTCTGCGGAA









T

TGGATCACACTGAGAAGAGGGGGCGGATTTAC





PRKCB
NM_002738
1913
GACCCAGCTCCACTCCTG
1914
CCCATTCACGTACTCCATCA
1915
CCAGACCATGGACCGCCTGTACTT
1916
GACCCAGCTCCACTCCTGCTTCCAGACCATGGACCGCC











TGTACTTTGTGATGGAGTACGTGAATGGG





PROM1
NM_006017
1917
CTATGACAGGCATGCCACC
1918
CTCCAACCATGAGGAAGACG
1919
ACCCGAGGCTGTGTCTCCAACAC
1920
CTATGACAGGCATGCCACCCCGACCACCCGAGGCTGTG











TCTCCAACACCGGAGGCGTCTTCCTCATGGTTGGAG





PROS1
NM_000313
1921
GCAGCACAGGAATCTTCTTCT
1922
CCCACCTATCCAACCTAATC
1923
CTCATCCTGACAGACTGCAGCTGC
1924
GCAGCACAGGAATCTTCTTCTTGGCAGCTGCAGTCTGT





T

TG



CAGGATGAGATATCAGATTAGGTTGGATAGGTGGG





PSCA
NM_005672
1925
ACCGTCATCAGCAAAGGCT
1926
CGTGATGTTCTTCTTGCCC
1927
CCTGTGAGTCATCCACGCAGTTCA
1928
ACCGTCATCAGCAAAGGCTGCAGCTTGAACTGCGTGGA











TGACTCACAGGACTACTACGTGGGCAAGAAGAACATCA











CG





PSMD13
NM_002817
1929
GGAGGAGCTCTACACGAAGAA
1930
CGGATCCTGCACAAAATCA
1931
CCTGAAGTGTCAGCTGATGCCACA
1932
GGAGGAGCTCTACACGAAGAAGTTGTGGCATCAGCTGA





G





CACTTCAGGTGCTTGATTTTGTGCAGGATCCG





PTCH1
NM_000264
1933
CCACGACAAAGCCGACTAC
1934
TACTCGATGGGCTCTGCTG
1935
CCTGAAACAAGGCTGAGAATCCCG
1936
CCACGACAAAGCCGACTACATGCCTGAAACAAGGCTGA











GAATCCCGGCAGCAGAGCCCATCGAGTA





PTEN
NM_000314
1937
TGGCTAAGTGAAGATGACAAT
1938
TGCACATATCATTACACCAG
1939
CCTTTCCAGCTTTACAGTGAATTG
1940
TGGCTAAGTGAAGATGACAATCATGTTGCAGCAATTCA





CATG

TTCGT

CTGCA

CTGTAAAGCTGGAAAGGGACGAACTGGTGTAATGATAT











GTGCA





PTGER3
NM_000957
1941
TAACTGGGGCAACCTTTTCT
1942
TTGCAGGAAAAGGTGACTGT
1943
CCTTTGCCTTCCTGGGGCTCTT
1944
TAACTGGGGCAACCTTTTCTTCGCCTCTGCCTTTGCCT











TCCTGGGGCTCTTGGCGCTGACAGTCACCTTTTCCTGC











AA





PTGS2
NM_000963
1945
GAATCATTCACCAGGCAAATT
1946
CTGTACTGCGGGTGGAACAT
1947
CCTACCACCAGCAACCCTGCCA
1948
GAATCATTCACCAGGCAAATTGCTGGCAGGGTTGCTGG





G





TGGTAGGAATGTTCCACCCGCAGTACAG





PTH1R
NM_000316
1949
CGAGGTACAAGCTGAGATCAA
1950
GCGTGCCTTTCGCTTGAA
1951
CCAGTGCCAGTGTCCAGCGGCT
1952
CGAGGTACAAGCTGAGATCAAGAAATCTTGGAGCCGCT





GAA





GGACACTGGCACTGGACTTCAAGCGAAAGGCACGC





PTHLH
NM_002820
1953
AGTGACTGGGAGTGGGCTAGA
1954
AAGCCTGTTACCGTGAATCG
1955
TGACACCTCCACAACGTCGCTGGA
1956
AGTGACTGGGAGTGGGCTAGAAGGGGACCACCTGTCTG





A

A



ACACCTCCACAACGTCGCTGGAGCTCGATTCACGGTAA











CAGGCTT





PTK2
NM_005607
1957
GACCGGTCGAATGATAAGGT
1958
CTGGACATCTCGATGACAGC
1959
ACCAGGCCCGTCACATTCTCGTAC
1960
GACCGGTCGAATGATAAGGTGTACGAGAATGTGACGGG











CCTGGTGAAAGCTGTCATCGAGATGTCCAG





PTK2B
NM_004103
1961
CAAGCCCAGCCGACCTAAG
1962
GAACCTGGAACTGCAGCTTT
1963
CTCCGCAAACCAACCTCCTGGCT
1964
CAAGCCCAGCCGACCTAAGTACAGACCCCCTCCGCAAA







G



CCAACCTCCTGGCTCCAAAGCTGCAGTTCCAGGTTC





PTK6
NM_005975
1965
GTGCAGGAAAGGTTCACAAA
1966
GCACACACGATGGAGTAAGG
1967
AGTGTCTGCGTCCAATACACGCGT
1968
GTGCAGGAAAGGTTCACAAATGTGGAGTGTCTGCGTCC











AATACACGCGTGTGCTCCTCTCCTTACTCCATCGTGTG











TGC





PTK7
NM_002821
1969
TCAGAGGACTCACGGTTCG
1970
CATACACCTCCACGCTGTTG
1971
CGCAAGGTCCCATTCTTGAAGACC
1972
TCAGAGGACTCACGGTTCGAGGTCTTCAAGAATGGGAC











CTTGCGCATCAACAGCGTGGAGGTGTATG





PTPN1
NM_002827
1973
AATGAGGAAGTTTCGGATGG
1974
CTTCGATCACAGCCAGGTAG
1975
CTGATCCAGACAGCCGACCAGCT
1976
AATGAGGAAGTTTCGGATGGGGCTGATCCAGACAGCCG











ACCAGCTGCGCTTCTCCTACCTGGCTGTGATCGAAG





PTPRK
NM_002844
1977
TCAAACCCTCCCAGTGCT
1978
AGCAGCCAGTTCGTCCAG
1979
CCCCATCGTTGTACATTGCAGTGC
1980
TCAAACCCTCCCAGTGCTGGCCCCATCGTTGTACATTG











CAGTGCTGGTGCTGGACGAACTGGCTGCT





PTTG1
NM_004219
1981
GGCTACTCTGATCTATGTTGA
1982
GCTTCAGCCCATCCTTAGCA
1983
CACACGGGTGCCTGGTTCTCCA
1984
GGCTACTCTGATCTATGTTGATAAGGAAAATGGAGAAC





TAAGGAA





CAGGCACCCGTGTGGTTGCTAAGGATGGGCTGAAGC





PYCARD
NM_013258
1985
CTTTATAGACCAGCACCGGG
1986
AGCATCCAGCAGCCACTC
1987
ACGTTTGTGACCCTCGCGATAAGC
1988
CTTTATAGACCAGCACCGGGCTGCGCTTATCGCGAGGG











TCACAAACGTTGAGTGGCTGCTGGATGCT





RAB27A
NM_004580
1989
TGAGAGATTAATGGGCATTGT
1990
CCGGATGCTTTATTCGTAGG
1991
ACAAATTGCTTCTCACCATCCCCA
1992
TGAGAGATTAATGGGCATTGTGTACAAATTGCTTCTCA





G



TT

CCATCCCCATTAGACCTACGAATAAAGCATCCGG





RAB30
NM_014488
1993
TAAAGGCTGAGGCACGGA
1994
CTCCCCAGCATCTCATGG
1995
CCATCAGGGCAGTTGCTGATTCCT
1996
TAAAGGCTGAGGCACGGAGAAGAAAAGGAATCAGCAAC











TGCCCTGATGGGCCATGAGATGCTGGGGAG





RAB31
NM_006868
1997
CTGAAGGACCCTACGCTCG
1998
ATGCAAAGCCAGTGTGCTC
1999
CTTCTCAAAGTGAGGTGCCAGGCC
2000
CTGAAGGACCCTACGCTCGGTGGCCTGGCACCTCACTT











TGAGAAGAGTGAGCACACTGGCTTTGCAT





RAD21
NM_006265
2001
TAGGGATGGTATCTGAAACAA
2002
TCGCGTACACCTCTGCTC
2003
CACTTAAAACGAATCTCAAGAGGG
2004
TAGGGATGGTATCTGAAACAACAATGGTCACCCTCTTG





CA



TGACCA

AGATTCGTTTTAAGTGTAATTCCATAATGAGCAGAGGT











GTACGCGA





RAD51
NM_002875
2005
AGACTACTCGGGTCGAGGTG
2006
AGCATCCGCAGAAACCTG
2007
CTTTCAGCCAGGCAGATGCACTTG
2008
AGACTACTCGGGTCGAGGTGAGCTTTCAGCCAGGCAGA











TGCACTTGGCCAGGTTTCTGCGGATGCT





RAD9A
NM_004584
2009
GCCATCTTCACCATCAAGG
2010
CGGTGTCTGAGAGTGTGGC
2011
CTTTGCTGGACGGCCACTTTGTCT
2012
GCCATCTTCACCATCAAGGACTCTTTGCTGGACGGCCA











CTTTGTCTTGGCCACACTCTCAGACACCG





RAF1
NM_002880
2013
CGTCGTATGCGAGAGTCTGT
2014
TGAAGGCGTGAGGTGTAGAA
2015
TCCAGGATGCCTGTTAGTTCTCAG
2016
CGTCGTATGCGAGAGTCTGTTTCCAGGATGCCTGTTAG









CA

TTCTCAGCACAGATATTCTACACCTCACGCCTTCA





RAGE
NM_014226
2017
ATTAGGGGACTTTGGCTCCT
2018
GGGTGGAGATGTATTCCGTG
2019
CCGGAGTGTCTATTCCAAGCAGCC
2020
ATTAGGGGACTTTGGCTCCTGCCGGAGTGTCTATTCCA











AGCAGCCGTACACGGAATACATCTCCACCC





RALA
NM_005402
2021
TGGTCCTGAATGTAGCGTGT
2022
CCCCATTTCACCTCTTCAAT
2023
TTGTGTTTCTTGGGCAGTCTTTCT
2024
TGGTCCTGAATGTAGCGTGTAAGCTTGTGTTTCTTGGG









TGAA

CAGTCTTTCTTGAAATTGAAGAGGTGAAATGGGG





RALBP1
NM_006788
2025
GGTGTCAGATATAAATGTGCA
2026
TTCGATATTGCCAGCAGCTA
2027
TGCTGTCCTGTCGGTCTCAGTACG
2028
GGTGTCAGATATAAATGTGCAAATGCCTTCTTGCTGTC





AATGC

TAAA

TTCA

CTGTCGGTCTCAGTACGTTCACTTTATAGCTGCTGGCA











ATATCGAA





RAP1B
NM_001010942
2029
TGACAGCGTGAGAGGTACTAG
2030
CTGAGCCAAGAACGACTAGC
2031
CACGCATGATGCAAGCTTGTCAAA
2032
TGACAGCGTGAGAGGTACTAGGTTTTGACAAGCTTGCA





G

TT



TCATGCGTGAGTATAAGCTAGTCGTTCTTGGCTCAG





RARB
NM_000965
2033
ATGAACCCTTGACCCCAAGT
2034
GAGCTGGGTGAGATGCTAGG
2035
TGTGCTCTGCTGTGTTCCCACTTG
2036
ATGAACCCTTGACCCCAAGTTCAAGTGGGAACACAGCA











GAGCACAGTCCTAGCATCTCACCCAGCTC





RASSF1
NM_007182
2037
AGGGCACGTGAAGTCATTG
2038
AAAGAGTGCAAACTTGCGG
2039
CACCACCAAGAACTTTCGCAGCAG
2040
AGGGCACGTGAAGTCATTGAGGCCCTGCTGCGAAAGTT











CTTGGTGGTGGATGACCCCCGCAAGTTTGCACTCTTT





RB1
NM_000321
2041
CGAAGCCCTTACAAGTTTCC
2042
GGACTCTTCAGGGGTGAAAT
2043
CCCTTACGGATTCCTGGAGGGAAC
2044
CGAAGCCCTTACAAGTTTCCTAGTTCACCCTTACGGAT











TCCTGGAGGGAACATCTATATTTCACCCCTGAAGAGTC











C





RECK
NM_021111
2045
GTCGCCGAGTGTGCTTCT
2046
GTGGGATGATGGGTTTGC
2047
TCAAGTGTCCTTCGCTCTTGGCAG
2048
GTCGCCGAGTGTGCTTCTGTCAAGTGTCCTTCGCTCTT











GGCAGCTGGATGCAAACCCATCATCCCAC





REG4
NM_032044
2049
TGCTAACTCCTGCACAGCC
2050
TGCTAGGTTTCCCCTCTGAA
2051
TCCTCTTCCTTTCTGCTAGCCTGG
2052
TGCTAACTCCTGCACAGCCCCGTCCTCTTCCTTTCTGC









C

TAGCCTGGCTAAATCTGCTCATTATTTCAGAGGGGAAA











CCTAGCA





RELA
NM_021975
2053
CTGCCGGGATGGCTTCTAT
2054
CCAGGTTCTGGAAACTGTGG
2055
CTGAGCTCTGCCCGGACCGCT
2056
CTGCCGGGATGGCTTCTATGAGGCTGAGCTCTGCCCGG







AT



ACCGCTGCATCCACAGTTTCCAGAACCTGG





RFX1
NM_002918
2057
TCCTCTCCAAGTTCGAGCC
2058
CAGGCCCTGGTACAGCAC
2059
TCCAATGGACCAAGCACTGTGACA
2060
TCCTCTCCAAGTTCGAGCCCGTGCTCCAATGGACCAAG











CACTGTGACAACGTGCTGTACCAGGGCCTG





RGS10
NM_001005339
2061
AGACATCCACGACAGCGAT
2062
CCATTTGGCTGTGCTCTTG
2063
AGTTCCAGCAGCAGCCACCAGAG
2064
AGACATCCACGACAGCGATGGCAGTTCCAGCAGCAGCC











ACCAGAGCCTCAAGAGCACAGCCAAATGG





RGS7
NM_002924
2065
CAGGCTGCAGAGAGCATTT
2066
TTTGCTTGTGCTTCTGCTTG
2067
TGAAAATGAACTCCCACTTCCGGG
2068
CAGGCTGCAGAGAGCATTTGCCCGGAAGTGGGAGTTCA











TTTTCATGCAAGCAGAAGCACAAGCAAA





RHOA
NM_001664
2069
TGGCATAGCTCTGGGGTG
2070
TGCCACAGCTGCATGAAC
2071
AAATGGGCTCAACCAGAAAAGCCC
2072
TGGCATAGCTCTGGGGTGGGCAGTTTTTTGAAAATGGG











CTCAACCAGAAAAGCCCAAGTTCATGCAGCTGTGGCA





RHOB
NM_004040
2073
AAGCATGAACAGGACTTGACC
2074
CCTCCCCAAGTCAGTTGC
2075
CTTTCCAACCCCTGGGGAAGACAT
2076
AAGCATGAACAGGACTTGACCATCTTTCCAACCCCTGG











GGAAGACATTTGCAACTGACTTGGGGAGG





RHOC
NM_175744
2077
CCCGTTCGGTCTGAGGAA
2078
GAGCACTCAAGGTAGCCAAA
2079
TCCGGTTCGCCATGTCCCG
2080
CCCGTTCGGTCTGAGGAAGGCCGGGACATGGCGAACCG







GG



GATCAGTGCCTTTGGCTACCTTGAGTGCTC





RLN1
NM_006911
2081
AGCTGAAGGCAGCCCTATC
2082
TTGGAATCCTTTAATGCAGG
2083
TGAGAGGCAACCATCATTACCAGA
2084
AGCTGAAGGCAGCCCTATCTGAGAGGCAACCATCATTA







T

GC

CCAGAGCTACAGCAGTATGTACCTGCATTAAAGGATTC











CAA





RND3
NM_005168
2085
TCGGAATTGGACTTGGGAG
2086
CTGGTTACTCCCCTCCAACA
2087
TTTTAAGCCTGACTCCTCACCGCG
2088
TCGGAATTGGACTTGGGAGGCGCGGTGAGGAGTCAGGC











TTAAAACTTGTTGGAGGGGAGTAACCAG





RNF114
NM_018683
2089
TGACAGGGGAAGTGGGTC
2090
GGAAGACAGCTTTGGCAAGA
2091
CCAGGTCAGCCCTTCTCTTCCCTT
2092
TGACAGGGGAAGTGGGTCCCCAGGTCAGCCCTTCTCTT











CCCTTTGGGCTCTTGCCAAAGCTGTCTTCC





ROBO2
NM_002942
2093
CTACAAGGCCCAGCCAAC
2094
CACCAGTGGCTTTACATTTC
2095
CTGTACCATCCACTGCCAGCGTTT
2096
CTACAAGGCCCAGCCAACCAAACGCTGGCAGTGGATGG







AG



TACAGCGTTACTGAAATGTAAAGCCACTGGTG





RRM1
NM_001033
2097
GGGCTACTGGCAGCTACATT
2098
CTCTCAGCATCGGTACAAGG
2099
CATTGGAATTGCCATTAGTCCCAG
2100
GGGCTACTGGCAGCTACATTGCTGGGACTAATGGCAAT









C

TCCAATGGCCTTGTACCGATGCTGAGAG





RRM2
NM_001034
2101
CAGCGGGATTAAACAGTCCT
2102
ATCTGCGTTGAAGCAGTGAG
2103
CCAGCACAGCCAGTTAAAAGATGC
2104
CAGCGGGATTAAACAGTCCTTTAACCAGCACAGCCAGT









A

TAAAAGATGCAGCCTCACTGCTTCAACGCAGAT





SWOP
NM_005980
2105
AGACAAGGATGCCGTGGATAA
2106
GAAGTCCACCTGGGCATCTC
2107
TTGCTCAAGGACCTGGACGCCAA
2108
AGACAAGGATGCCGTGGATAAATTGCTCAAGGACCTGG











ACGCCAATGGAGATGCCCAGGTGGACTTC





SAT1
NM_002970
2109
CCTTTTACCACTGCCTGGTT
2110
ACAATGCTGTGTCCTTCCG
2111
TCCAGTGCTCTTTCGGCACTTCTG
2112
CCTTTTACCACTGCCTGGTTGCAGAAGTGCCGAAAGAG











CACTGGACTCCGGAAGGACACAGCATTGT





SCUBE2
NM_020974
2113
TGACAATCAGCACACCTGCAT
2114
TGTGACTACAGCCGTGATCC
2115
CAGGCCCTCTTCCGAGCGGT
2116
TGACAATCAGCACACCTGCATTCACCGCTCGGAAGAGG







TTA



GCCTGAGCTGCATGAATAAGGATCACGGCTGTAGTCAC











A





SDC1
NM_002997
2117
GAAATTGACGAGGGGTGTCT
2118
AGGAGCTAACGGAGAACCTG
2119
CTCTGAGCGCCTCCATCCAAGG
2120
GAAATTGACGAGGGGTGTCTTGGGCAGAGCTGGCTCTG











AGCGCCTCCATCCAAGGCCAGGTTCTCCGTTAGCTCCT





SDC2
NM_002998
2121
GGATTGAAGTGGCTGGAAAG
2122
ACCAGCCACAGTACCCTCA
2123
AACTCCATCTCCTTCCCCAGGCAT
2124
GGATTGAAGTGGCTGGAAAGAGTGATGCCTGGGGAAGG











AGATGGAGTTATGAGGGTACTGTGGCTGGT





SDHC
NM_003001
2125
CTTCCCTCGGGTCTCAGG
2126
TTCCCTCCTGGTAAAGGTCA
2127
TTACATCCTCCCTCTCCCCGCAAT
2128
CTTCCCTCGGGTCTCAGGCATTTACATCCTCCCTCTCC











CCGCAATCTGACCTTTACCAGGAGGGAA





SEC14L1
NM_001039573
2129
AGGGTTCCCATGTGACCAG
2130
GCAGGCATGCTGTGGAAT
2131
CGGGCTTCTACATCCTGCAGTGG
2132
AGGGTTCCCATGTGACCAGGTGGCCGGGCTTCTACATC











CTGCAGTGGAAATTCCACAGCATGCCTGC





SEC23A
NM_006364
2133
CGTGTGCATTAGATCAGACAG
2134
CCCATTACCATGTATCCTCC
2135
TCCTGGAGATGAAATGCTGTCCCA
2136
CGTGTGCATTAGATCAGACAGGTCTCCTGGAGATGAAA





G

AG



TGCTGTCCCAACCTTACTGGAGGATACATGGTAATGGG





SEMA3A
NM_006080
2137
TTGGAATGCAGTCCGAAGT
2138
CTCTTCATTTCGCCTCTGGA
2139
TTGCCAATAGACCAGCGCTCTCTG
2140
TTGGAATGCAGTCCGAAGTCGCAGAGAGCGCTGGTCTA











TTGGCAATTCCAGAGGCGAAATGAAGAG





SEPT9
NM_006640
2141
CAGTGACCACGAGTACCAGG
2142
CTTCGATGGTACCCCACTTG
2143
TTGCCAATAGACCAGCGCTCTCTG
2144
CAGTGACCACGAGTACCAGGTCAACGGCAAGAGGATCC











TTGGGAGGAAGACCAAGTGGGGTACCATCGAAG





SERPINA3
NM_001085
2145
GTGTGGCCCTGTCTGCTTA
2146
CCCTGTGCATGTGAGAGCTA
2147
AGGGAATCGCTGTCACCTTCCAAG
2148
GTGTGGCCCTGTCTGCTTATCCTTGGAAGGTGACAGCG







C



ATTCCCTGTGTAGCTCTCACATGCACAGGG





SERPINB5
NM_002639
2149
CAGATGGCCACTTTGAGAACA
2150
GGCAGCATTAACCACAAGGA
2151
AGCTGACAACAGTGTGAACGACCA
2152
CAGATGGCCACTTTGAGAACATTTTAGCTGACAACAGT





TT

TT

GACC

GTGAACGACCAGACCAAAATCCTTGTGGTTAATGCTGC











C





SESN3
NM_144665
2153
GACCCTGGTTTTGGGTATGA
2154
GAGCTCGGAATGTTGGCA
2155
TGCTCTTCTCCTCGTCTGGCAAAG
2156
GACCCTGGTTTTGGGTATGAAGACTTTGCCAGACGAGG











AGAAGAGCATTTGCCAACATTCCGAGCTC





SFRP4
NM_003014
2157
TACAGGATGAGGCTGGGC
2158
GTTGTTAGGGCAAGGGGC
2159
CCTGGGACAGCCTATGTAAGGCCA
2160
TACAGGATGAGGCTGGGCATTGCCTGGGACAGCCTATG











TAAGGCCATGTGCCCCTTGCCCTAACAAC





SH3RF2
NM_152550
2161
CCATCACAACAGCCTTGAAC
2162
CACTGGGGTGCTGATCTCTA
2163
AACCGGATGGTCCATTCTCCTTCA
2164
CCATCACAACAGCCTTGAACACTCTCAACCGGATGGTC











CATTCTCCTTCAGGGCGCCATATGGTAGAGATCAGCAC











CCCAGTG





SH3YL1
NM_015677
2165
CCTCCAAAGCCATTGTCAAG
2166
CTTTGAGAGCCAGAGTTCAG
2167
CACAGCAGTCATCTGCACCAGTCC
2168
CCTCCAAAGCCATTGTCAAGACCACAGCAGTCATCTGC







C



ACCAGTCCAGCTGAACTCTGGCTCTCAAAG





SHH
NM_000193
2169
GTCCAAGGCACATATCCACTG
2170
GAAGCAGCCTCCCGATTT
2171
CACCGAGTTCTCTGCTTTCACCGA
2172
GTCCAAGGCACATATCCACTGCTCGGTGAAAGCAGAGA











ACTCGGTGGCGGCCAAATCGGGAGGCTGCTTC





SHMT2
NM_005412
2173
AGCGGGTGCTAGAGCTTGTA
2174
ATGGCACTTCGGTCTCCA
2175
CCATCACTGCCAACAAGAACACCT
2176
AGCGGGTGCTAGAGCTTGTATCCATCACTGCCAACAAG









G

AACACCTGTCCTGGAGACCGAAGTGCCAT





SIM2
NM_005069
2177
GATGGTAGGAAGGGATGTGC
2178
CACAAGGAGCTGTGAATGAG
2179
CGCCTCTCCACGCACTCAGCTAT
2180
GATGGTAGGAAGGGATGTGCCCGCCTCTCCACGCACTC







G



AGCTATACCTCATTCACAGCTCCTTGTG





SIPA1L1
NM_015556
2181
CTAGGACAGCTTGGCTTCCA
2182
CATAACCGTAGGGCTCCACA
2183
CGCCACAATGCCCTCATAGTTGAC
2184
CTAGGACAGCTTGGCTTCCATGTCAACTATGAGGGCAT











TGTGGCGGATGTGGAGCCCTACGGTTATG





SKIL
NM_005414
2185
AGAGGCTGAATATGCAGGACA
2186
CTATCGGCCTCAGCATGG
2187
CCAATCTCTGCCTCAGTTCTGCCA
2188
AGAGGCTGAATATGCAGGACAGTTGGCAGAACTGAGGC











AGAGATTGGACCATGCTGAGGCCGATAG





SLC22A3
NM_021977
2189
ATCGTCAGCGAGTTTGACCT
2190
CAGGATGGCTTGGGTGAG
2191
CAGCATCCACGCATTGACACAGAC
2192
ATCGTCAGCGAGTTTGACCTTGTCTGTGTCAATGCGTG











GATGCTGGACCTCACCCAAGCCATCCTG





SLC25A21
NM_030631
2193
AAGTGTTTTTCCCCCTTGAGA
2194
GGCCGATCGATAGTCTCTCT
2195
TCATGGTGCTGCATAGCAAATATC
2196
AAGTGTTTTTCCCCCTTGAGATAATGGATATTTGCTAT





T

T

CA

GCAGCACCATGAAGAAGAGAGACTATCGATCGGCC





SLC44A1
NM_080546
2197
AGGACCGTAGCTGCACAGAC
2198
ATCCCATCCCAATGCAGA
2199
TACCATGGCTGCTGCTCTTCATCC
2200
AGGACCGTAGCTGCACAGACATACCATGGCTGCTGCTC











TTCATCCTCTTCTGCATTGGGATGGGAT





SMAD4
NM_005359
2201
GGACATTACTGGCCTGTTCAC
2202
ACCAATACTCAGGAGCAGGA
2203
TGCATTCCAGCCTCCCATTTCCA
2204
GGACATTACTGGCCTGTTCACAATGAGCTTGCATTCCA





A

TGA



GCCTCCCATTTCCAATCATCCTGCTCCTGAGTATTGGT





SMARCC2
NM_003075
2205
TACCGACTGAACCCCCAA
2206
GACATCACCCGCTAGGTTTC
2207
TATCTTACCTCTACCGCCTGCCGC
2208
TACCGACTGAACCCCCAAGAGTATCTTACCTCTACCGC











CTGCCGCCGAAACCTAGCGGGTGATGTC





SMARCD1
NM_003076
2209
CCGAGTTAGCATATCCCAGG
2210
CCTTTGTGCCCAGCTGTC
2211
CCCACCCTTGCTGTGTTGAGTCTG
2212
CCGAGTTAGCATATCCCAGGCTCGCAGACTCAACACAG











CAAGGGTGGGAGACAGCTGGGCACAAAGG





SMO
NM_005631
2213
GGCATCCAGTGCCAGAAC
2214
CGCGATGTAGCTGTGCAT
2215
CTTCACAGAGGCTGAGCACCAGGA
2216
GGCATCCAGTGCCAGAACCCGCTCTTCACAGAGGCTGA











GCACCAGGACATGCACAGCTACATCGCG





SNAI1
NM_005985
2217
CCCAATCGGAAGCCTAACTA
2218
GTAGGGCTGCTGGAAGGTAA
2219
TCTGGATTAGAGTCCTGCAGCTCG
2220
CCCAATCGGAAGCCTAACTACAGCGAGCTGCAGGACTC









C

TAATCCAGAGTTTACCTTCCAGCAGCCCTAC





SNRPB2
NM_003092
2221
CGTTTCCTGCTTTTGGTTCT
2222
AGGTAGAAGGCGCACGAA
2223
CCCACCTAAGGCCTACGCCGACTA
2224
CGTTTCCTGCTTTTGGTTCTTACAGTAGTCGGCGTAGG











CCTTAGGTGGGTTCGTGCGCCTTCTACCT





SOD1
NM_000454
2225
TGAAGAGAGGCATGTTGGAG
2226
AATAGACACATCGGCCACAC
2227
TTTGTCAGCAGTCACATTGCCCAA
2228
TGAAGAGAGGCATGTTGGAGACTTGGGCAATGTGACTG











CTGACAAAGATGGTGTGGCCGATGTGTCTATT





SORBS1
NM_015385
2229
GCAGATGAGTGGAGGCTTTC
2230
AGCGAGTGAAGAGGGCTG
2231
ATTTCCATTGGCATCAGCACTGGA
2232
GCAGATGAGTGGAGGCTTTCTTCCAGTGCTGATGCCAA











TGGAAATGCCCAGCCCTCTTCACTCGCT





SOX4
NM_003107
2233
AGATGATCTCGGGAGACTGG
2234
GCGCCCTTCAGTAGGTGA
2235
CGAGTCCAGCATCTCCAACCTGGT
2236
AGATGATCTCGGGAGACTGGCTCGAGTCCAGCATCTCC











AACCTGGTTTTCACCTACTGAAGGGCGC





SPARC
NM_003118
2237
TCTTCCCTGTACACTGGCAGT
2238
AGCTCGGTGTGGGAGAGGTA
2239
TGGACCAGCACCCCATTGACGG
2240
TCTTCCCTGTACACTGGCAGTTCGGCCAGCTGGACCAG





TC





CACCCCATTGACGGGTACCTCTCCCACACCGAGCT





SPARCL1
NM_004684
2241
GGCACAGTGCAAGTGATGA
2242
GATTGAGCTCTCTCGGCCT
2243
ACTTCATCCCAAGCCAGGCCTTTC
2244
GGCACAGTGCAAGTGATGACTACTTCATCCCAAGCCAG











GCCTTTCTGGAGGCCGAGAGAGCTCAATC





SPDEF
NM_012391
2245
CCATCCGCCAGTATTACAAG
2246
GGGTGCACGAACTGGTAGA
2247
ATCATCCGGAAGCCAGACATCTCC
2248
CCATCCGCCAGTATTACAAGAAGGGCATCATCCGGAAG











CCAGACATCTCCCAGCGCCTCGTCTACCAGTTCGTGCA











CCC





SPINK1
NM_003122
2249
CTGCCATATGACCCTTCCAG
2250
GTTGAAAACTGCACCGCAC
2251
ACCACGTCTCTTCAGAAGCCTGGG
2252
CTGCCATATGACCCTTCCAGTCCCAGGCTTCTGAAGAG











ACGTGGTAAGTGCGGTGCAGTTTTCAAC





SPINT1
NM_003710
2253
ATTCCCAGCACAGGCTCTGT
2254
AGATGGCTACCACCACCACA
2255
CTGTCGCAGTGTTCCTGGTCATCT
2256
ATTCCCAGCACAGGCTCTGTGGAGATGGCTGTCGCAGT







A

GC

GTTCCTGGTCATCTGCATTGTGGTGGTGGTAGCCATCT





SPP1
NM_001040058
2257
TCACACATGGAAAGCGAGG
2258
GTTCAGGTCCTGGGCAAC
2259
TGAATGGTGCATACAAGGCCATCC
2260
TCACACATGGAAAGCGAGGAGTTGAATGGTGCATACAA











GGCCATCCCCGTTGCCCAGGACCTGAAC





SOLE
NM_003129
2261
ATTTTCGAGGCCAAAAAATC
2262
CCTGAGCAAGGATATTCACG
2263
TGGGCAAGAAAAACATCTCATTCC
2264
ATTTTCGAGGCCAAAAAATCATTTTACTGGGCAAGAAA









TTTG

AACATCTCATTCCTTTGTCGTGAATATCCTTGCTCAGG





SRC
NM_005417
2265
TGAGGAGTGGTATTTTGGCAA
2266
CTCTCGGGTTCTCTGCATTG
2267
AACCGCTCTGACTCCCGTCTGGTG
2268
TGAGGAGTGGTATTTTGGCAAGATCACCAGACGGGAGT





GA

A



CAGAGCGGTTACTGCTCAATGCAGAGAACCCGAGAG





SRD5A1
NM_001047
2269
GGGCTGGAATCTGTCTAGGA
2270
CCATGACTGCACAATGGCT
2271
CCTCTCTCGGAGGCCACAGAGGCT
2272
GGGCTGGAATCTGTCTAGGAGCCCTCTCTCGGAGGCCA











CAGAGGCTGGGGGTAGCCATTGTGCAGTCATGG





SRD5A2
NM_000348
2273
GTAGGTCTCCTGGCGTTCTG
2274
TCCCTGGAAGGGTAGGAGTA
2275
AGACACCACTCAGAATCCCCAGGC
2276
GTAGGTCTCCTGGCGTTCTGCCAGCTGGCCTGGGGATT







A



CTGAGTGGTGTCTGCTTAGAGTTTACTCCTACCCTTCC











AGGGA





ST5
NM_005418
2277
CCTGTCCTGCCAGAGCAT
2278
CAGCTGCACAAAACTGGC
2279
AGTCACGAGCACCCAGCGAAACTT
2280
CCTGTCCTGCCAGAGCATGGATGAAGTTTCGCTGGGTG











CTCGTGACTGGCCAGTTTTGTGCAGCTG





STAT1
NM_007315
2281
GGGCTCAGCTTTCAGAAGTG
2282
ACATGTTCAGCTGGTCCACA
2283
TGGCAGTTTTCTTCTGTCACCAAA
2284
GGGCTCAGCTTTCAGAAGTGCTGAGTTGGCAGTTTTCT









A

TCTGTCACCAAAAGAGGTCTCAATGTGGACCAGCTGAA











CATGT





STAT3
NM_003150
2285
TCACATGCCACTTTGGTGTT
2286
CTTGCAGGAAGCGGCTATAC
2287
TCCTGGGAGAGATTGACCAGCA
2288
TCACATGCCACTTTGGTGTTTCATAATCTCCTGGGAGA











GATTGACCAGCAGTATAGCCGCTTCCTGCAAG





STAT5A
NM_003152
2289
GAGGCGCTCAACATGAAATTC
2290
GCCAGGAACACGAGGTTCTC
2291
CGGTTGCTCTGCACTTCGGCCT
2292
GAGGCGCTCAACATGAAATTCAAGGCCGAAGTGCAGAG











CAACCGGGGCCTGACCAAGGAGAACCTCGTGTTCCTGG











C





STAT5B
NM_012448
2293
CCAGTGGTGGTGATCGTTCA
2294
GCAAAAGCATTGTCCCAGAG
2295
CAGCCAGGACAACAATGCGACGG
2296
CCAGTGGTGGTGATCGTTCATGGCAGCCAGGACAACAA







A



TGCGACGGCCACTGTTCTCTGGGACAATGCTTTTGC





STMN1
NM_005563
2297
AATACCCAACGCACAAATGA
2298
GGAGACAATGCAAACCACAC
2299
CACGTTCTCTGCCCCGTTTCTTG
2300
AATACCCAACGCACAAATGACCGCACGTTCTCTGCCCC











GTTTCTTGCCCCAGTGTGGTTTGCATTGTCTCC





STS
NM_000351
2301
GAAGATCCCTTTCCTCCTACT
2302
GGATGATGTTCGGCCTTGAT
2303
CTGCGTGGCTCTCGGCTTCCCA
2304
GAAGATCCCTTTCCTCCTACTGTTCTTTCTGTGGGAAG





GTTC





CCGAGAGCCACGCAGCATCAAGGCCGAACATCATCC





SULF1
NM_015170
2305
TGCAGTTGTAGGGAGTCTGG
2306
TCTCAAGAATTGCCGTTGAC
2307
TACCGTGCCAGCAGAAGCCAAAG
2308
TGCAGTTGTAGGGAGTCTGGTTACCGTGCCAGCAGAAG











CCAAAGAAAGAGTCAACGGCAATTCTTGAGA





SUMO1
NM_003352
2309
GTGAAGCCACCGTCATCATG
2310
CCTTCCTTCTTATCCCCCAA
2311
CTGACCAGGAGGCAAAACCTTCAA
2312
GTGAAGCCACCGTCATCATGTCTGACCAGGAGGCAAAA







GT

CTGA

CCTTCAACTGAGGACTTGGGGGATAAGAAGGAAGG





SVIL
NM_003174
2313
ACTTGCCCAGCACAAGGA
2314
GACACCATCCGTGTCACATC
2315
ACCCCAGGACTGATGTCAAGGCAT
2316
ACTTGCCCAGCACAAGGAAGACCCCAGGACTGATGTCA











AGGCATACGATGTGACACGGATGGTGTC





TAF2
NM_003184
2317
GCGCTCCACTCTCAGTCTTT
2318
CTTGTGCTCATGGTGATGGT
2319
AGCCTCCAAACACAGTGACCACCA
2320
GCGCTCCACTCTCAGTCTTTACTAAGGAATCTACAGCC











TCCAAACACAGTGACCACCATCACCACCATCACCATGA











GCACAAG





TARP
NM_001003799
2321
GAGCAACACGATTCTGGGA
2322
GGCACCGTTAACCAGCTAAA
2323
TCTTCATGGTGTTCCCCTCCTGG
2324
GAGCAACACGATTCTGGGATCCCAGGAGGGGAACACCA







T



TGAAGACTAACGACACATACATGAAATTTAGCTGGTTA











ACGGTGCC





TBP
NM_003194
2325
GCCCGAAACGCCGAATATA
2326
CGTGGCTCTCTTATCCTCAT
2327
TACCGCAGCAAACCGCTTGGG
2328
GCCCGAAACGCCGAATATAATCCCAAGCGGTTTGCTGC







GAT



GGTAATCATGAGGATAAGAGAGCCACG





TFDP1
NM_007111
2329
TGCGAAGTGCTTTTGTTTGT
2330
GCCTTCCAGACAGTCTCCAT
2331
CGCACCAGCATGGCAATAAGCTTT
2332
TGCGAAGTGCTTTTGTTTGTTTGTTTTCGTTTGGTTAA











AGCTTATTGCCATGCTGGTGCGGCTATGGAGACTGTCT











GGAAGGC





TFF1
NM_003225
2333
GCCCTCCCAGTGTGCAAAT
2334
CGTCGATGGTATTAGGATAG
2335
TGCTGTTTCGACGACACCGTTCG
2336
GCCCTCCCAGTGTGCAAATAAGGGCTGCTGTTTCGACG







AAGCA



ACACCGTTCGTGGGGTCCCCTGGTGCTTCTATCCTAAT











ACCATCGACG





TFF3
NM_003226
2337
AGGCACTGTTCATCTCAGTTT
2338
CATCAGGCTCCAGATATGAA
2339
CAGAAGCGCTTGCCGGGAGCAAAG
2340
AGGCACTGTTCATCTCAGCTTTTCTGTCCCTTTGCTCC





TTCT

CTTTC

G

CGGCAAGCGCTTCTGCTGAAAGTTCATATCTGGAGCCT











GATG





TGFA
NM_003236
2341
GGTGTGCCACAGACCTTCCT
2342
ACGGAGTTCTTGACAGAGTT
2343
TTGGCCTGTAATCACCTGTGCAGC
2344
GGTGTGCCACAGACCTTCCTACTTGGCCTGTAATCACC







TTGA

CTT

TGTGCAGCCTTTTGTGGGCCTTCAAAACTCTGTCAAGA











ACTCCGT





TGFB1I1
NM_001042454
2345
GCTACTTTGAGCGCTTCTCG
2346
GGTCACCATCTTGTGTCGG
2347
CAAGATGTGGCTTCTGCAACCAGC
2348
GCTACTTTGAGCGCTTCTCGCCAAGATGTGGCTTCTGC











AACCAGCCCATCCGACACAAGATGGTGACC





TGFB2
NM_003238
2349
ACCAGTCCCCCAGAAGACTA
2350
CCTGGTGCTGTTGTAGATGG
2351
TCCTGAGCCCGAGGAAGTCCC
2352
ACCAGTCCCCCAGAAGACTATCCTGAGCCCGAGGAAGT











CCCCCCGGAGGTGATTTCCATCTACAACAGCACCAGG





TGFB3
NM_003239
2353
GGATCGAGCTCTTCCAGATCC
2354
GCCACCGATATAGCGCTGTT
2355
CGGCCAGATGAGCACATTGCC
2356
GGATCGAGCTCTTCCAGATCCTTCGGCCAGATGAGCAC





T





ATTGCCAAACAGCGCTATATCGGTGGC





TGFBR2
NM_003242
2357
AACACCAATGGGTTCCATCT
2358
CCTCTTCATCAGGCCAAACT
2359
TTCTGGGCTCCTGATTGCTCAAGC
2360
AACACCAATGGGTTCCATCTTTCTGGGCTCCTGATTGC











TCAAGCACAGTTTGGCCTGATGAAGAGG





THBS2
NM_003247
2361
CAAGACTGGCTACATCAGAGT
2362
CAGCGTAGGTTTGGTCATAG
2363
TGAGTCTGCCATGACCTGTTTTCC
2364
CAAGACTGGCTACATCAGAGTCTTAGTGCATGAAGGAA





CTTAGTG

ATAGG

TTCAT

AACAGGTCATGGCAGACTCAGGACCTATCTATGACCAA











ACCTACGCTG





THY1
NM_006288
2365
GGACAAGACCCTCTCAGGCT
2366
TTGGAGGCTGTGGGTCAG
2367
CAAGCTCCCAAGAGCTTCCAGAGC
2368
GGACAAGACCCTCTCAGGCTGTCCCAAGCTCCCAAGAG











CTTCCAGAGCTCTGACCCACAGCCTCCAA





TIAM1
NM_003253
2369
GTCCCTGGCTGAAAATGG
2370
GGGCTCCCGAAGTCTTCTA
2371
TGGAGCCCTTCTCCCAAGATGGTA
2372
GTCCCTGGCTGAAAATGGCCTGGAGCCCTTCTCCCAAG











ATGGTACCCTAGAAGACTTCGGGAGCCC





TIMP2
NM_003255
2373
TCACCCTCTGTGACTTCATCG
2374
TGTGGTTCAGGCTCTTCTTC
2375
CCCTGGGACACCCTGAGCACCA
2376
TCACCCTCTGTGACTTCATCGTGCCCTGGGACACCCTG





T

TG



AGCACCACCCAGAAGAAGAGCCTGAACCACA





TIMP3
NM_000362
2377
CTACCTGCCTTGCTTTGTGA
2378
ACCGAAATTGGAGAGCATGT
2379
CCAAGAACGAGTGTCTCTGGACCG
2380
CTACCTGCCTTGCTTTGTGACTTCCAAGAACGAGTGTC











TCTGGACCGACATGCTCTCCAATTTCGGT





TK1
NM_003258
2381
GCCGGGAAGACCGTAATTGT
2382
CAGCGGCACCAGGTTCAG
2383
CAAATGGCTTCCTCTGGAAGGTCC
2384
GCCGGGAAGACCGTAATTGTGGCTGCACTGGATGGGAC









CA

CTTCCAGAGGAAGCCATTTGGGGCCATCCTGAACCTGG











TGCCGCTG





TMPRSS2
NM_005656
2385
GGACAGTGTGCACCTCAAAG
2386
CTCCCACGAGGAAGGTCC
2387
AAGCACTGTGCATCACCTTGACCC
2388
GGACAGTGTGCACCTCAAAGACTAAGAAAGCACTGTGC











ATCACCTTGACCCTGGGGACCTTCCTCGTGGGAG





TMPRSS2ERGA
DQ204772
2389
GAGGCGGAGGGCGAG
2390
ACTGGTCCTCACTCACAACT
2391
TAAGGCTTCCTGCCGCGCTCCA
2392
GAGGCGGAGGCGGAGGGCGAGGGGCGGGGAGCGCCGCC











TGGAGCGCGGCAGGAAGCCTTATCAGTTGTGAGTGAGG











ACCAGT





TMPRSS2ERGB
DQ204773
2393
GAGGCGGAGGGCGAG
2394
TTCCTCGGGTCTCCAAAGAT
2395
CCTGGAATAACCTGCCGCGC
2396
GAGGCGGAGGGCGAGGGGCGGGGAGCGCCGCCTGGAGC











GCGGCAGGTTATTCCAGGATCTTTGGAGACCCGAGGAA





TNF
NM_000594
2397
GGAGAAGGGTGACCGACTCA
2398
TGCCCAGACTCGGCAAAG
2399
CGCTGAGATCAATCGGCCCGACTA
2400
GGAGAAGGGTGACCGACTCAGCGCTGAGATCAATCGGC











CCGACTATCTCGACTTTGCCGAGTCTGGGCA





TNFRSF10A
NM_003844
2401
TGCACAGAGGGTGTGGGTTAC
2402
TCTTCATCTGATTTACAAGC
2403
CAATGCTTCCAACAATTTGTTTGC
2404
TGCACAGAGGGTGTGGGTTACACCAATGCTTCCAACAA







TGTACATG

TTGCC

TTTGTTTGCTTGCCTCCCATGTACAGCTTGTAAATCAG











ATGAAGA





TNFRSF10B
NM_003842
2405
CTCTGAGACAGTGCTTCGATG
2406
CCATGAGGCCCAACTTCCT
2407
CAGACTTGGTGCCCTTTGACTCC
2408
CTCTGAGACAGTGCTTCGATGACTTTGCAGACTTGGTG





ACT





CCCTTTGACTCCTGGGAGCCGCTCATGAGGAAGTTGGG











CCTCATGG





TNFRSF18
NM_148901
2409
CAGAAGCTGCCAGTTCCC
2410
CACCCACAGGTCTCCCAG
2411
CCTTCTCCTCTGCCGATCGCTC
2412
CAGAAGCTGCCAGTTCCCCGAGGAAGAGCGGGGCGAGC











GATCGGCAGAGGAGAAGGGGCGGCTGGGAGACCTGTGG











GTG





TNFSF10
NM_003810
2413
CTTCACAGTGCTCCTGCAGTC
2414
CATCTGCTTCAGCTCGTTGG
2415
AAGTACACGTAAGTTACAGCCACA
2416
CTTCACAGTGCTCCTGCAGTCTCTCTGTGTGGCTGTAA





T

T

CA

CTTACGTGTACTTTACCAACGAGCTGAAGCAGATG





TNFSF11
NM_003701
2417
AACTGCATGTGGGCTATGG
2418
TGACACCCTCTCCACTTCAG
2419
ACATGACCAGGGACCAACCCCTC
2420
AACTGCATGTGGGCTATGGGAGGGGTTGGTCCCTGGTC











ATGTGCCCCTTCGCAGCTGAAGTGGAGAGGGTGTCA





TOP2A
NM_001067
2421
AATCCAAGGGGGAGAGTGAT
2422
GTACAGATTTTGCCCGAGGA
2423
CATATGGACTTTGACTCAGCTGTG
2424
AATCCAAGGGGGAGAGTGATGACTTCCATATGGACTTT









GC

GACTCAGCTGTGGCTCCTCGGGCAAAATCTGTAC





TP53
NM_000546
2425
CTTTGAACCCTTGCTTGCAA
2426
CCCGGGACAAAGCAAATG
2427
AAGTCCTGGGTGCTTCTGACGCAC
2428
CTTTGAACCCTTGCTTGCAATAGGTGTGCGTCAGAAGC









A

ACCCAGGACTTCCATTTGCTTTGTCCCGGG





TP63
NM_003722
2429
CCCCAAGCAGTGCCTCTACA
2430
GAATCGCACAGCATCAATAA
2431
CCCGGGTCTCACTGGAGCCCA
2432
CCCCAAGCAGTGCCTCTACAGTCAGTGTGGGCTCCAGT







CAC



GAGACCCGGGGTGAGCGTGTTATTGATGCTGTGCGATT











C





TPD52
NM_005079
2433
GCCTGTGAGATTCCTACCTTT
2434
ATGTGCTTGGACCTCGCTT
2435
TCTGCTACCCACTGCCAGATGCTG
2436
GCCTGTGAGATTCCTACCTTTGTTCTGCTACCCACTGC





G





CAGATGCTGCAAGCGAGGTCCAAGCACAT





TPM1
NM_001018005
2437
TCTCTGAGCTCTGCATTTGTC
2438
GGCTCTAAGGCAGGATGCTA
2439
TTCTCCAGCTGACCCTGGTTCTCT
2440
TCTCTGAGCTCTGCATTTGTCTATTCTCCAGCTGACCC









C

TGGTTCTCTCTCTTAGCATCCTGCCTTAGAGCC





TP M2
NM_213674
2441
AGGAGATGCAGCTGAAGGAG
2442
CCACCTCTTCATATTTGCGG
2443
CCAAGCACATCGCTGAGGATTCAG
2444
AGGAGATGCAGCTGAAGGAGGCCAAGCACATCGCTGAG











GATTCAGACCGCAAATATGAAGAGGTGG





TPP2
NM_003291
2445
TAACCGTGGCATCTACCTCC
2446
ATGCCAACGCCATGATCT
2447
ATCCTGTTCAGGTGGCTGCACCTT
2448
TAACCGTGGCATCTACCTCCGAGATCCTGTTCAGGTGG











CTGCACCTTCAGATCATGGCGTTGGCAT





TPX2
NM_012112
2449
TCAGCTGTGAGCTGCGGATA
2450
ACGGTCCTAGGTTTGAGGTT
2451
CAGGTCCCATTGCCGGGCG
2452
TCAGCTGTGAGCTGCGGATACCGCCCGGCAATGGGACC







AAGA



TGCTCTTAACCTCAAACCTAGGACCGT





TRA2A
NM_013293
2453
GCAAATCCAGATCCCAACAC
2454
CTTCACGAAGATCCCTCTCT
2455
AACTGAGGCCAAACACTCCAAGGC
2456
GCAAATCCAGATCCCAACACTTGCCTTGGAGTGTTTGG







G



CCTCAGTTTGTACACAACAGAGAGGGATCTTCGTGAAG





TRAF3IP2
NM_147200
2457
CCTCACAGGAACCGAGCA
2458
CTGGGGCTGGGAATCATA
2459
TGGATCTGCCAACCATAGACACGG
2460
CCTCACAGGAACCGAGCAGGCCTGGATCTGCCAACCAT











AGACACGGGATATGATTCCCAGCCCCAG





TRAM1
NM_014294
2461
CAAGAAAAGCACCAAGAGCC
2462
ATGTCCGCGTGATTCTGC
2463
AGTGCTGAGCCACGAATTCGTCC
2464
CAAGAAAAGCACCAAGAGCCCCCCAGTGCTGAGCCACG











AATTCGTCCTGCAGAATCACGCGGACAT





TRAP1
NM_016292
2465
TTACCAGTGGCTTTCAGATGG
2466
TGTCCCGGTTCTAACTCCC
2467
TTCGGCGATTTCAAACACTCCAGA
2468
TTACCAGTGGCTTTCAGATGGTTCTGGAGTGTTTGAAA











TCGCCGAAGCTTCGGGAGTTAGAACCGGGACA





TRIM14
NM_033220
2469
CATTCGCCTTAAGGAAAGCA
2470
CAAGGTACCTGGCTTGGTG
2471
AACTGCCAGCTCTCAGACCCTTCC
2472
CATTCGCCTTAAGGAAAGCATAAACTGCCAGCTCTCAG











ACCCTTCCAGCACCAAGCCAGGTACCTTG





TRO
NM_177556
2473
GCAACTGCCACCCATACAG
2474
TGGTGTGGATACTGGCTGTC
2475
CCACCCAAGGCCAAATTACCAATG
2476
GCAACTGCCACCCATACAGCTACCACCCAAGGCCAAAT











TACCAATGAGACAGCCAGTATCCACACCA





TRPC6
NM_004621
2477
CGAGAGCCAGGACTATCTGC
2478
TAGCCGTAGCAAGGCAGC
2479
CTTCTCCCAGCTCCGAGTCCATG
2480
CGAGAGCCAGGACTATCTGCTCATGGACTCGGAGCTGG











GAGAAGACGGCTGCCCGCAAGCCCCGCTGCCTTGCTAC











GGCTA





TRPV6
NM_018646
2481
CCGTAGTCCCTGCAACCTC
2482
TCCTCACTGTTCACACAGGC
2483
ACTTTGGGGAGCACCCTTTGTCCT
2484
CCGTAGTCCCTGCAACCTCATCTACTTTGGGGAGCACC











CTTTGTCCTTTGCTGCCTGTGTGAACAGTGAGGA





TSTA3
NM_003313
2485
CAATTTGGACTTCTGGAGGAA
2486
CACCTCAAAGGCCGAGTG
2487
AACGTGCACATGAACGACAACGTC
2488
CAATTTGGACTTCTGGAGGAAAAACGTGCACATGAACG











ACAACGTCCTGCACTCGGCCTTTGAGGTG





TUBB2A
NM_001069
2489
CGAGGACGAGGCTTAAAAAC
2490
ACCATGCTTGAGGACAACAG
2491
TCTCAGATCAATCGTGCATCCTTA
2492
CGAGGACGAGGCTTAAAAACTTCTCAGATCAATCGTGC









GTGAA

ATCCTTAGTGAACTTCTGTTGTCCTCAAGCATGGT





TYMP
NM_001953
2493
CTATATGCAGCCAGAGATGTG
2494
CCACGAGTTTCTTACTGAGA
2495
ACAGCCTGCCACTCATCACAGCC
2496
CTATATGCAGCCAGAGATGTGACAGCCACCGTGGACAG





ACA

ATGG



CCTGCCACTCATCACAGCCTCCATTCTCAGTAAGAAAC











TCGTGG





TYMS
NM_001071
2497
GCCTCGGTGTGCCTTTCA
2498
CGTGATGTGCGCAATCATG
2499
CATCGCCAGCTACGCCCTGCTC
2500
GCCTCGGTGTGCCTTTCAACATCGCCAGCTACGCCCTG











CTCACGTACATGATTGCGCACATCACG





UAP1
NM_003115
2501
CTGGAGACGGTCGTAGCTG
2502
GCCAAGCTTTGTAGAAATAG
2503
TACCTGTAAACCTTTCTCGGCGCG
2504
CTGGAGACGGTCGTAGCTGCGGTCGCGCCGAGAAAGGT







GG



TTACAGGTACATACATTACACCCCTATTTCTACAAAGC











TTGGC





UBE2C
NM_007019
2505
TGTCTGGCGATAAAGGGATT
2506
ATGGTCCCTACCCATTTGAA
2507
TCTGCCTTCCCTGAATCAGACAAC
2508
TGTCTGGCGATAAAGGGATTTCTGCCTTCCCTGAATCA









C

GACAACCTTTTCAAATGGGTAGGGACCAT





UBE2G1
NM_003342
2509
TGACACTGAACGAGGTGGC
2510
AAGCAGAGAGGAATCGCCT
2511
TTGTCCCACCAGTGCCTCATCAGT
2512
TGACACTGAACGAGGTGGCTTTTGTCCCACCAGTGCCT











CATCAGTGTGAGGCGATTCCTCTCTGCTT





UBE2T
NM_014176
2513
TGTTCTCAAATTGCCACCAA
2514
AGAGGTCAACACAGTTGCGA
2515
AGGTGCTTGGAGACCATCCCTCAA
2516
TGTTCTCAAATTGCCACCAAAAGGTGCTTGGAGACCAT











CCCTAACATCGCAACTGTGTTGACCTCTC





UGDH
NM_003359
2517
GAAACTCCAGAGGGCCAGA
2518
CTCTGGGAACCCAGTGCTC
2519
TATACAGCACACAGGGCCTGCACA
2520
GAAACTCCAGAGGGCCAGAGAGCTGTGCAGGCCCTGTG











TGCTGTATATGAGCACTGGGTTCCCAGAG





UGT2B15
NM_001076
2521
AAGCCTGAAGTGGAATGACTG
2522
CCTCCATTTAAAACCCTCCA
2523
AAAGATGGGACTCCTCCTTTATTT
2524
AAGCCTGAAGTGGAATGACTGAAAGATGGGACTCCTCC









CAGCA

TTTATTTCAGCATGGAGGGTTTTAAATGGAGG





UGT2B17
NM_001077
2525
TTGAGTTTGTCATGCGCC
2526
TCCAGGTGAGGTTGTGGG
2527
ACCCGAAGGTGCTTGGCTCCTTTA
2528
TTGAGTTTGTCATGCGCCATAAAGGAGCCAAGCACCTT











CGGGTCGCAGCCCACAACCTCACCTGGA





UHRF1
NM_013282
2529
CTACAGGGGCAAACAGATGG
2530
GGTGTCATTCAGGCGGAC
2531
CGGCCATACCCTCTTCGACTACGA
2532
CTACAGGGGCAAACAGATGGAGGACGGCCATACCCTCT











TCGACTACGAGGTCCGCCTGAATGACACC





UTP23
NM_032334
2533
GATTGCACAAAAATGCCAAG
2534
GGAAAGCAGACATTCTGATC
2535
TCGAAATTGTCCTCATTTCAAGAA
2536
GATTGCACAAAAATGCCAAGTTCGAAATTGTCCTCATT







C

TGCA

TCAAGAATGCAGTGAGTGGATCAGAATGTCTGCTTTCC





VCAM1
NM_001078
2537
TGGCTTCAGGAGCTGAATACC
2538
TGCTGTCGTGATGAGAAAAT
2539
CAGGCACACACAGGTGGGACACAA
2540
TGGCTTCAGGAGCTGAATACCCTCCCAGGCACACACAG







AGTG

AT

GTGGGACACAAATAAGGGTTTTGGAACCACTATTTTCT











CATCACGACAGCA





VCL
NM_003373
2541
GATACCACAACTCCCATCAAG
2542
TCCCTGTTAGGCGCATCAG
2543
AGTGGCAGCCACGGCGCC
2544
GATACCACAACTCCCATCAAGCTGTTGGCAGTGGCAGC





CT





CACGGCGCCTCCTGATGCGCCTAACAGGGA





VCPIP1
NM_025054
2545
TTTCTCCCAGTACCATTCGTG
2546
TGAATAGGGAGCCTTGGTAG
2547
TGGTCCATCCTCTGCACCTGCTAC
2548
TTTCTCCCAGTACCATTCGTGATGGTCCATCCTCTGCA







G



CCTGCTACACCTACCAAGGCTCCCTATTCA





VDR
NM_000376
2549
CCTCTCCTTCCAGCCTGAGT
2550
TCATTGCCAAACACTTCGAG
2551
CAGCATGAAGCTAACGCCCCTTGT
2552
CCTCTCCTTCCAGCCTGAGTGCAGCATGAAGCTAACGC











CCCTTGTGCTCGAAGTGTTTGGCAATGA





VEGFA
NM_003376
2553
CTGCTGTCTTGGGTGCATTG
2554
GCAGCCTGGGACCACTTG
2555
TTGCCTTGCTGCTCTACCTCCACC
2556
CTGCTGTCTTGGGTGCATTGGAGCCTTGCCTTGCTGCT









A

CTACCTCCACCATGCCAAGTGGTCCCAGGCTGC





VEGFB
NM_003377
2557
TGACGATGGCCTGGAGTGT
2558
GGTACCGGATCATGAGGATC
2559
CTGGGCAGCACCAAGTCCGGA
2560
TGACGATGGCCTGGAGTGTGTGCCCACTGGGCAGCACC







TG



AAGTCCGGATGCAGATCCTCATGATCCGGTACC





VEGFC
NM_005429
2561
CCTCAGCAAGACGTTATTTGA
2562
AAGTGTGATTGGCAAAACTG
2563
CCTCTCTCTCAAGGCCCCAAACCA
2564
CCTCAGCAAGACGTTATTTGAAATTACAGTGCCTCTCT





AATT

ATTG

GT

CTCAAGGCCCCAAACCAGTAACAATCAGTTTTGCCAAT











CACACTT





VIM
NM_003380
2565
TGCCCTTAAAGGAACCAATGA
2566
GCTTCAACGGCAAAGTTCTC
2567
ATTTCACGCATCTGGCGTTCCA
2568
TGCCCTTAAAGGAACCAATGAGTCCCTGGAACGCCAGA







TT



TGCGTGAAATGGAAGAGAACTTTGCCGTTGAAGC





VTHB
NM_006370
2569
ACGTTATGCACCCCTGTCTT
2570
CCGATGGAGTTTAGCAAGGT
2571
CGAAACCCCATGATGTCTAAGCTT
2572
ACGTTATGCACCCCTGTCTTTCCGAAACCCCATGATGT









CG

CTAAGCTTCGAAACTACCGGAAGGACCTTGCTAAACTC











CATCGG





WDR19
NM_025132
2573
GAGTGGCCCAGATGTCCATA
2574
GATGCTTGAGGGCTTGGTT
2575
CCCCTCGACGTATGTCTCCCATTC
2576
GAGTGGCCCAGATGTCCATAAGAATGGGAGACATACGT











CGAGGGGTTAACCAAGCCCTCAAGCATC





WFDC1
NM_021197
2577
ACCCCTGCTCTGTCCCTC
2578
ATACCTTCGGCCACGTCAC
2579
CTATGAGTGCCACATCCTGAGCCC
2580
ACCCCTGCTCTGTCCCTCGGGCTATGAGTGCCACATCC











TGAGCCCAGGTGACGTGGCCGAAGGTAT





WISP1
NM_003882
2581
AGAGGCATCCATGAACTTCAC
2582
CAAACTCCACAGTACTTGGG
2583
CGGGCTGCATCAGCACACGC
2584
AGAGGCATCCATGAACTTCACACTTGCGGGCTGCATCA





A

TTGA



GCACACGCTCCTATCAACCCAAGTACTGTGGAGTTTG





WNT5A
NM_003392
2585
GTATCAGGACCACATGCAGTA
2586
TGTCGGAATTGATACTGGCA
2587
TTGATGCCTGTCTTCGCGCCTTCT
2588
GTATCAGGACCACATGCAGTACATCGGAGAAGGCGCGA





CATC

TT



AGACAGGCATCAAAGAATGCCAGTATCAATTCCGACA





wwox
NM_016373
2589
ATCGCAGCTGGTGGGTGTAC
2590
AGCTCCCTGTTGCATGGACT
2591
CTGCTGTTTACCTTGGCGAGGCCT
2592
ATCGCAGCTGGTGGGTGTACACACTGCTGTTTACCTTG







T

TTC

GCGAGGCCTTTCACCAAGTCCATGCAACAGGGAGCT





XIAP
NM_001167
2593
GCAGTTGGAAGACACAGGAAA
2594
TGCGTGGCACTATTTTCAAG
2595
TCCCCAAATTGCAGATTTATCAAC
2596
GCAGTTGGAAGACACAGGAAAGTATCCCCAAATTGCAG





GT

A

GGC

ATTTATCAACGGCTTTTATCTTGAAAATAGTGCCACGC











A





XRCC5
NM_021141
2597
AGCCCACTTCAGCGTCTC
2598
AGCAGGATTCACACTTCCAA
2599
TCTGGCTGAAGGCAGTGTCACCTC
2600
AGCCCACTTCAGCGTCTCCAGTCTGGCTGAAGGCAGTG







C



TCACCTCTGTTGGAAGTGTGAATCCTGCT





YY1
NM_003403
2601
ACCCGGGCAACAAGAAGT
2602
GACCGAGAACTCGCCCTC
2603
TTGATCTGCACCTGCTTCTGCTCC
2604
ACCCGGGCAACAAGAAGTGGGAGCAGAAGCAGGTGCAG











ATCAAGACCCTGGAGGGCGAGTTCTCGGTC





ZFHX3
NM_006885
2605
CTGTGGAGCCTCTGCCTG
2606
GGAGCAGGGTTGGATTGAG
2607
ACCTGGCCCAACTCTACCAGCATC
2608
CTGTGGAGCCTCTGCCTGCGGACCTGGCCCAACTCTAC











CAGCATCAGCTCAATCCAACCCTGCTCC





ZFP36
NM_003407
2609
CATTAACCCACTCCCCTGA
2610
CCCCCACCATCATGAATACT
2611
CAGGTCCCCAAGTGTGCAAGCTC
2612
CATTAACCCACTCCCCTGACCTCACGCTGGGGCAGGTC











CCCAAGTGTGCAAGCTCAGTATTCATGATGGTGGGGG





ZMYND8
NM_183047
2613
GGTCTGGGCCAAACTGAAG
2614
TGCCCGTCTTTATCCCTTAG
2615
CTTTTGCAGGCCAGAATGGAAACC
2616
GGTCTGGGCCAAACTGAAGGGGTTTCCATTCTGGCCTG











CAAAAGCTCTAAGGGATAAAGACGGGCA





ZNF3
NM_017715
2617
CGAAGGGACTCTGCTCCA
2618
GCAGGAGGTCCTCAGAAGG
2619
AGGAGGTTCCACACTCGCCAGTTC
2620
CGAAGGGACTCTGCTCCAGTGAACTGGCGAGTGTGGAA











CCTCCTGACACCTTCTGAGGACCTCCTGC





ZNF827
NM_178835
2621
TGCCTGAGGACCCTCTACC
2622
GAGGTGGCGGAGTGACTTT
2623
CCCGCCTTCAGAGAAGAAACCAGA
2624
TGCCTGAGGACCCTCTACCGCCCCCGCCTTCAGAGAAG











AAACCAGAAAAAGTCACTCCGCCACCTC





ZWINT
NM_007057
2625
TAGAGGCCATCAAAATTGGC
2626
TCCGTTTCCTCTGGGCTT
2627
ACCAAGGCCCTGACTCAGATGGAG
2628
TAGAGGCCATCAAAATTGGCCTCACCAAGGCCCTGACT











CAGATGGAGGAAGCCCAGAGGAAACGGA




















TABLE B









SEQ





ID



microRNA
Sequence
NO









hsa-miR-1
UGGAAUGUAAAGAAGUAUGUAU
2629







hsa-miR-103
GCAGCAUUGUACAGGGCUAUGA
2630







hsa-miR-106b
UAAAGUGCUGACAGUGCAGAU
2631







hsa-miR-lOa
UACCCUGUAGAUCCGAAUUUGUG
2632







hsa-miR-133a
UUUGGUCCCCUUCAACCAGCUG
2633







hsa-miR-141
UAACACUGUCUGGUAAAGAUGG
2634







hsa-miR-145
GUCCAGUUUUCCCAGGAAUCCCU
2635







hsa-miR-146b-5p
UGAGAACUGAAUUCCAUAGGCU
2636







hsa-miR-150
UCUCCCAACCCUUGUACCAGUG
2637







hsa-miR-152
UCAGUGCAUGACAGAACUUGG
2638







hsa-miR-155
UUAAUGCUAAUCGUGAUAGGGGU
2639







hsa-miR-182
UUUGGCAAUGGUAGAACUCACACU
2640







hsa-miR-191
CAACGGAAUCCCAAAAGCAGCUG
2641







hsa-miR-19b
UGUAAACAUCCUCGACUGGAAG
2642







hsa-miR-200c
UAAUACUGCCGGGUAAUGAUGGA
2643







hsa-miR-205
UCCUUCAUUCCACCGGAGUCUG
2644







hsa-miR-206
UGGAAUGUAAGGAAGUGUGUGG
2645







hsa-miR-21
UAGCUUAUCAGACUGAUGUUGA
2646







hsa-miR-210
CUGUGCGUGUGACAGCGGCUGA
2647







hsa-miR-22
AAGCUGCCAGUUGAAGAACUGU
2648







hsa-miR-222
AGCUACAUCUGGCUACUGGGU
2649







hsa-miR-26a
UUCAAGUAAUCCAGGAUAGGCU
2650







hsa-miR-27a
UUCACAGUGGCUAAGUUCCGC
2651







hsa-miR-27b
UUCACAGUGGCUAAGUUCUGC
2652







hsa-miR-29b
UAGCACCAUUUGAAAUCAGUGUU
2653







hsa-miR-30a
CUUUCAGUCGGAUGUUUGCAGC
2654







hsa-miR-30e-5p
CUUUCAGUCGGAUGUUUACAGC
2655







hsa-miR-31
AGGCAAGAUGCUGGCAUAGCU
2656







hsa-miR-331
GCCCCUGGGCCUAUCCUAGAA
2657







hsa-miR-425
AAUGACACGAUCACUCCCGUUGA
2658







hsa-miR-449a
UGGCAGUGUAUUGUUAGCUGGU
2659







hsa-miR-486-5p
UCCUGUACUGAGCUGCCCCGAG
2660







hsa-miR-92a
UAUUGCACUUGUCCCGGCCUGU
2661







hsa-miR-93
CAAAGUGCUGUUCGUGCAGGUAG
2662







hsa-miR-99a
AACCCGUAGAUCCGAUCUUGUG
2663









Claims
  • 1. A method for determining a likelihood of cancer recurrence in a patient with prostate cancer, comprising: measuring an expression level of at least one gene in a biological sample comprising prostate tissue obtained from the patient, wherein the at least one gene comprises a gene from Tables 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 7A, 7B, 8A, 8B, 10A, or 10B, or genes that co-express with the at least one gene;predicting a likelihood of cancer recurrence for the patient; wherein an expression level of any gene in Tables 3A, 4A, 5A, 6A, 7A, 8A, and 10A is positively associated with an increased risk of recurrence, andwherein an expression level of any gene in Tables 3B, 4B, 5B, 6B, 7B 8B, and 10B is negatively associated with a increased risk of recurrence.
  • 2. The method of claim 1, wherein said expression level is measured using an RNA transcript of the at least one gene.
  • 3. The method of claim 1, wherein said expression is measured using an oligonucleotide associated with the at least one gene.
  • 4. The method of claim 1, further comprising normalizing said expression level to obtain a normalized expression level.
  • 5. The method of claim 1, further comprising generating a report based on the Recurrence Score (RS).
  • 6. The method of claim 5, wherein the report comprises an estimate of recurrence risk based on clinical recurrence-free interval (cRFI).
  • 7. The method of claim 5, wherein the RS is based on a biochemical recurrence-free interval (bRFI).
  • 8. The method of claim 1, wherein the biological sample has a positive TMPRSS2 fusion status.
  • 9. The method of claim 1, wherein the biological sample has a negative TMPRSS2 fusion status.
  • 10. The method of claim 1, wherein the patient has early-stage prostate cancer.
  • 11. The method of claim 1, wherein the biological sample comprises prostate tumor tissue with the primary Gleason pattern for said prostate tumor.
  • 12. The method of claim 1, wherein the biological samples comprises prostate tumor tissue with the highest Gleason pattern for said prostate tumor.
  • 13. The method of claim 1, wherein the biological sample is prostate tumor tissue.
  • 14. The method of claim 1, wherein the biological sample is non-tumor prostate tissue.
  • 15. The method of claim 1, further comprising classifying the patient as TMPRSS2 fusion positive or negative, wherein an expression level of any gene in Table 9A is associated with a positive TMPRSS2 fusion status, andwherein an expression level of any gene in Table 9B is associated with a negative TMPRSS2 fusion status.
  • 16. The method of claim 1, wherein the biological sample comprises non-tumor prostate tissue, and wherein the at least one gene comprises a gene from Tables 10A or 10B.
  • 17. A method for determining a likelihood of upgrading or upstaging in a patient with prostate cancer, comprising: measuring an expression level of at least one gene in a biological sample comprising prostate tissue obtained from the patient, wherein the at least one gene comprises a gene from Table 13A or 13B, or genes that co-express with the at least one gene;wherein an expression level of any gene in Tables 13A is positively associated with an increased risk of upgrading/upstaging, andwherein an expression level of any gene in Table 13B is negatively associated with a increased risk of upgrading/upstaging.
  • 18. A method for determining a likelihood of cancer recurrence in a patient with prostate cancer, comprising: measuring an expression level of at least one microRNA in a biological sample comprising prostate tissue obtained from the patient, wherein the at least one microRNA is a microRNA selected from hsa-miR-93; hsa-miR-106b; hsa-miR-21; hsa-miR-449a; hsa-miR-182; hsa-miR-27a; hsa-miR-103; hsa-miR-141; hsa-miR-92a; hsa-miR-22; hsa-miR-29b; hsa-miR-210; hsa-miR-331; hsa-miR-191; hsa-miR-425; hsa-miR-200c; hsa-miR-30e-5p; hsa-miR-133a; hsa-miR-30a; hsa-miR-222; hsa-miR-1; hsa-miR-145; hsa-miR-486-5p; hsa-miR-19b; hsa-miR-205; hsa-miR-31; hsa-miR-155; hsa-miR-206; hsa-miR-99a; and hsa-miR-146b-5p; andnormalizing said expression level to obtain a normalized expression level;wherein a normalized expression level of hsa-miR-93; hsa-miR-106b; hsa-miR-21; hsa-miR-449a; hsa-miR-182; hsa-miR-27a; hsa-miR-103; hsa-miR-141; hsa-miR-92a; hsa-miR-22; hsa-miR-29b; hsa-miR-210; hsa-miR-331; hsa-miR-191; hsa-miR-425; and hsa-miR-200c is positively associated with an increased risk of recurrence; andwherein a normalized expression level of hsa-miR-30e-5p; hsa-miR-133a; hsa-miR-30a; hsa-miR-222; hsa-miR-1; hsa-miR-145; hsa-miR-486-5p; hsa-miR-19b; hsa-miR-205; hsa-miR-31; hsa-miR-155; hsa-miR-206; hsa-miR-99a; and hsa-miR-146b-5p is negatively associated with an increased risk of recurrence.
  • 19. The method of claim 18, further comprising measuring an expression level of at least one gene in said biological sample.
  • 20. The method of claim 19, wherein the at least one gene is a gene selected from Tables 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 7A, 7B, 8A, 8B, 10A, or 10B, or genes that co-express with the at least one gene; wherein an expression level of any gene in Tables 3A, 4A, 5A, 6A, 7A, 8A, and 10A is positively associated with an increased risk of recurrence, andwherein an expression level of any gene in Tables 3B, 4B, 5B, 6B, 7B 8B, and 10B is negatively associated with a increased risk of recurrence.
Parent Case Info

This application is a continuation of U.S. application Ser. No. 16/282,540, filed Feb. 22, 2019, which is a continuation of U.S. application Ser. No. 14/887,605, filed Oct. 20, 2015, now U.S. Pat. No. 10,260,104, issued Apr. 16, 2019, which is a continuation of U.S. application Ser. No. 13/190,391, filed Jul. 25, 2011, which claims the benefit of priority to U.S. Provisional Application Nos. 61/368,217, filed Jul. 27, 2010; 61/414,310, filed Nov. 16, 2010; and 61/485,536, filed May 12, 2011, all of which are hereby incorporated by reference.

Provisional Applications (3)
Number Date Country
61368217 Jul 2010 US
61414310 Nov 2010 US
61485536 May 2011 US
Continuations (4)
Number Date Country
Parent 16800292 Feb 2020 US
Child 17820987 US
Parent 16282540 Feb 2019 US
Child 16800292 US
Parent 14887605 Oct 2015 US
Child 16282540 US
Parent 13190391 Jul 2011 US
Child 14887605 US