METHOD FOR USING GENE EXPRESSION TO DETERMINE PROGNOSIS OF PROSTATE CANCER

Information

  • Patent Application
  • 20120028264
  • Publication Number
    20120028264
  • Date Filed
    July 25, 2011
    13 years ago
  • Date Published
    February 02, 2012
    12 years ago
Abstract
Molecular assays that involve measurement of expression levels of prognostic biomarkers, or co-expressed biomarkers, from a biological sample obtained from a prostate cancer patient, and analysis of the measured expression levels to provide information concerning the likely prognosis for said patient, and likelihood that said patient will have a recurrence of prostate cancer, or to classify the tumor by likelihood of clinical outcome or TMPRSS2 fusion status, are provided herein.
Description
TECHNICAL FIELD

The present disclosure relates to molecular diagnostic assays that provide information concerning methods to use gene expression profiles to determine prognostic information for cancer patients. Specifically, the present disclosure provides genes and microRNAs, the expression levels of which may be used to determine the likelihood that a prostate cancer patient will experience a local or distant cancer recurrence.


INTRODUCTION

Prostate cancer is the most common solid malignancy in men and the second most common cause of cancer-related death in men in North America and the European Union (EU). In 2008, over 180,000 patients will be diagnosed with prostate cancer in the United States alone and nearly 30,000 will die of this disease. Age is the single most important risk factor for the development of prostate cancer, and applies across all racial groups that have been studied. With the aging of the U.S. population, it is projected that the annual incidence of prostate cancer will double by 2025 to nearly 400,000 cases per year.


Since the introduction of prostate-specific antigen (PSA) screening in the 1990's, the proportion of patients presenting with clinically evident disease has fallen dramatically such that patients categorized as “low risk” now constitute half of new diagnoses today. PSA is used as a tumor marker to determine the presence of prostate cancer as high PSA levels are associated with prostate cancer. Despite a growing proportion of localized prostate cancer patients presenting with low-risk features such as low stage (T1) disease, greater than 90% of patients in the US still undergo definitive therapy, including prostatectomy or radiation. Only about 15% of these patients would develop metastatic disease and die from their prostate cancer, even in the absence of definitive therapy. A. Bill-Axelson, et al., J Nat'l Cancer Inst. 100(16):1144-1154 (2008). Therefore, the majority of prostate cancer patients are being over-treated.


Estimates of recurrence risk and treatment decisions in prostate cancer are currently based primarily on PSA levels and/or tumor stage. Although tumor stage has been demonstrated to have significant association with outcome sufficient to be included in pathology reports, the College of American Pathologists Consensus Statement noted that variations in approach to the acquisition, interpretation, reporting, and analysis of this information exist. C. Compton, et al., Arch Pathol Lab Med 124:979-992 (2000). As a consequence, existing pathologic staging methods have been criticized as lacking reproducibility and therefore may provide imprecise estimates of individual patient risk.


SUMMARY

This application discloses molecular assays that involve measurement of expression level(s) of one or more genes, gene subsets, microRNAs, or one or more microRNAs in combination with one or more genes or gene subsets, from a biological sample obtained from a prostate cancer patient, and analysis of the measured expression levels to provide information concerning the likelihood of cancer recurrence. For example, the likelihood of cancer recurrence could be described in terms of a score based on clinical or biochemical recurrence-free interval.


In addition, this application discloses molecular assays that involve measurement of expression level(s) of one or more genes, gene subsets, microRNAs, or one or more microRNAs in combination with one or more genes or gene subsets, from a biological sample obtained to identify a risk classification for a prostate cancer patient. For example, patients may be stratified using expression level(s) of one or more genes or microRNAs associated, positively or negatively, with cancer recurrence or death from cancer, or with a prognostic factor. In an exemplary embodiment, the prognostic factor is Gleason pattern.


The biological sample may be obtained from standard methods, including surgery, biopsy, or bodily fluids. It may comprise tumor tissue or cancer cells, and, in some cases, histologically normal tissue, e.g., histologically normal tissue adjacent the tumor tissue. In exemplary embodiments, the biological sample is positive or negative for a TMPRSS2 fusion.


In exemplary embodiments, expression level(s) of one or more genes and/or microRNAs that are associated, positively or negatively, with a particular clinical outcome in prostate cancer are used to determine prognosis and appropriate therapy. The genes disclosed herein may be used alone or arranged in functional gene subsets, such as cell adhesion/migration, immediate-early stress response, and extracellular matrix-associated. Each gene subset comprises the genes disclosed herein, as well as genes that are co-expressed with one or more of the disclosed genes. The calculation may be performed on a computer, programmed to execute the gene expression analysis. The microRNAs disclosed herein may also be used alone or in combination with any one or more of the microRNAs and/or genes disclosed.


In exemplary embodiments, the molecular assay may involve expression levels for at least two genes. The genes, or gene subsets, may be weighted according to strength of association with prognosis or tumor microenvironment. In another exemplary embodiment, the molecular assay may involve expression levels of at least one gene and at least one microRNA. The gene-microRNA combination may be selected based on the likelihood that the gene-microRNA combination functionally interact.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 shows the distribution of clinical and pathology assessments of biopsy Gleason score, baseline PSA level, and clinical T-stage.





DEFINITIONS

Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, N.Y. 1994), and March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, N.Y. 1992), provide one skilled in the art with a general guide to many of the terms used in the present application.


One skilled in the art will recognize many methods and materials similar or equivalent to those described herein, which could be used in the practice of the present invention. Indeed, the present invention is in no way limited to the methods and materials described herein. For purposes of the invention, the following terms are defined below.


The terms “tumor” and “lesion” as used herein, refer to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues. Those skilled in the art will realize that a tumor tissue sample may comprise multiple biological elements, such as one or more cancer cells, partial or fragmented cells, tumors in various stages, surrounding histologically normal-appearing tissue, and/or macro or micro-dissected tissue.


The terms “cancer” and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer in the present disclosure include cancer of the urogenital tract, such as prostate cancer.


The “pathology” of cancer includes all phenomena that compromise the well-being of the patient. This includes, without limitation, abnormal or uncontrollable cell growth, metastasis, interference with the normal functioning of neighboring cells, release of cytokines or other secretory products at abnormal levels, suppression or aggravation of inflammatory or immunological response, neoplasia, premalignancy, malignancy, invasion of surrounding or distant tissues or organs, such as lymph nodes, etc.


As used herein, the term “prostate cancer” is used interchangeably and in the broadest sense refers to all stages and all forms of cancer arising from the tissue of the prostate gland.


According to the tumor, node, metastasis (TNM) staging system of the American Joint Committee on Cancer (AJCC), AJCC Cancer Staging Manual (7th Ed., 2010), the various stages of prostate cancer are defined as follows: Tumor: T1: clinically inapparent tumor not palpable or visible by imaging, T1a: tumor incidental histological finding in 5% or less of tissue resected, T1b: tumor incidental histological finding in more than 5% of tissue resected, T1c: tumor identified by needle biopsy; T2: tumor confined within prostate, T2a: tumor involves one half of one lobe or less, T2b: tumor involves more than half of one lobe, but not both lobes, T2c: tumor involves both lobes; T3: tumor extends through the prostatic capsule, T3a: extracapsular extension (unilateral or bilateral), T3b: tumor invades seminal vesicle(s); T4: tumor is fixed or invades adjacent structures other than seminal vesicles (bladder neck, external sphincter, rectum, levator muscles, or pelvic wall). Node: NO: no regional lymph node metastasis; N1: metastasis in regional lymph nodes. Metastasis: M0: no distant metastasis; M1: distant metastasis present.


The Gleason Grading system is used to help evaluate the prognosis of men with prostate cancer. Together with other parameters, it is incorporated into a strategy of prostate cancer staging, which predicts prognosis and helps guide therapy. A Gleason “score” or “grade” is given to prostate cancer based upon its microscopic appearance. Tumors with a low Gleason score typically grow slowly enough that they may not pose a significant threat to the patients in their lifetimes. These patients are monitored (“watchful waiting” or “active surveillance”) over time. Cancers with a higher Gleason score are more aggressive and have a worse prognosis, and these patients are generally treated with surgery (e.g., radical prostectomy) and, in some cases, therapy (e.g., radiation, hormone, ultrasound, chemotherapy). Gleason scores (or sums) comprise grades of the two most common tumor patterns. These patterns are referred to as Gleason patterns 1-5, with pattern 1 being the most well-differentiated. Most have a mixture of patterns. To obtain a Gleason score or grade, the dominant pattern is added to the second most prevalent pattern to obtain a number between 2 and 10. The Gleason Grades include: G1: well differentiated (slight anaplasia) (Gleason 2-4); G2: moderately differentiated (moderate anaplasia) (Gleason 5-6); G3-4: poorly differentiated/undifferentiated (marked anaplasia) (Gleason 7-10).


Stage groupings: Stage I: T1a N0 M0 G1; Stage II: (T1a N0M0G2-4) or (T1b, c, T1, T2, N0 M0 Any G); Stage III: T3 N0 M0 Any G; Stage 1V: (T4 N0 M0 Any G) or (Any T N1 M0 Any G) or (Any T Any N M1 Any G).


As used herein, the term “tumor tissue” refers to a biological sample containing one or more cancer cells, or a fraction of one or more cancer cells. Those skilled in the art will recognize that such biological sample may additionally comprise other biological components, such as histologically appearing normal cells (e.g., adjacent the tumor), depending upon the method used to obtain the tumor tissue, such as surgical resection, biopsy, or bodily fluids.


As used herein, the term “AUA risk group” refers to the 2007 updated American Urological Association (AUA) guidelines for management of clinically localized prostate cancer, which clinicians use to determine whether a patient is at low, intermediate, or high risk of biochemical (PSA) relapse after local therapy.


As used herein, the term “adjacent tissue (AT)” refers to histologically “normal” cells that are adjacent a tumor. For example, the AT expression profile may be associated with disease recurrence and survival.


As used herein “non-tumor prostate tissue” refers to histologically normal-appearing tissue adjacent a prostate tumor.


Prognostic factors are those variables related to the natural history of cancer, which influence the recurrence rates and outcome of patients once they have developed cancer. Clinical parameters that have been associated with a worse prognosis include, for example, increased tumor stage, PSA level at presentation, and Gleason grade or pattern. Prognostic factors are frequently used to categorize patients into subgroups with different baseline relapse risks.


The term “prognosis” is used herein to refer to the likelihood that a cancer patient will have a cancer-attributable death or progression, including recurrence, metastatic spread, and drug resistance, of a neoplastic disease, such as prostate cancer. For example, a “good prognosis” would include long term survival without recurrence and a “bad prognosis” would include cancer recurrence.


As used herein, the term “expression level” as applied to a gene refers to the normalized level of a gene product, e.g. the normalized value determined for the RNA expression level of a gene or for the polypeptide expression level of a gene.


The term “gene product” or “expression product” are used herein to refer to the RNA (ribonucleic acid) transcription products (transcripts) of the gene, including mRNA, and the polypeptide translation products of such RNA transcripts. A gene product can be, for example, an unspliced RNA, an mRNA, a splice variant mRNA, a microRNA, a fragmented RNA, a polypeptide, a post-translationally modified polypeptide, a splice variant polypeptide, etc.


The term “RNA transcript” as used herein refers to the RNA transcription products of a gene, including, for example, mRNA, an unspliced RNA, a splice variant mRNA, a microRNA, and a fragmented RNA.


The term “microRNA” is used herein to refer to a small, non-coding, single-stranded RNA of ˜18-25 nucleotides that may regulate gene expression. For example, when associated with the RNA-induced silencing complex (RISC), the complex binds to specific mRNA targets and causes translation repression or cleavage of these mRNA sequences.


Unless indicated otherwise, each gene name used herein corresponds to the Official Symbol assigned to the gene and provided by Entrez Gene (URL: www.ncbi.nlm.nih.gov/sites/entrez) as of the filing date of this application.


The terms “correlated” and “associated” are used interchangeably herein to refer to the association between two measurements (or measured entities). The disclosure provides genes, gene subsets, microRNAs, or microRNAs in combination with genes or gene subsets, the expression levels of which are associated with tumor stage. For example, the increased expression level of a gene or microRNA may be positively correlated (positively associated) with a good or positive prognosis. Such a positive correlation may be demonstrated statistically in various ways, e.g. by a cancer recurrence hazard ratio less than one. In another example, the increased expression level of a gene or microRNA may be negatively correlated (negatively associated) with a good or positive prognosis. In that case, for example, the patient may experience a cancer recurrence.


The terms “good prognosis” or “positive prognosis” as used herein refer to a beneficial clinical outcome, such as long-term survival without recurrence. The terms “bad prognosis” or “negative prognosis” as used herein refer to a negative clinical outcome, such as cancer recurrence.


The term “risk classification” means a grouping of subjects by the level of risk (or likelihood) that the subject will experience a particular clinical outcome. A subject may be classified into a risk group or classified at a level of risk based on the methods of the present disclosure, e.g. high, medium, or low risk. A “risk group” is a group of subjects or individuals with a similar level of risk for a particular clinical outcome.


The term “long-term” survival is used herein to refer to survival for a particular time period, e.g., for at least 5 years, or for at least 10 years.


The term “recurrence” is used herein to refer to local or distant recurrence (i.e., metastasis) of cancer. For example, prostate cancer can recur locally in the tissue next to the prostate or in the seminal vesicles. The cancer may also affect the surrounding lymph nodes in the pelvis or lymph nodes outside this area. Prostate cancer can also spread to tissues next to the prostate, such as pelvic muscles, bones, or other organs. Recurrence can be determined by clinical recurrence detected by, for example, imaging study or biopsy, or biochemical recurrence detected by, for example, sustained follow-up prostate-specific antigen (PSA) levels ≧0.4 ng/mL or the initiation of salvage therapy as a result of a rising PSA level.


The term “clinical recurrence-free interval (cRFI)” is used herein as time (in months) from surgery to first clinical recurrence or death due to clinical recurrence of prostate cancer. Losses due to incomplete follow-up, other primary cancers or death prior to clinical recurrence are considered censoring events; when these occur, the only information known is that up through the censoring time, clinical recurrence has not occurred in this subject. Biochemical recurrences are ignored for the purposes of calculating cRFI.


The term “biochemical recurrence-free interval (bRFI)” is used herein to mean the time (in months) from surgery to first biochemical recurrence of prostate cancer. Clinical recurrences, losses due to incomplete follow-up, other primary cancers, or death prior to biochemical recurrence are considered censoring events.


The term “Overall Survival (OS)” is used herein to refer to the time (in months) from surgery to death from any cause. Losses due to incomplete follow-up are considered censoring events. Biochemical recurrence and clinical recurrence are ignored for the purposes of calculating OS.


The term “Prostate Cancer-Specific Survival (PCSS)” is used herein to describe the time (in years) from surgery to death from prostate cancer. Losses due to incomplete follow-up or deaths from other causes are considered censoring events. Clinical recurrence and biochemical recurrence are ignored for the purposes of calculating PCSS.


The term “upgrading” or “upstaging” as used herein refers to a change in Gleason grade from 3+3 at the time of biopsy to 3+4 or greater at the time of radical prostatectomy (RP), or Gleason grade 3+4 at the time of biopsy to 4+3 or greater at the time of RP, or seminal vessical involvement (SVI), or extracapsular involvement (ECE) at the time of RP.


In practice, the calculation of the measures listed above may vary from study to study depending on the definition of events to be considered censored.


The term “microarray” refers to an ordered arrangement of hybridizable array elements, e.g. oligonucleotide or polynucleotide probes, on a substrate.


The term “polynucleotide” generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. Thus, for instance, polynucleotides as defined herein include, without limitation, single- and double-stranded DNA, DNA including single- and double-stranded regions, single- and double-stranded RNA, and RNA including single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or include single- and double-stranded regions. In addition, the term “polynucleotide” as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. The term “polynucleotide” specifically includes cDNAs. The term includes DNAs (including cDNAs) and RNAs that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons, are “polynucleotides” as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritiated bases, are included within the term “polynucleotides” as defined herein. In general, the term “polynucleotide” embraces all chemically, enzymatically and/or metabolically modified forms of unmodified polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including simple and complex cells.


The term “oligonucleotide” refers to a relatively short polynucleotide, including, without limitation, single-stranded deoxyribonucleotides, single- or double-stranded ribonucleotides, RNArDNA hybrids and double-stranded DNAs. Oligonucleotides, such as single-stranded DNA probe oligonucleotides, are often synthesized by chemical methods, for example using automated oligonucleotide synthesizers that are commercially available. However, oligonucleotides can be made by a variety of other methods, including in vitro recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms.


The term “Ct” as used herein refers to threshold cycle, the cycle number in quantitative polymerase chain reaction (qPCR) at which the fluorescence generated within a reaction well exceeds the defined threshold, i.e. the point during the reaction at which a sufficient number of amplicons have accumulated to meet the defined threshold.


The term “Cp” as used herein refers to “crossing point.” The Cp value is calculated by determining the second derivatives of entire qPCR amplification curves and their maximum value. The Cp value represents the cycle at which the increase of fluorescence is highest and where the logarithmic phase of a PCR begins.


The terms “threshold” or “thresholding” refer to a procedure used to account for non-linear relationships between gene expression measurements and clinical response as well as to further reduce variation in reported patient scores. When thresholding is applied, all measurements below or above a threshold are set to that threshold value. Non-linear relationship between gene expression and outcome could be examined using smoothers or cubic splines to model gene expression in Cox PH regression on recurrence free interval or logistic regression on recurrence status. D. Cox, Journal of the Royal Statistical Society, Series B 34:187-220 (1972). Variation in reported patient scores could be examined as a function of variability in gene expression at the limit of quantitation and/or detection for a particular gene.


As used herein, the term “amplicon,” refers to pieces of DNA that have been synthesized using amplification techniques, such as polymerase chain reactions (PCR) and ligase chain reactions.


“Stringency” of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to re-anneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology (Wiley Interscience Publishers, 1995).


“Stringent conditions” or “high stringency conditions”, as defined herein, typically: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50° C.; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42° C.; or (3) employ 50% formamide, 5×SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5×Denhardt's solution, sonicated salmon sperm DNA (50 μg/ml), 0.1% SDS, and 10% dextran sulfate at 42° C., with washes at 42° C. in 0.2×SSC (sodium chloride/sodium citrate) and 50% formamide, followed by a high-stringency wash consisting of 0.1×SSC containing EDTA at 55° C.


“Moderately stringent conditions” may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and % SDS) less stringent that those described above. An example of moderately stringent conditions is overnight incubation at 37° C. in a solution comprising: 20% formamide, 5×SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5×Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1×SSC at about 37-500 C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.


The terms “splicing” and “RNA splicing” are used interchangeably and refer to RNA processing that removes introns and joins exons to produce mature mRNA with continuous coding sequence that moves into the cytoplasm of an eukaryotic cell.


The terms “co-express” and “co-expressed”, as used herein, refer to a statistical correlation between the amounts of different transcript sequences across a population of different patients. Pairwise co-expression may be calculated by various methods known in the art, e.g., by calculating Pearson correlation coefficients or Spearman correlation coefficients. Co-expressed gene cliques may also be identified using graph theory. An analysis of co-expression may be calculated using normalized expression data. A gene is said to be co-expressed with a particular disclosed gene when the expression level of the gene exhibits a Pearson correlation coefficient greater than or equal to 0.6.


A “computer-based system” refers to a system of hardware, software, and data storage medium used to analyze information. The minimum hardware of a patient computer-based system comprises a central processing unit (CPU), and hardware for data input, data output (e.g., display), and data storage. An ordinarily skilled artisan can readily appreciate that any currently available computer-based systems and/or components thereof are suitable for use in connection with the methods of the present disclosure. The data storage medium may comprise any manufacture comprising a recording of the present information as described above, or a memory access device that can access such a manufacture.


To “record” data, programming or other information on a computer readable medium refers to a process for storing information, using any such methods as known in the art. Any convenient data storage structure may be chosen, based on the means used to access the stored information. A variety of data processor programs and formats can be used for storage, e.g. word processing text file, database format, etc.


A “processor” or “computing means” references any hardware and/or software combination that will perform the functions required of it. For example, a suitable processor may be a programmable digital microprocessor such as available in the form of an electronic controller, mainframe, server or personal computer (desktop or portable). Where the processor is programmable, suitable programming can be communicated from a remote location to the processor, or previously saved in a computer program product (such as a portable or fixed computer readable storage medium, whether magnetic, optical or solid state device based). For example, a magnetic medium or optical disk may carry the programming, and can be read by a suitable reader communicating with each processor at its corresponding station.


As used herein, the terms “active surveillance” and “watchful waiting” mean closely monitoring a patient's condition without giving any treatment until symptoms appear or change. For example, in prostate cancer, watchful waiting is usually used in older men with other medical problems and early-stage disease.


As used herein, the term “surgery” applies to surgical methods undertaken for removal of cancerous tissue, including pelvic lymphadenectomy, radical prostatectomy, transurethral resection of the prostate (TURP), excision, dissection, and tumor biopsy/removal. The tumor tissue or sections used for gene expression analysis may have been obtained from any of these methods.


As used herein, the term “therapy” includes radiation, hormonal therapy, cryosurgery, chemotherapy, biologic therapy, and high-intensity focused ultrasound.


As used herein, the term “TMPRSS fusion” and “TMPRSS2 fusion” are used interchangeably and refer to a fusion of the androgen-driven TMPRSS2 gene with the ERG oncogene, which has been demonstrated to have a significant association with prostate cancer. S. Perner, et al., Urologe A. 46(7):754-760 (2007); S. A. Narod, et al., Br J Cancer 99(6):847-851 (2008). As used herein, positive TMPRSS fusion status indicates that the TMPRSS fusion is present in a tissue sample, whereas negative TMPRSS fusion status indicates that the TMPRSS fusion is not present in a tissue sample. Experts skilled in the art will recognize that there are numerous ways to determine TMPRSS fusion status, such as real-time, quantitative PCR or high-throughput sequencing. See, e.g., K. Mertz, et al., Neoplasis 9(3):200-206 (2007); C. Maher, Nature 458(7234):97-101 (2009).


Gene Expression Methods Using Genes, Gene Subsets, and microRNAs


The present disclosure provides molecular assays that involve measurement of expression level(s) of one or more genes, gene subsets, microRNAs, or one or more microRNAs in combination with one or more genes or gene subsets, from a biological sample obtained from a prostate cancer patient, and analysis of the measured expression levels to provide information concerning the likelihood of cancer recurrence.


The present disclosure further provides methods to classify a prostate tumor based on expression level(s) of one or more genes and/or microRNAs. The disclosure further provides genes and/or microRNAs that are associated, positively or negatively, with a particular prognostic outcome. In exemplary embodiments, the clinical outcomes include cRFI and bRFI. In another embodiment, patients may be classified in risk groups based on the expression level(s) of one or more genes and/or microRNAs that are associated, positively or negatively, with a prognostic factor. In an exemplary embodiment, that prognostic factor is Gleason pattern.


Various technological approaches for determination of expression levels of the disclosed genes and microRNAs are set forth in this specification, including, without limitation, RT-PCR, microarrays, high-throughput sequencing, serial analysis of gene expression (SAGE) and Digital Gene Expression (DGE), which will be discussed in detail below. In particular aspects, the expression level of each gene or microRNA may be determined in relation to various features of the expression products of the gene including exons, introns, protein epitopes and protein activity.


The expression level(s) of one or more genes and/or microRNAs may be measured in tumor tissue. For example, the tumor tissue may obtained upon surgical removal or resection of the tumor, or by tumor biopsy. The tumor tissue may be or include histologically “normal” tissue, for example histologically “normal” tissue adjacent to a tumor. The expression level of genes and/or microRNAs may also be measured in tumor cells recovered from sites distant from the tumor, for example circulating tumor cells, body fluid (e.g., urine, blood, blood fraction, etc.).


The expression product that is assayed can be, for example, RNA or a polypeptide. The expression product may be fragmented. For example, the assay may use primers that are complementary to target sequences of an expression product and could thus measure full transcripts as well as those fragmented expression products containing the target sequence. Further information is provided in Table A (inserted in specification prior to claims).


The RNA expression product may be assayed directly or by detection of a cDNA product resulting from a PCR-based amplification method, e.g., quantitative reverse transcription polymerase chain reaction (qRT-PCR). (See e.g., U.S. Pat. No. 7,587,279). Polypeptide expression product may be assayed using immunohistochemistry (IHC). Further, both RNA and polypeptide expression products may also be is assayed using microarrays.


Clinical Utility

Prostate cancer is currently diagnosed using a digital rectal exam (DRE) and Prostate-specific antigen (PSA) test. If PSA results are high, patients will generally undergo a prostate tissue biopsy. The pathologist will review the biopsy samples to check for cancer cells and determine a Gleason score. Based on the Gleason score, PSA, clinical stage, and other factors, the physician must make a decision whether to monitor the patient, or treat the patient with surgery and therapy.


At present, clinical decision-making in early stage prostate cancer is governed by certain histopathologic and clinical factors. These include: (1) tumor factors, such as clinical stage (e.g. T1, T2), PSA level at presentation, and Gleason grade, that are very strong prognostic factors in determining outcome; and (2) host factors, such as age at diagnosis and co-morbidity. Because of these factors, the most clinically useful means of stratifying patients with localized disease according to prognosis has been through multifactorial staging, using the clinical stage, the serum PSA level, and tumor grade (Gleason grade) together. In the 2007 updated American Urological Association (AUA) guidelines for management of clinically localized prostate cancer, these parameters have been grouped to determine whether a patient is at low, intermediate, or high risk of biochemical (PSA) relapse after local therapy. I. Thompson, et al., Guideline for the management of clinically localized prostate cancer, J Urol. 177(6):2106-31 (2007).


Although such classifications have proven to be helpful in distinguishing patients with localized disease who may need adjuvant therapy after surgery/radiation, they have less ability to discriminate between indolent cancers, which do not need to be treated with local therapy, and aggressive tumors, which require local therapy. In fact, these algorithms are of increasingly limited use for deciding between conservative management and definitive therapy because the bulk of prostate cancers diagnosed in the PSA screening era now present with clinical stage T1c and PSA ≦10 ng/mL.


Patients with T1 prostate cancer have disease that is not clinically apparent but is discovered either at transurethral resection of the prostate (TURP, T1a, T1b) or at biopsy performed because of an elevated PSA (>4 ng/mL, T1c). Approximately 80% of the cases presenting in 2007 are clinical T1 at diagnosis. In a Scandinavian trial, OS at 10 years was 85% for patients with early stage prostate cancer (T1/T2) and Gleason score ≦7, after radical prostatectomy.


Patients with T2 prostate cancer have disease that is clinically evident and is organ confined; patients with T3 tumors have disease that has penetrated the prostatic capsule and/or has invaded the seminal vesicles. It is known from surgical series that clinical staging underestimates pathological stage, so that about 20% of patients who are clinically T2 will be pT3 after prostatectomy. Most of patients with T2 or T3 prostate cancer are treated with local therapy, either prostatectomy or radiation. The data from the Scandinavian trial suggest that for T2 patients with Gleason grade ≦7, the effect of prostatectomy on survival is at most 5% at 10 years; the majority of patients do not benefit from surgical treatment at the time of diagnosis. For T2 patients with Gleason >7 or for T3 patients, the treatment effect of prostatectomy is assumed to be significant but has not been determined in randomized trials. It is known that these patients have a significant risk (10-30%) of recurrence at 10 years after local treatment, however, there are no prospective randomized trials that define the optimal local treatment (radical prostatectomy, radiation) at diagnosis, which patients are likely to benefit from neo-adjuvant/adjuvant androgen deprivation therapy, and whether treatment (androgen deprivation, chemotherapy) at the time of biochemical failure (elevated PSA) has any clinical benefit.


Accurately determining Gleason scores from needle biopsies presents several technical challenges. First, interpreting histology that is “borderline” between Gleason pattern is highly subjective, even for urologic pathologists. Second, incomplete biopsy sampling is yet another reason why the “predicted” Gleason score on biopsy does not always correlate with the actual “observed” Gleason score of the prostate cancer in the gland itself. Hence, the accuracy of Gleason scoring is dependent upon not only the expertise of the pathologist reading the slides, but also on the completeness and adequacy of the prostate biopsy sampling strategy. T. Stamey, Urology 45:2-12 (1995). The gene/microRNA expression assay and associated information provided by the practice of the methods disclosed herein provide a molecular assay method to facilitate optimal treatment decision-making in early stage prostate cancer. An exemplary embodiment provides genes and microRNAs, the expression levels of which are associated (positively or negatively) with prostate cancer recurrence. For example, such a clinical tool would enable physicians to identify T2/T3 patients who are likely to recur following definitive therapy and need adjuvant treatment.


In addition, the methods disclosed herein may allow physicians to classify tumors, at a molecular level, based on expression level(s) of one or more genes and/or microRNAs that are significantly associated with prognostic factors, such as Gleason pattern and TMPRSS fusion status. These methods would not be impacted by the technical difficulties of intra-patient variability, histologically determining Gleason pattern in biopsy samples, or inclusion of histologically normal appearing tissue adjacent to tumor tissue. Multi-analyte gene/microRNA expression tests can be used to measure the expression level of one or more genes and/or microRNAs involved in each of several relevant physiologic processes or component cellular characteristics. The methods disclosed herein may group the genes and/or microRNAs. The grouping of genes and microRNAs may be performed at least in part based on knowledge of the contribution of those genes and/or microRNAs according to physiologic functions or component cellular characteristics, such as in the groups discussed above. Furthermore, one or more microRNAs may be combined with one or moregenes. The gene-microRNA combination may be selected based on the likelihood that the gene-microRNA combination functionally interact. The formation of groups (or gene subsets), in addition, can facilitate the mathematical weighting of the contribution of various expression levels to cancer recurrence. The weighting of a gene/microRNA group representing a physiological process or component cellular characteristic can reflect the contribution of that process or characteristic to the pathology of the cancer and clinical outcome.


Optionally, the methods disclosed may be used to classify patients by risk, for example risk of recurrence. Patients can be partitioned into subgroups (e.g., tertiles or quartiles) and the values chosen will define subgroups of patients with respectively greater or lesser risk.


The utility of a disclosed gene marker in predicting prognosis may not be unique to that marker. An alternative marker having an expression pattern that is parallel to that of a disclosed gene may be substituted for, or used in addition to, that co-expressed gene or microRNA. Due to the co-expression of such genes or microRNAs, substitution of expression level values should have little impact on the overall utility of the test. The closely similar expression patterns of two genes or microRNAs may result from involvement of both genes or microRNAs in the same process and/or being under common regulatory control in prostate tumor cells. The present disclosure thus contemplates the use of such co-expressed genes, gene subsets, or microRNAs as substitutes for, or in addition to, genes of the present disclosure.


Methods of Assaying Expression Levels of a Gene Product

The methods and compositions of the present disclosure will employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, and biochemistry, which are within the skill of the art. Exemplary techniques are explained fully in the literature, such as, “Molecular Cloning: A Laboratory Manual”, 2nd edition (Sambrook et al., 1989); “Oligonucleotide Synthesis” (M. J. Gait, ed., 1984); “Animal Cell Culture” (R. I. Freshney, ed., 1987); “Methods in Enzymology” (Academic Press, Inc.); “Handbook of Experimental Immunology”, 4th edition (D. M. Weir & C. C. Blackwell, eds., Blackwell Science Inc., 1987); “Gene Transfer Vectors for Mammalian Cells” (J. M. Miller & M. P. Calos, eds., 1987); “Current Protocols in Molecular Biology” (F. M. Ausubel et al., eds., 1987); and “PCR: The Polymerase Chain Reaction”, (Mullis et al., eds., 1994).


Methods of gene expression profiling include methods based on hybridization analysis of polynucleotides, methods based on sequencing of polynucleotides, and proteomics-based methods. Exemplary methods known in the art for the quantification of RNA expression in a sample include northern blotting and in situ hybridization (Parker & Barnes, Methods in Molecular Biology 106:247-283 (1999)); RNAse protection assays (Hod, Biotechniques 13:852-854 (1992)); and PCR-based methods, such as reverse transcription PCT (RT-PCR) (Weis et al., Trends in Genetics 8:263-264 (1992)). Antibodies may be employed that can recognize sequence-specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. Representative methods for sequencing-based gene expression analysis include Serial Analysis of Gene Expression (SAGE), and gene expression analysis by massively parallel signature sequencing (MPSS).


Reverse Transcriptase PCR (RT-PCR)


Typically, mRNA or microRNA is isolated from a test sample. The starting material is typically total RNA isolated from a human tumor, usually from a primary tumor. Optionally, normal tissues from the same patient can be used as an internal control. Such normal tissue can be histologically-appearing normal tissue adjacent a tumor. mRNA or microRNA can be extracted from a tissue sample, e.g., from a sample that is fresh, frozen (e.g. fresh frozen), or paraffin-embedded and fixed (e.g. formalin-fixed).


General methods for mRNA and microRNA extraction are well known in the art and are disclosed in standard textbooks of molecular biology, including Ausubel et al., Current Protocols of Molecular Biology, John Wiley and Sons (1997). Methods for RNA extraction from paraffin embedded tissues are disclosed, for example, in Rupp and Locker, Lab Invest. 56:A67 (1987), and De Andrés et al., BioTechniques 18:42044 (1995). In particular, RNA isolation can be performed using a purification kit, buffer set and protease from commercial manufacturers, such as Qiagen, according to the manufacturer's instructions. For example, total RNA from cells in culture can be isolated using Qiagen RNeasy mini-columns. Other commercially available RNA isolation kits include MasterPure™ Complete DNA and RNA Purification Kit (EPICENTRE®, Madison, Wis.), and Paraffin Block RNA Isolation Kit (Ambion, Inc.). Total RNA from tissue samples can be isolated using RNA Stat-60 (Tel-Test). RNA prepared from tumor can be isolated, for example, by cesium chloride density gradient centrifugation.


The sample containing the RNA is then subjected to reverse transcription to produce cDNA from the RNA template, followed by exponential amplification in a PCR reaction. The two most commonly used reverse transcriptases are avilo myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney murine leukemia virus reverse transcriptase (MMLV-RT). The reverse transcription step is typically primed using specific primers, random hexamers, or oligo-dT primers, depending on the circumstances and the goal of expression profiling. For example, extracted RNA can be reverse-transcribed using a GeneAmp RNA PCR kit (Perkin Elmer, Calif., USA), following the manufacturer's instructions. The derived cDNA can then be used as a template in the subsequent PCR reaction.


PCR-based methods use a thermostable DNA-dependent DNA polymerase, such as a Taq DNA polymerase. For example, TaqMan® PCR typically utilizes the 5′-nuclease activity of Taq or Tth polymerase to hydrolyze a hybridization probe bound to its target amplicon, but any enzyme with equivalent 5′ nuclease activity can be used. Two oligonucleotide primers are used to generate an amplicon typical of a PCR reaction product. A third oligonucleotide, or probe, can be designed to facilitate detection of a nucleotide sequence of the amplicon located between the hybridization sites the two PCR primers. The probe can be detectably labeled, e.g., with a reporter dye, and can further be provided with both a fluorescent dye, and a quencher fluorescent dye, as in a Taqman® probe configuration. Where a Taqman® probe is used, during the amplification reaction, the Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner. The resultant probe fragments disassociate in solution, and signal from the released reporter dye is free from the quenching effect of the second fluorophore. One molecule of reporter dye is liberated for each new molecule synthesized, and detection of the unquenched reporter dye provides the basis for quantitative interpretation of the data.


TaqMan® RT-PCR can be performed using commercially available equipment, such as, for example, high-throughput platforms such as the ABI PRISM 7700 Sequence Detection System® (Perkin-Elmer-Applied Biosystems, Foster City, Calif., USA), or Lightcycler (Roche Molecular Biochemicals, Mannheim, Germany). In a preferred embodiment, the procedure is run on a LightCycler® 480 (Roche Diagnostics) real-time PCR system, which is a microwell plate-based cycler platform.


5′-Nuclease assay data are commonly initially expressed as a threshold cycle (“CT”). Fluorescence values are recorded during every cycle and represent the amount of product amplified to that point in the amplification reaction. The threshold cycle (CT) is generally described as the point when the fluorescent signal is first recorded as statistically significant. Alternatively, data may be expressed as a crossing point (“Cp”). The Cp value is calculated by determining the second derivatives of entire qPCR amplification curves and their maximum value. The Cp value represents the cycle at which the increase of fluorescence is highest and where the logarithmic phase of a PCR begins.


To minimize errors and the effect of sample-to-sample variation, RT-PCR is usually performed using an internal standard. The ideal internal standard gene (also referred to as a reference gene) is expressed at a quite constant level among cancerous and non-cancerous tissue of the same origin (i.e., a level that is not significantly different among normal and cancerous tissues), and is not significantly affected by the experimental treatment (i.e., does not exhibit a significant difference in expression level in the relevant tissue as a result of exposure to chemotherapy), and expressed at a quite constant level among the same tissue taken from different patients. For example, reference genes useful in the methods disclosed herein should not exhibit significantly different expression levels in cancerous prostate as compared to normal prostate tissue. RNAs frequently used to normalize patterns of gene expression are mRNAs for the housekeeping genes glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) and (3-actin. Exemplary reference genes used for normalization comprise one or more of the following genes: AAMP, ARF1, ATP5E, CLTC, GPS1, and PGK1. Gene expression measurements can be normalized relative to the mean of one or more (e.g., 2, 3, 4, 5, or more) reference genes. Reference-normalized expression measurements can range from 2 to 15, where a one unit increase generally reflects a 2-fold increase in RNA quantity.


Real time PCR is compatible both with quantitative competitive PCR, where internal competitor for each target sequence is used for normalization, and with quantitative comparative PCR using a normalization gene contained within the sample, or a housekeeping gene for RT-PCR. For further details see, e.g. Held et al., Genome Research 6:986-994 (1996).


The steps of a representative protocol for use in the methods of the present disclosure use fixed, paraffin-embedded tissues as the RNA source. For example, mRNA isolation, purification, primer extension and amplification can be performed according to methods available in the art. (see, e.g., Godfrey et al. J. Molec. Diagnostics 2: 84-91 (2000); Specht et al., Am. J. Pathol. 158: 419-29 (2001)). Briefly, a representative process starts with cutting about 10 μm thick sections of paraffin-embedded tumor tissue samples. The RNA is then extracted, and protein and DNA depleted from the RNA-containing sample. After analysis of the RNA concentration, RNA is reverse transcribed using gene specific primers followed by RT-PCR to provide for cDNA amplification products.


Design of Intron-Based PCR Primers and Probes


PCR primers and probes can be designed based upon exon or intron sequences present in the mRNA transcript of the gene of interest. Primer/probe design can be performed using publicly available software, such as the DNA BLAT software developed by Kent, W. J., Genome Res. 12(4):656-64 (2002), or by the BLAST software including its variations.


Where necessary or desired, repetitive sequences of the target sequence can be masked to mitigate non-specific signals. Exemplary tools to accomplish this include the Repeat Masker program available on-line through the Baylor College of Medicine, which screens DNA sequences against a library of repetitive elements and returns a query sequence in which the repetitive elements are masked. The masked intron sequences can then be used to design primer and probe sequences using any commercially or otherwise publicly available primer/probe design packages, such as Primer Express (Applied Biosystems); MGB assay-by-design (Applied Biosystems); Primer3 (Steve Rozen and Helen J. Skaletsky (2000) Primer3 on the WWW for general users and for biologist programmers. See S. Rrawetz, S. Misener, Bioinformatics Methods and Protocols: Methods in Molecular Biology, pp. 365-386 (Humana Press).


Other factors that can influence PCR primer design include primer length, melting temperature (Tm), and G/C content, specificity, complementary primer sequences, and 3′-end sequence. In general, optimal PCR primers are generally 17-30 bases in length, and contain about 20-80%, such as, for example, about 50-60% G+C bases, and exhibit Tm's between 50 and 80° C., e.g. about 50 to 70° C.


For further guidelines for PCR primer and probe design see, e.g. Dieffenbach, CW. et al, “General Concepts for PCR Primer Design” in: PCR Primer, A Laboratory Manual, Cold Spring Harbor Laboratory Press,. New York, 1995, pp. 133-155; Innis and Gelfand, “Optimization of PCRs” in: PCR Protocols, A Guide to Methods and Applications, CRC Press, London, 1994, pp. 5-11; and Plasterer, T. N. Primerselect: Primer and probe design. Methods Mol. Biol. 70:520-527 (1997), the entire disclosures of which are hereby expressly incorporated by reference.


Table A provides further information concerning the primer, probe, and amplicon sequences associated with the Examples disclosed herein.


MassARRAY® System


In MassARRAY-based methods, such as the exemplary method developed by Sequenom, Inc. (San Diego, Calif.) following the isolation of RNA and reverse transcription, the obtained cDNA is spiked with a synthetic DNA molecule (competitor), which matches the targeted cDNA region in all positions, except a single base, and serves as an internal standard. The cDNA/competitor mixture is PCR amplified and is subjected to a post-PCR shrimp alkaline phosphatase (SAP) enzyme treatment, which results in the dephosphorylation of the remaining nucleotides. After inactivarion of the alkaline phosphatase, the PCR products from the competitor and cDNA are subjected to primer extension, which generates distinct mass signals for the competitor- and cDNA-derives PCR products. After purification, these products are dispensed on a chip array, which is pre-loaded with components needed for analysis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The cDNA present in the reaction is then quantified by analyzing the ratios of the peak areas in the mass spectrum generated. For further details see, e.g. Ding and Cantor, Proc. Natl. Acad. Sci. USA 100:3059-3064 (2003).


Other PCR-Based Methods


Further PCR-based techniques that can find use in the methods disclosed herein include, for example, BeadArray® technology (Illumina, San Diego, Calif.; Oliphant et al., Discovery of Markers for Disease (Supplement to Biotechniques), June 2002; Ferguson et al., Analytical Chemistry 72:5618 (2000)); BeadsArray for Detection of Gene Expression® (BADGE), using the commercially available LuminexlOO LabMAP® system and multiple color-coded microspheres (Luminex Corp., Austin, Tex.) in a rapid assay for gene expression (Yang et al., Genome Res. 11:1888-1898 (2001)); and high coverage expression profiling (HiCEP) analysis (Fukumura et al., Nucl. Acids. Res. 31(16) e94 (2003).


Microarrays


Expression levels of a gene or microArray of interest can also be assessed using the microarray technique. In this method, polynucleotide sequences of interest (including cDNAs and oligonucleotides) are arrayed on a substrate. The arrayed sequences are then contacted under conditions suitable for specific hybridization with detectably labeled cDNA generated from RNA of a test sample. As in the RT-PCR method, the source of RNA typically is total RNA isolated from a tumor sample, and optionally from normal tissue of the same patient as an internal control or cell lines. RNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin-fixed) tissue samples.


For example, PCR amplified inserts of cDNA clones of a gene to be assayed are applied to a substrate in a dense array. Usually at least 10,000 nucleotide sequences are applied to the substrate. For example, the microarrayed genes, immobilized on the microchip at 10,000 elements each, are suitable for hybridization under stringent conditions. Fluorescently labeled cDNA probes may be generated through incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from tissues of interest. Labeled cDNA probes applied to the chip hybridize with specificity to each spot of DNA on the array. After washing under stringent conditions to remove non-specifically bound probes, the chip is scanned by confocal laser microscopy or by another detection method, such as a CCD camera. Quantitation of hybridization of each arrayed element allows for assessment of corresponding RNA abundance.


With dual color fluorescence, separately labeled cDNA probes generated from two sources of RNA are hybridized pair wise to the array. The relative abundance of the transcripts from the two sources corresponding to each specified gene is thus determined simultaneously. The miniaturized scale of the hybridization affords a convenient and rapid evaluation of the expression pattern for large numbers of genes. Such methods have been shown to have the sensitivity required to detect rare transcripts, which are expressed at a few copies per cell, and to reproducibly detect at least approximately two-fold differences in the expression levels (Schena et at, Proc. Natl. Acad. ScL USA 93(2):106-149 (1996)). Microarray analysis can be performed by commercially available equipment, following manufacturer's protocols, such as by using the Affymetrix GenChip® technology, or Incyte's microarray technology.


Serial Analysis of Gene Expression (SAGE)


Serial analysis of gene expression (SAGE) is a method that allows the simultaneous and quantitative analysis of a large number of gene transcripts, without the need of providing an individual hybridization probe for each transcript. First, a short sequence tag (about 10-14 bp) is generated that contains sufficient information to uniquely identify a transcript, provided that the tag is obtained from a unique position within each transcript. Then, many transcripts are linked together to form long serial molecules, that can be sequenced, revealing the identity of the multiple tags simultaneously. The expression pattern of any population of transcripts can be quantitatively evaluated by determining the abundance of individual tags, and identifying the gene corresponding to each tag. For more details see, e.g. Velculescu et al., Science 270:484-487 (1995); and Velculescu et al., Cell 88:243-51 (1997).


Gene Expression Analysis by Nucleic Acid Sequencing


Nucleic acid sequencing technologies are suitable methods for analysis of gene expression. The principle underlying these methods is that the number of times a cDNA sequence is detected in a sample is directly related to the relative expression of the RNA corresponding to that sequence. These methods are sometimes referred to by the term Digital Gene Expression (DGE) to reflect the discrete numeric property of the resulting data. Early methods applying this principle were Serial Analysis of Gene Expression (SAGE) and Massively Parallel Signature Sequencing (MPSS). See, e.g., S. Brenner, et al., Nature Biotechnology 18(6):630-634 (2000). More recently, the advent of “next-generation” sequencing technologies has made DGE simpler, higher throughput, and more affordable. As a result, more laboratories are able to utilize DGE to screen the expression of more genes in more individual patient samples than previously possible. See, e.g., J. Marioni, Genome Research 18(9):1509-1517 (2008); R. Morin, Genome Research 18(4):610-621 (2008); A. Mortazavi, Nature Methods 5(7):621-628 (2008); N. Cloonan, Nature Methods 5(7):613-619 (2008).


Isolating RNA from Body Fluids


Methods of isolating RNA for expression analysis from blood, plasma and serum (see, e.g., K. Enders, et al., Clin Chem 48, 1647-53 (2002) (and references cited therein) and from urine (see, e.g., R. Boom, et al., J Clin Microbiol. 28, 495-503 (1990) and references cited therein) have been described.


Immunohistochemistry


Immunohistochemistry methods are also suitable for detecting the expression levels of genes and applied to the method disclosed herein. Antibodies (e.g., monoclonal antibodies) that specifically bind a gene product of a gene of interest can be used in such methods. The antibodies can be detected by direct labeling of the antibodies themselves, for example, with radioactive labels, fluorescent labels, hapten’ labels such as, biotin, or an enzyme such as horse radish peroxidase or alkaline phosphatase. Alternatively, unlabeled primary antibody can be used in conjunction with a labeled secondary antibody specific for the primary antibody. Immunohistochemistry protocols and kits are well known in the art and are commercially available.


Proteomics


The term “proteome” is defined as the totality of the proteins present in a sample (e.g. tissue, organism, or cell culture) at a certain point of time. Proteomics includes, among other things, study of the global changes of protein expression in a sample (also referred to as “expression proteomics”). Proteomics typically includes the following steps: (1) separation of individual proteins in a sample by 2-D gel electrophoresis (2-D PAGE); (2) identification of the individual proteins recovered from the gel, e.g. my mass spectrometry or N-terminal sequencing, and (3) analysis of the data using bioinformatics.


General Description of the mRNA/microRNA Isolation, Purification and Amplification


The steps of a representative protocol for profiling gene expression using fixed, paraffin-embedded tissues as the RNA source, including mRNA or microRNA isolation, purification, primer extension and amplification are provided in various published journal articles. (See, e.g., T. E. Godfrey, et al., J. Molec. Diagnostics 2: 84-91 (2000); K. Specht et al., Am. J. Pathol. 158: 419-29 (2001), M. Cronin, et al., Am J Pathol 164:35-42 (2004)). Briefly, a representative process starts with cutting a tissue sample section (e.g. about 10 μm thick sections of a paraffin-embedded tumor tissue sample). The RNA is then extracted, and protein and DNA are removed. After analysis of the RNA concentration, RNA repair is performed if desired. The sample can then be subjected to analysis, e.g., by reverse transcribed using gene specific promoters followed by RT-PCR.


Statistical Analysis of Expression Levels in Identification of Genes and microRNAs


One skilled in the art will recognize that there are many statistical methods that may be used to determine whether there is a significant relationship between a parameter of interest (e.g., recurrence) and expression levels of a marker gene/microRNA as described here. In an exemplary embodiment, the present invention provides a stratified cohort sampling design (a form of case-control sampling) using tissue and data from prostate cancer patients. Selection of specimens was stratified by T stage (T1, T2), year cohort (<1993, ≧1993), and prostatectomy Gleason Score (low/intermediate, high). All patients with clinical recurrence were selected and a sample of patients who did not experience a clinical recurrence was selected. For each patient, up to two enriched tumor specimens and one normal-appearing tissue sample was assayed.


All hypothesis tests were reported using two-sided p-values. To investigate if there is a significant relationship of outcomes (clinical recurrence-free interval (cRFI), biochemical recurrence-free interval (bRFI), prostate cancer-specific survival (PCSS), and overall survival (OS)) with individual genes and/or microRNAs, demographic or clinical covariates Cox Proportional Hazards (PH) models using maximum weighted pseudo partial-likelihood estimators were used and p-values from Wald tests of the null hypothesis that the hazard ratio (HR) is one are reported. To investigate if there is a significant relationship between individual genes and/or microRNAs and Gleason pattern of a particular sample, ordinal logistic regression models using maximum weighted likelihood methods were used and p-values from Wald tests of the null hypothesis that the odds ratio (OR) is one are reported.


Coexpression Analysis

The present disclosure provides a method to determine tumor stage based on the expression of staging genes, or genes that co-express with particular staging genes. To perform particular biological processes, genes often work together in a concerted way, i.e. they are co-expressed. Co-expressed gene groups identified for a disease process like cancer can serve as biomarkers for tumor status and disease progression. Such co-expressed genes can be assayed in lieu of, or in addition to, assaying of the staging gene with which they are co-expressed.


In an exemplary embodiment, the joint correlation of gene expression levels among prostate cancer specimens under study may be assessed. For this purpose, the correlation structures among genes and specimens may be examined through hierarchical cluster methods. This information may be used to confirm that genes that are known to be highly correlated in prostate cancer specimens cluster together as expected. Only genes exhibiting a nominally significant (unadjusted p<0.05) relationship with cRFI in the univariate Cox PH regression analysis will be included in these analyses.


One skilled in the art will recognize that many co-expression analysis methods now known or later developed will fall within the scope and spirit of the present invention. These methods may incorporate, for example, correlation coefficients, co-expression network analysis, clique analysis, etc., and may be based on expression data from RT-PCR, microarrays, sequencing, and other similar technologies. For example, gene expression clusters can be identified using pair-wise analysis of correlation based on Pearson or Spearman correlation coefficients. (See, e.g., Pearson K. and Lee A., Biometrika 2, 357 (1902); C. Spearman, Amer. J. Psychol 15:72-101 (1904); J. Myers, A. Well, Research Design and Statistical Analysis, p. 508 (2nd Ed., 2003).)


Normalization of Expression Levels

The expression data used in the methods disclosed herein can be normalized. Normalization refers to a process to correct for (normalize away), for example, differences in the amount of RNA assayed and variability in the quality of the RNA used, to remove unwanted sources of systematic variation in Ct or Cp measurements, and the like. With respect to RT-PCR experiments involving archived fixed paraffin embedded tissue samples, sources of systematic variation are known to include the degree of RNA degradation relative to the age of the patient sample and the type of fixative used to store the sample. Other sources of systematic variation are attributable to laboratory processing conditions.


Assays can provide for normalization by incorporating the expression of certain normalizing genes, which do not significantly differ in expression levels under the relevant conditions. Exemplary normalization genes disclosed herein include housekeeping genes. (See, e.g., E. Eisenberg, et al., Trends in Genetics 19(7):362-365 (2003).) Normalization can be based on the mean or median signal (Ct or Cp) of all of the assayed genes or a large subset thereof (global normalization approach). In general, the normalizing genes, also referred to as reference genes should be genes that are known not to exhibit significantly different expression in prostate cancer as compared to non-cancerous prostate tissue, and are not significantly affected by various sample and process conditions, thus provide for normalizing away extraneous effects.


In exemplary embodiments, one or more of the following genes are used as references by which the mRNA or microRNA expression data is normalized: AAMP, ARF1, ATP5E, CLTC, GPS1, and PGK1. In another exemplary embodiment, one or more of the following microRNAs are used as references by which the expression data of microRNAs are normalized: hsa-miR-106a; hsa-miR-146b-5p; hsa-miR-191; hsa-miR-19b; and hsa-miR-92a. The calibrated weighted average CT or Cp measurements for each of the prognostic and predictive genes or microRNAs may be normalized relative to the mean of five or more reference genes or microRNAs.


Those skilled in the art will recognize that normalization may be achieved in numerous ways, and the techniques described above are intended only to be exemplary, not exhaustive.


Standardization of Expression Levels

The expression data used in the methods disclosed herein can be standardized. Standardization refers to a process to effectively put all the genes or microRNAs on a comparable scale. This is performed because some genes or microRNAs will exhibit more variation (a broader range of expression) than others. Standardization is performed by dividing each expression value by its standard deviation across all samples for that gene or microRNA. Hazard ratios are then interpreted as the relative risk of recurrence per 1 standard deviation increase in expression.


Kits of the Invention

The materials for use in the methods of the present invention are suited for preparation of kits produced in accordance with well-known procedures. The present disclosure thus provides kits comprising agents, which may include gene (or microRNA)-specific or gene (or microRNA)-selective probes and/or primers, for quantifying the expression of the disclosed genes or microRNAs for predicting prognostic outcome or response to treatment. Such kits may optionally contain reagents for the extraction of RNA from tumor samples, in particular fixed paraffin-embedded tissue samples and/or reagents for RNA amplification. In addition, the kits may optionally comprise the reagent(s) with an identifying description or label or instructions relating to their use in the methods of the present invention. The kits may comprise containers (including microliter plates suitable for use in an automated implementation of the method), each with one or more of the various materials or reagents (typically in concentrated form) utilized in the methods, including, for example, chromatographic columns, pre-fabricated microarrays, buffers, the appropriate nucleotide triphosphates (e.g., dATP, dCTP, dGTP and dTTP; or rATP, rCTP, rGTP and UTP), reverse transcriptase, DNA polymerase, RNA polymerase, and one or more probes and primers of the present invention (e.g., appropriate length poly(T) or random primers linked to a promoter reactive with the RNA polymerase). Mathematical algorithms used to estimate or quantify prognostic or predictive information are also properly potential components of kits.


Reports

The methods of this invention, when practiced for commercial diagnostic purposes, generally produce a report or summary of information obtained from the herein-described methods. For example, a report may include information concerning expression levels of one or more genes and/or microRNAs, classification of the tumor or the patient's risk of recurrence, the patient's likely prognosis or risk classification, clinical and pathologic factors, and/or other information. The methods and reports of this invention can further include storing the report in a database. The method can create a record in a database for the subject and populate the record with data. The report may be a paper report, an auditory report, or an electronic record. The report may be displayed and/or stored on a computing device (e.g., handheld device, desktop computer, smart device, website, etc.). It is contemplated that the report is provided to a physician and/or the patient. The receiving of the report can further include establishing a network connection to a server computer that includes the data and report and requesting the data and report from the server computer.


Computer Program

The values from the assays described above, such as expression data, can be calculated and stored manually. Alternatively, the above-described steps can be completely or partially performed by a computer program product. The present invention thus provides a computer program product including a computer readable storage medium having a computer program stored on it. The program can, when read by a computer, execute relevant calculations based on values obtained from analysis of one or more biological sample from an individual (e.g., gene expression levels, normalization, standardization, thresholding, and conversion of values from assays to a score and/or text or graphical depiction of tumor stage and related information). The computer program product has stored therein a computer program for performing the calculation.


The present disclosure provides systems for executing the program described above, which system generally includes: a) a central computing environment; b) an input device, operatively connected to the computing environment, to receive patient data, wherein the patient data can include, for example, expression level or other value obtained from an assay using a biological sample from the patient, or microarray data, as described in detail above; c) an output device, connected to the computing environment, to provide information to a user (e.g., medical personnel); and d) an algorithm executed by the central computing environment (e.g., a processor), where the algorithm is executed based on the data received by the input device, and wherein the algorithm calculates an expression score, thresholding, or other functions described herein. The methods provided by the present invention may also be automated in whole or in part.


All aspects of the present invention may also be practiced such that a limited number of additional genes and/or microRNAs that are co-expressed or functionally related with the disclosed genes, for example as evidenced by statistically meaningful Pearson and/or Spearman correlation coefficients, are included in a test in addition to and/or in place of disclosed genes.


Having described the invention, the same will be more readily understood through reference to the following Examples, which are provided by way of illustration, and are not intended to limit the invention in any way.


EXAMPLES
Example 1
RNA Yield and Gene Expression Profiles in Prostate Cancer Biopsy Cores

Clinical tools based on prostate needle core biopsies are needed to guide treatment planning at diagnosis for men with localized prostate cancer. Limiting tissue in needle core biopsy specimens poses significant challenges to the development of molecular diagnostic tests. This study examined RNA extraction yields and gene expression profiles using an RT-PCR assay to characterize RNA from manually micro-dissected fixed paraffin embedded (FPE) prostate cancer needle biopsy cores. It also investigated the association of RNA yields and gene expression profiles with Gleason score in these specimens.


Patients and Samples


This study determined the feasibility of gene expression profile analysis in prostate cancer needle core biopsies by evaluating the quantity and quality of RNA extracted from fixed paraffin-embedded (FPE) prostate cancer needle core biopsy specimens. Forty-eight (48) formalin-fixed blocks from prostate needle core biopsy specimens were used for this study. Classification of specimens was based on interpretation of the Gleason score (2005 Int'l Society of Urological Pathology Consensus Conference) and percentage tumor (<33%, 33-66%, >66%) involvement as assessed by pathologists.









TABLE 1







Distribution of cases












Gleason score
~<33%
~33-66%
~>66%



Category
Tumor
Tumor
Tumor
















Low (≦6)
5
5
6



Intermediate (7)
5
5
6



High (8, 9, 10)
5
5
6



Total
15
15
18










Assay Methods


Fourteen (14) serial 5 μm unstained sections from each FPE tissue block were included in the study. The first and last sections for each case were H&E stained and histologically reviewed to confirm the presence of tumor and for tumor enrichment by manual micro-dissection.


RNA from enriched tumor samples was extracted using a manual RNA extraction process. RNA was quantitated using the RiboGreen® assay and tested for the presence of genomic DNA contamination. Samples with sufficient RNA yield and free of genomic DNA tested for gene expression levels of a 24-gene panel of reference and cancer-related genes using quantitative RT-PCR. The expression was normalized to the average of 6 reference genes (AAMP, ARF1, ATP5E, CLTC, EEF1A1, and GPX1).


Statistical Methods


Descriptive statistics and graphical displays were used to summarize standard pathology metrics and gene expression, with stratification for Gleason Score category and percentage tumor involvement category. Ordinal logistic regression was used to evaluate the relationship between gene expression and Gleason Score category.


Results


The RNA yield per unit surface area ranged from 16 to 2406 ng/mm2. Higher RNA yield was observed in samples with higher percent tumor involvement (p=0.02) and higher Gleason score (p=0.01). RNA yield was sufficient (>200 ng) in 71% of cases to permit 96-well RT-PCR, with 87% of cases having >100 ng RNA yield. The study confirmed that gene expression from prostate biopsies, as measured by qRT-PCR, was comparable to FPET samples used in commercial molecular assays for breast cancer. In addition, it was observed that greater biopsy RNA yields are found with higher Gleason score and higher percent tumor involvement. Nine genes were identified as significantly associated with Gleason score (p<0.05) and there was a large dynamic range observed for many test genes.


Example 2
Gene Expression Analysis for Genes Associated with Prognosis in Prostate Cancer

Patients and Samples


Approximately 2600 patients with clinical stage T1/T2 prostate cancer treated with radical prostatectomy (RP) at the Cleveland Clinic between 1987 and 2004 were identified. Patients were excluded from the study design if they received neo-adjuvant and/or adjuvant therapy, if pre-surgical PSA levels were missing, or if no tumor block was available from initial diagnosis. 127 patients with clinical recurrence and 374 patients without clinical recurrence after radical prostatectomy were randomly selected using a cohort sampling design. The specimens were stratified by T stage (T1, T2), year cohort (<1993, ≧1993), and prostatectomy Gleason score (low/intermediate, high). Of the 501 sampled patients, 51 were excluded for insufficient tumor; 7 were excluded due to clinical ineligibility; 2 were excluded due to poor quality of gene expression data; and 10 were excluded because primary Gleason pattern was unavailable. Thus, this gene expression study included tissue and data from 111 patients with clinical recurrence and 330 patients without clinical recurrence after radical prostatectomies performed between 1987 and 2004 for treatment of early stage (T1, T2) prostate cancer.


Two fixed paraffin embedded (FPE) tissue specimens were obtained from prostate tumor specimens in each patient. The sampling method (sampling method A or B) depended on whether the highest Gleason pattern is also the primary Gleason pattern. For each specimen selected, the invasive cancer cells were at least 5.0 mm in dimension, except in the instances of pattern 5, where 2.2 mm was accepted. Specimens were spatially distinct where possible.









TABLE 2







Sampling Methods








Sampling Method A
Sampling Method B





For patients whose prostatectomy
For patients whose prostatectomy


primary Gleason pattern is also
primary Gleason pattern is not


the highest Gleason pattern
the highest Gleason pattern


Specimen 1 (A1) = primary
Specimen 1 (B1) = highest


Gleason pattern
Gleason pattern


Select and mark largest focus
Select highest Gleason pattern tissue


(greatest cross-sectional area) of
from spatially distinct area from


primary Gleason pattern tissue.
specimen B2, if possible. Invasive


Invasive cancer area ≧5.0 mm.
cancer area at least 5.0 mm if



selecting secondary pattern, at



least 2.2 mm if selecting Gleason



pattern 5.


Specimen 2 (A2) = secondary
Specimen 2 (B2) = primary


Gleason pattern
Gleason pattern


Select and mark secondary Gleason
Select largest focus (greatest


pattern tissue from spatially
cross-sectional area) of primary


distinct area from specimen A1.
Gleason pattern tissue. Invasive


Invasive cancer area ≧5.0 mm.
cancer area ≧5.0 mm.









Histologically normal appearing tissue (NAT) adjacent to the tumor specimen (also referred to in these Examples as “non-tumor tissue”) was also evaluated. Adjacent tissue was collected 3 mm from the tumor to 3 mm from the edge of the FPET block. NAT was preferentially sampled adjacent to the primary Gleason pattern. In cases where there was insufficient NAT adjacent to the primary Gleason pattern, then NAT was sampled adjacent to the secondary or highest Gleason pattern (A2 or B1) per the method set forth in Table 2. Six (6) 10 μm sections with beginning H&E at 5 μm and ending unstained slide at 5 μm were prepared from each fixed paraffin-embedded tumor (FPET) block included in the study. All cases were histologically reviewed and manually micro-dissected to yield two enriched tumor samples and, where possible, one normal tissue sample adjacent to the tumor specimen.


Assay Method


In this study, RT-PCR analysis was used to determine RNA expression levels for 738 genes and chromosomal rearrangements (e.g., TMPRSS2-ERG fusion or other ETS family genes) in prostate cancer tissue and surrounding NAT in patients with early-stage prostate cancer treated with radical prostatectomy.


The samples were quantified using the RiboGreen assay and a subset tested for presence of genomic DNA contamination. Samples were taken into reverse transcription (RT) and quantitative polymerase chain reaction (qPCR). All analyses were conducted on reference-normalized gene expression levels using the average of the of replicate well crossing point (CP) values for the 6 reference genes (AAMP, ARF1, ATP5E, CLTC, GPS1, PGK1).


Statistical Analysis and Results


Primary statistical analyses involved 111 patients with clinical recurrence and 330 patients without clinical recurrence after radical prostatectomy for early-stage prostate cancer stratified by T-stage (T1, T2), year cohort (<1993, ≧1993), and prostatectomy Gleason score (low/intermediate, high). Gleason score categories are defined as follows: low (Gleason score ≦6), intermediate (Gleason score=7), and high (Gleason score ≧8). A patient was included in a specified analysis if at least one sample for that patient was evaluable. Unless otherwise stated, all hypothesis tests were reported using two-sided p-values. The method of Storey was applied to the resulting set of p-values to control the false discovery rate (FDR) at 20%. J. Storey, R. Tibshirani, Estimating the Positive False Discovery Rate Under Dependence, with Applications to DNA Microarrays, Dept. of Statistics, Stanford Univ. (2001).


Analysis of gene expression and recurrence-free interval was based on univariate Cox Proportional Hazards (PH) models using maximum weighted pseudo-partial-likelihood estimators for each evaluable gene in the gene list (727 test genes and 5 reference genes). P-values were generated using Wald tests of the null hypothesis that the hazard ratio (HR) is one. Both unadjusted p-values and the q-value (smallest FDR at which the hypothesis test in question is rejected) were reported. Un-adjusted p-values <0.05 were considered statistically significant. Since two tumor specimens were selected for each patient, this analysis was performed using the 2 specimens from each patient as follows: (1) analysis using the primary Gleason pattern specimen from each patient (Specimens A1 and B2 as described in Table 2); (2) analysis using the highest Gleason pattern specimen from each patient (Specimens A1 and B1 as described in Table 2).


Analysis of gene expression and Gleason pattern (3, 4, 5) was based on univariate ordinal logistic regression models using weighted maximum likelihood estimators for each gene in the gene list (727 test genes and 5 reference genes). P-values were generated using a Wald test of the null hypothesis that the odds ratio (OR) is one. Both unadjusted p-values and the q-value (smallest FDR at which the hypothesis test in question is rejected) were reported. Un-adjusted p-values <0.05 were considered statistically significant. Since two tumor specimens were selected for each patient, this analysis was performed using the 2 specimens from each patient as follows: (1) analysis using the primary Gleason pattern specimen from each patient (Specimens A1 and B2 as described in Table 2); (2) analysis using the highest Gleason pattern specimen from each patient (Specimens A1 and B1 as described in Table 2).


It was determined whether there is a significant relationship between cRFI and selected demographic, clinical, and pathology variables, including age, race, clinical tumor stage, pathologic tumor stage, location of selected tumor specimens within the prostate (peripheral versus transitional zone), PSA at the time of surgery, overall Gleason score from the radical prostatectomy, year of surgery, and specimen Gleason pattern. Separately for each demographic or clinical variable, the relationship between the clinical covariate and cRFI was modeled using univariate Cox PH regression using weighted pseudo partial-likelihood estimators and a p-value was generated using Wald's test of the null hypothesis that the hazard ratio (HR) is one. Covariates with unadjusted p-values <0.2 may have been included in the covariate-adjusted analyses.


It was determined whether there was a significant relationship between each of the individual cancer-related genes and cRFI after controlling for important demographic and clinical covariates. Separately for each gene, the relationship between gene expression and cRFI was modeled using multivariate Cox PH regression using weighted pseudo partial-likelihood estimators including important demographic and clinical variables as covariates. The independent contribution of gene expression to the prediction of cRFI was tested by generating a p-value from a Wald test using a model that included clinical covariates for each nodule (specimens as defined in Table 2). Un-adjusted p-values <0.05 were considered statistically significant.


Tables 3A and 3B provide genes significantly associated (p<0.05), positively or negatively, with Gleason pattern in the primary and/or highest Gleason pattern. Increased expression of genes in Table 3A is positively associated with higher Gleason score, while increased expression of genes in Table 3B are negatively associated with higher Gleason score.









TABLE 3A







Table 3A Gene significantly (p < 0.05) associated with


Gleason pattern for all specimens in the primary Gleason pattern


or highest Gleason pattern odds ratio (OR) > 1.0 (Increased


expression is positively associated with higher Gleason Score)












Primary Pattern

Highest Pattern














Official Symbol
OR
p-value
OR
p-value

















ALCAM
1.73
<.001
1.36
0.009



ANLN
1.35
0.027



APOC1
1.47
0.005
1.61
<.001



APOE
1.87
<.001
2.15
<.001



ASAP2
1.53
0.005



ASPN
2.62
<.001
2.13
<.001



ATP5E
1.35
0.035



AURKA
1.44
0.010



AURKB
1.59
<.001
1.56
<.001



BAX
1.43
0.006



BGN
2.58
<.001
2.82
<.001



BIRC5
1.45
0.003
1.79
<.001



BMP6
2.37
<.001
1.68
<.001



BMPR1B
1.58
0.002



BRCA2


1.45
0.013



BUB1
1.73
<.001
1.57
<.001



CACNA1D
1.31
0.045
1.31
0.033



CADPS


1.30
0.023



CCNB1
1.43
0.023



CCNE2
1.52
0.003
1.32
0.035



CD276
2.20
<.001
1.83
<.001



CD68


1.36
0.022



CDC20
1.69
<.001
1.95
<.001



CDC6
1.38
0.024
1.46
<.001



CDH11


1.30
0.029



CDKN2B
1.55
0.001
1.33
0.023



CDKN2C
1.62
<.001
1.52
<.001



CDKN3
1.39
0.010
1.50
0.002



CENPF
1.96
<.001
1.71
<.001



CHRAC1


1.34
0.022



CLDN3


1.37
0.029



COL1A1
2.23
<.001
2.22
<.001



COL1A2


1.42
0.005



COL3A1
1.90
<.001
2.13
<.001



COL8A1
1.88
<.001
2.35
<.001



CRISP3
1.33
0.040
1.26
0.050



CTHRC1
2.01
<.001
1.61
<.001



CTNND2
1.48
0.007
1.37
0.011



DAPK1
1.44
0.014



DIAPH1
1.34
0.032
1.79
<.001



DIO2


1.56
0.001



DLL4
1.38
0.026
1.53
<.001



ECE1
1.54
0.012
1.40
0.012



ENY2
1.35
0.046
1.35
0.012



EZH2
1.39
0.040



F2R
2.37
<.001
2.60
<.001



FAM49B
1.57
0.002
1.33
0.025



FAP
2.36
<.001
1.89
<.001



FCGR3A
2.10
<.001
1.83
<.001



GNPTAB
1.78
<.001
1.54
<.001



GSK3B


1.39
0.018



HRAS
1.62
0.003



HSD17B4
2.91
<.001
1.57
<.001



HSPA8
1.48
0.012
1.34
0.023



IFI30
1.64
<.001
1.45
0.013



IGFBP3


1.29
0.037



IL11
1.52
0.001
1.31
0.036



INHBA
2.55
<.001
2.30
<.001



ITGA4


1.35
0.028



JAG1
1.68
<.001
1.40
0.005



KCNN2
1.50
0.004



KCTD12


1.38
0.012



KHDRBS3
1.85
<.001
1.72
<.001



KIF4A
1.50
0.010
1.50
<.001



KLK14
1.49
0.001
1.35
<.001



KPNA2
1.68
0.004
1.65
0.001



KRT2


1.33
0.022



KRT75


1.27
0.028



LAMC1
1.44
0.029



LAPTM5
1.36
0.025
1.31
0.042



LTBP2
1.42
0.023
1.66
<.001



MANF


1.34
0.019



MAOA
1.55
0.003
1.50
<.001



MAP3K5
1.55
0.006
1.44
0.001



MDK
1.47
0.013
1.29
0.041



MDM2


1.31
0.026



MELK
1.64
<.001
1.64
<.001



MMP11
2.33
<.001
1.66
<.001



MYBL2
1.41
0.007
1.54
<.001



MYO6


1.32
0.017



NETO2


1.36
0.018



NOX4
1.84
<.001
1.73
<.001



NPM1
1.68
0.001



NRIP3


1.36
0.009



NRP1
1.80
0.001
1.36
0.019



OSM
1.33
0.046



PATE1
1.38
0.032



PECAM1
1.38
0.021
1.31
0.035



PGD
1.56
0.010



PLK1
1.51
0.004
1.49
0.002



PLOD2


1.29
0.027



POSTN
1.70
0.047
1.55
0.006



PPP3CA
1.38
0.037
1.37
0.006



PTK6
1.45
0.007
1.53
<.001



PTTG1


1.51
<.001



RAB31


1.31
0.030



RAD21
2.05
<.001
1.38
0.020



RAD51
1.46
0.002
1.26
0.035



RAF1
1.46
0.017



RALBP1
1.37
0.043



RHOC


1.33
0.021



ROBO2
1.52
0.003
1.41
0.006



RRM2
1.77
<.001
1.50
<.001



SAT1
1.67
0.002
1.61
<.001



SDC1
1.66
0.001
1.46
0.014



SEC14L1
1.53
0.003
1.62
<.001



SESN3
1.76
<.001
1.45
<.001



SFRP4
2.69
<.001
2.03
<.001



SHMT2
1.69
0.007
1.45
0.003



SKIL


1.46
0.005



SOX4
1.42
0.016
1.27
0.031



SPARC
1.40
0.024
1.55
<.001



SPINK1


1.29
0.002



SPP1
1.51
0.002
1.80
<.001



TFDP1
1.48
0.014



THBS2
1.87
<.001
1.65
<.001



THY1
1.58
0.003
1.64
<.001



TK1
1.79
<.001
1.42
0.001



TOP2A
2.30
<.001
2.01
<.001



TPD52
1.95
<.001
1.30
0.037



TPX2
2.12
<.001
1.86
<.001



TYMP
1.36
0.020



TYMS
1.39
0.012
1.31
0.036



UBE2C
1.66
<.001
1.65
<.001



UBE2T
1.59
<.001
1.33
0.017



UGDH


1.28
0.049



UGT2B15
1.46
0.001
1.25
0.045



UHRF1
1.95
<.001
1.62
<.001



VDR
1.43
0.010
1.39
0.018



WNT5A
1.54
0.001
1.44
0.013

















TABLE 3B







Table 3B. Gene significantly (p < 0.05) associated with


Gleason pattern for all specimens in the primary Gleason pattern


or highest Gleason pattern odds ratio (OR) < 1.0 (Increased


expression is negatively associated with higher Gleason score)












Primary

Highest




Pattern

Pattern













Official Symbol
OR
p-value
OR
p-value

















ABCA5
0.78
0.041





ABCG2
0.65
0.001
0.72
0.012



ACOX2
0.44
<.001
0.53
<.001



ADH5
0.45
<.001
0.42
<.001



AFAP1


0.79
0.038



AIG1


0.77
0.024



AKAP1
0.63
0.002



AKR1C1
0.66
0.003
0.63
<.001



AKT3
0.68
0.006
0.77
0.010



ALDH1A2
0.28
<.001
0.33
<.001



ALKBH3
0.77
0.040
0.77
0.029



AMPD3
0.67
0.007



ANPEP
0.68
0.008
0.59
<.001



ANXA2
0.72
0.018



APC


0.69
0.002



AXIN2
0.46
<.001
0.54
<.001



AZGP1
0.52
<.001
0.53
<.001



BIK
0.69
0.006
0.73
0.003



BIN1
0.43
<.001
0.61
<.001



BTG3


0.79
0.030



BTRC
0.48
<.001
0.62
<.001



C7
0.37
<.001
0.55
<.001



CADM1
0.56
<.001
0.69
0.001



CAV1
0.58
0.002
0.70
0.009



CAV2
0.65
0.029



CCNH
0.67
0.006
0.77
0.048



CD164
0.59
0.003
0.57
<.001



CDC25B
0.77
0.035



CDH1


0.66
<.001



CDK2


0.71
0.003



CDKN1C
0.58
<.001
0.57
<.001



CDS2


0.69
0.002



CHN1
0.66
0.002



COL6A1
0.44
<.001
0.66
<.001



COL6A3
0.66
0.006



CSRP1
0.42
0.006



CTGF
0.74
0.043



CTNNA1
0.70
<.001
0.83
0.018



CTNNB1
0.70
0.019



CTNND1


0.75
0.028



CUL1


0.74
0.011



CXCL12
0.54
<.001
0.74
0.006



CYP3A5
0.52
<.001
0.66
0.003



CYR61
0.64
0.004
0.68
0.005



DDR2
0.57
0.002
0.73
0.004



DES
0.34
<.001
0.58
<.001



DLGAP1
0.54
<.001
0.62
<.001



DNM3
0.67
0.004



DPP4
0.41
<.001
0.53
<.001



DPT
0.28
<.001
0.48
<.001



DUSP1
0.59
<.001
0.63
<.001



EDNRA
0.64
0.004
0.74
0.008



EGF


0.71
0.012



EGR1
0.59
<.001
0.67
0.009



EGR3
0.72
0.026
0.71
0.025



EIF5


0.76
0.025



ELK4
0.58
0.001
0.70
0.008



ENPP2
0.66
0.002
0.70
0.005



EPHA3
0.65
0.006



EPHB2
0.60
<.001
0.78
0.023



EPHB4
0.75
0.046
0.73
0.006



ERBB3
0.76
0.040
0.75
0.013



ERBB4


0.74
0.023



ERCC1
0.63
<.001
0.77
0.016



FAAH
0.67
0.003
0.71
0.010



FAM107A
0.35
<.001
0.59
<.001



FAM13C
0.37
<.001
0.48
<.001



FAS
0.73
0.019
0.72
0.008



FGF10
0.53
<.001
0.58
<.001



FGF7
0.52
<.001
0.59
<.001



FGFR2
0.60
<.001
0.59
<.001



FKBP5
0.70
0.039
0.68
0.003



FLNA
0.39
<.001
0.56
<.001



FLNC
0.33
<.001
0.52
<.001



FOS
0.58
<.001
0.66
0.005



FOXO1
0.57
<.001
0.67
<.001



FOXQ1


0.74
0.023



GADD45B
0.62
0.002
0.71
0.010



GHR
0.62
0.002
0.72
0.009



GNRH1
0.74
0.049
0.75
0.026



GPM6B
0.48
<.001
0.68
<.001



GPS1


0.68
0.003



GSN
0.46
<.001
0.77
0.027



GSTM1
0.44
<.001
0.62
<.001



GSTM2
0.29
<.001
0.49
<.001



HGD


0.77
0.020



HIRIP3
0.75
0.034



HK1
0.48
<.001
0.66
0.001



HLF
0.42
<.001
0.55
<.001



HNF1B
0.67
0.006
0.74
0.010



HPS1
0.66
0.001
0.65
<.001



HSP90AB1
0.75
0.042



HSPA5
0.70
0.011



HSPB2
0.52
<.001
0.70
0.004



IGF1
0.35
<.001
0.59
<.001



IGF2
0.48
<.001
0.70
0.005



IGFBP2
0.61
<.001
0.77
0.044



IGFBP5
0.63
<.001



IGFBP6
0.45
<.001
0.64
<.001



IL6ST
0.55
0.004
0.63
<.001



ILK
0.40
<.001
0.57
<.001



ING5
0.56
<.001
0.78
0.033



ITGA1
0.56
0.004
0.61
<.001



ITGA3


0.78
0.035



ITGA5
0.71
0.019
0.75
0.017



ITGA7
0.37
<.001
0.52
<.001



ITGB3
0.63
0.003
0.70
0.005



ITPR1
0.46
<.001
0.64
<.001



ITPR3
0.70
0.013



ITSN1
0.62
0.001



JUN
0.48
<.001
0.60
<.001



JUNB
0.72
0.025



KIT
0.51
<.001
0.68
0.007



KLC1
0.58
<.001



KLK1
0.69
0.028
0.66
0.003



KLK2
0.60
<.001



KLK3
0.63
<.001
0.69
0.012



KRT15
0.56
<.001
0.60
<.001



KRT18
0.74
0.034



KRT5
0.64
<.001
0.62
<.001



LAMA4
0.47
<.001
0.73
0.010



LAMB3
0.73
0.018
0.69
0.003



LGALS3
0.59
0.003
0.54
<.001



LIG3
0.75
0.044



MAP3K7
0.66
0.003
0.79
0.031



MCM3
0.73
0.013
0.80
0.034



MGMT
0.61
0.001
0.71
0.007



MGST1


0.75
0.017



MLXIP
0.70
0.013



MMP2
0.57
<.001
0.72
0.010



MMP7
0.69
0.009



MPPED2
0.70
0.009
0.59
<.001



MSH6
0.78
0.046



MTA1
0.69
0.007



MTSS1
0.55
<.001
0.54
<.001



MYBPC1
0.45
<.001
0.45
<.001



NCAM1
0.51
<.001
0.65
<.001



NCAPD3
0.42
<.001
0.53
<.001



NCOR2
0.68
0.002



NDUFS5
0.66
0.001
0.70
0.013



NEXN
0.48
<.001
0.62
<.001



NFAT5
0.55
<.001
0.67
0.001



NFKBIA


0.79
0.048



NRG1
0.58
0.001
0.62
0.001



OLFML3
0.42
<.001
0.58
<.001



OMD
0.67
0.004
0.71
0.004



OR51E2
0.65
<.001
0.76
0.007



PAGE4
0.27
<.001
0.46
<.001



PCA3
0.68
0.004



PCDHGB7
0.70
0.025
0.65
<.001



PGF
0.62
0.001



PGR
0.63
0.028



PHTF2
0.69
0.033



PLP2
0.54
<.001
0.71
0.003



PPAP2B
0.41
<.001
0.54
<.001



PPP1R12A
0.48
<.001
0.60
<.001



PRIMA1
0.62
0.003
0.65
<.001



PRKAR1B
0.70
0.009



PRKAR2B


0.79
0.038



PRKCA
0.37
<.001
0.55
<.001



PRKCB
0.47
<.001
0.56
<.001



PTCH1
0.70
0.021



PTEN
0.66
0.010
0.64
<.001



PTGER3


0.76
0.015



PTGS2
0.70
0.013
0.68
0.005



PTH1R
0.48
<.001



PTK2B
0.67
0.014
0.69
0.002



PYCARD
0.72
0.023



RAB27A


0.76
0.017



RAGE
0.77
0.040
0.57
<.001



RARB
0.66
0.002
0.69
0.002



RECK
0.65
<.001



RHOA
0.73
0.043



RHOB
0.61
0.005
0.62
<.001



RND3
0.63
0.006
0.66
<.001



SDHC


0.69
0.002



SEC23A
0.61
<.001
0.74
0.010



SEMA3A
0.49
<.001
0.55
<.001



SERPINA3
0.70
0.034
0.75
0.020



SH3RF2
0.33
<.001
0.42
<.001



SLC22A3
0.23
<.001
0.37
<.001



SMAD4
0.33
<.001
0.39
<.001



SMARCC2
0.62
0.003
0.74
0.008



SMO
0.53
<.001
0.73
0.009



SORBS1
0.40
<.001
0.55
<.001



SPARCL1
0.42
<.001
0.63
<.001



SRD5A2
0.28
<.001
0.37
<.001



ST5
0.52
<.001
0.63
<.001



STAT5A
0.60
<.001
0.75
0.020



STAT5B
0.54
<.001
0.65
<.001



STS


0.78
0.035



SUMO1
0.75
0.017
0.71
0.002



SVIL
0.45
<.001
0.62
<.001



TARP
0.72
0.017



TGFB1I1
0.37
<.001
0.53
<.001



TGFB2
0.61
0.025
0.59
<.001



TGFB3
0.46
<.001
0.60
<.001



TIMP2
0.62
0.001



TIMP3
0.55
<.001
0.76
0.019



TMPRSS2
0.71
0.014



TNF
0.65
0.010



TNFRSF10A
0.71
0.014
0.74
0.010



TNFRSF10B
0.74
0.030
0.73
0.016



TNFSF10


0.69
0.004



TP53


0.73
0.011



TP63
0.62
<.001
0.68
0.003



TPM1
0.43
<.001
0.47
<.001



TPM2
0.30
<.001
0.47
<.001



TPP2
0.58
<.001
0.69
0.001



TRA2A
0.71
0.006



TRAF3IP2
0.50
<.001
0.63
<.001



TRO
0.40
<.001
0.59
<.001



TRPC6
0.73
0.030



TRPV6


0.80
0.047



VCL
0.44
<.001
0.55
<.001



VEGFB
0.73
0.029



VIM
0.72
0.013



VTI1B
0.78
0.046



WDR19
0.65
<.001



WFDC1
0.50
<.001
0.72
0.010



YY1
0.75
0.045



ZFHX3
0.52
<.001
0.54
<.001



ZFP36
0.65
0.004
0.69
0.012



ZNF827
0.59
<.001
0.69
0.004










To identify genes associated with recurrence (cRFI, bRFI) in the primary and the highest Gleason pattern, each of 727 genes were analyzed in univariate models using specimens A1 and B2 (see Table 2, above). Tables 4A and 4B provide genes that were associated, positively or negatively, with cRFI and/or bRFI in the primary and/or highest Gleason pattern. Increased expression of genes in Table 4A is negatively associated with good prognosis, while increased expression of genes in Table 4B is positively associated with good prognosis.









TABLE 4A







Table 4A.


Genes significantly (p < 0.05) associated with cRFI or bRFI in the primary


Gleason pattern or highest Gleason pattern with hazard ratio (HR) > 1.0


(increased expression is negatively associated with good prognosis)












cRFI
cRFI
bRFI
bRFI



Primary
Highest
Primary
Highest



Pattern
Pattern
Pattern
Pattern















Official

p-

p-

p-

p-


Symbol
HR
value
HR
value
HR
value
HR
value


















AKR1C3
1.304
0.022
1.312
0.013






ANLN
1.379
0.002
1.579
<.001
1.465
<.001
1.623
<.001


AQP2
1.184
0.027
1.276
<.001


ASAP2


1.442
0.006


ASPN
2.272
<.001
2.106
<.001
1.861
<.001
1.895
<.001


ATP5E
1.414
0.013
1.538
<.001


BAG5


1.263
0.044


BAX


1.332
0.026
1.327
0.012
1.438
0.002


BGN
1.947
<.001
2.061
<.001
1.339
0.017


BIRC5
1.497
<.001
1.567
<.001
1.478
<.001
1.575
<.001


BMP6
1.705
<.001
2.016
<.001
1.418
0.004
1.541
<.001


BMPR1B
1.401
0.013


1.325
0.016


BRCA2






1.259
0.007


BUB1
1.411
<.001
1.435
<.001
1.352
<.001
1.242
0.002


CADPS




1.387
0.009
1.294
0.027


CCNB1




1.296
0.016
1.376
0.002


CCNE2
1.468
<.001
1.649
<.001
1.729
<.001
1.563
<.001


CD276
1.678
<.001
1.832
<.001
1.581
<.001
1.385
0.002


CDC20
1.547
<.001
1.671
<.001
1.446
<.001
1.540
<.001


CDC6
1.400
0.003
1.290
0.030
1.403
0.002
1.276
0.019


CDH7
1.403
0.003
1.413
0.002


CDKN2B
1.569
<.001
1.752
<.001
1.333
0.017
1.347
0.006


CDKN2C
1.612
<.001
1.780
<.001
1.323
0.005
1.335
0.004


CDKN3
1.384
<.001
1.255
0.024
1.285
0.003
1.216
0.028


CENPF
1.578
<.001
1.692
<.001
1.740
<.001
1.705
<.001


CKS2
1.390
0.007
1.418
0.005
1.291
0.018


CLTC


1.368
0.045


COL1A1
1.873
<.001
2.103
<.001
1.491
<.001
1.472
<.001


COL1A2


1.462
0.001


COL3A1
1.827
<.001
2.005
<.001
1.302
0.012
1.298
0.018


COL4A1
1.490
0.002
1.613
<.001


COL8A1
1.692
<.001
1.926
<.001
1.307
0.013
1.317
0.010


CRISP3
1.425
0.001
1.467
<.001
1.242
0.045


CTHRC1
1.505
0.002
2.025
<.001
1.425
0.003
1.369
0.005


CTNND2




1.412
0.003


CXCR4
1.312
0.023
1.355
0.008


DDIT4
1.543
<.001
1.763
<.001


DYNLL1
1.290
0.039




1.201
0.004


EIF3H




1.428
0.012


ENY2
1.361
0.014


1.392
0.008
1.371
0.001


EZH2


1.311
0.010


F2R
1.773
<.001
1.695
<.001
1.495
<.001
1.277
0.018


FADD


1.292
0.018


FAM171B


1.285
0.036


FAP
1.455
0.004
1.560
0.001
1.298
0.022
1.274
0.038


FASN
1.263
0.035


FCGR3A


1.654
<.001
1.253
0.033
1.350
0.007


FGF5
1.219
0.030


GNPTAB
1.388
0.007
1.503
0.003
1.355
0.005
1.434
0.002


GPR68


1.361
0.008


GREM1
1.470
0.003
1.716
<.001
1.421
0.003
1.316
0.017


HDAC1




1.290
0.025


HDAC9


1.395
0.012


HRAS
1.424
0.006
1.447
0.020


HSD17B4
1.342
0.019
1.282
0.026
1.569
<.001
1.390
0.002


HSPA8
1.290
0.034


IGFBP3
1.333
0.022
1.442
0.003
1.253
0.040
1.323
0.005


INHBA
2.368
<.001
2.765
<.001
1.466
0.002
1.671
<.001


JAG1
1.359
0.006
1.367
0.005
1.259
0.024


KCNN2
1.361
0.011
1.413
0.005
1.312
0.017
1.281
0.030


KHDRBS3
1.387
0.006
1.601
<.001
1.573
<.001
1.353
0.006


KIAA0196






1.249
0.037


KIF4A
1.212
0.016


1.149
0.040
1.278
0.003


KLK14
1.167
0.023




1.180
0.007


KPNA2


1.425
0.009
1.353
0.005
1.305
0.019


KRT75






1.164
0.028


LAMA3




1.327
0.011


LAMB1


1.347
0.019


LAMC1
1.555
0.001
1.310
0.030


1.349
0.014


LIMS1






1.275
0.022


LOX




1.358
0.003
1.410
<.001


LTBP2
1.396
0.009
1.656
<.001
1.278
0.022


LUM


1.315
0.021


MANF




1.660
<.001
1.323
0.011


MCM2




1.345
0.011
1.387
0.014


MCM6
1.307
0.023
1.352
0.008


1.244
0.039


MELK
1.293
0.014
1.401
<.001
1.501
<.001
1.256
0.012


MMP11
1.680
<.001
1.474
<.001
1.489
<.001
1.257
0.030


MRPL13






1.260
0.025


MSH2


1.295
0.027


MYBL2
1.664
<.001
1.670
<.001
1.399
<.001
1.431
<.001


MYO6


1.301
0.033


NETO2
1.412
0.004
1.302
0.027
1.298
0.009


NFKB1




1.236
0.050


NOX4
1.492
<.001
1.507
0.001
1.555
<.001
1.262
0.019


NPM1




1.287
0.036


NRIP3


1.219
0.031


1.218
0.018


NRP1


1.482
0.002


1.245
0.041


OLFML2B


1.362
0.015


OR51E1




1.531
<.001
1.488
0.003


PAK6


1.269
0.033


PATE1
1.308
<.001
1.332
<.001
1.164
0.044


PCNA






1.278
0.020


PEX10
1.436
0.005
1.393
0.009


PGD
1.298
0.048


1.579
<.001


PGK1


1.274
0.023


1.262
0.009


PLA2G7




1.315
0.011
1.346
0.005


PLAU




1.319
0.010


PLK1
1.309
0.021
1.563
<.001
1.410
0.002
1.372
0.003


PLOD2


1.284
0.019
1.272
0.014
1.332
0.005


POSTN
1.599
<.001
1.514
0.002
1.391
0.005


PPP3CA




1.402
0.007
1.316
0.018


PSMD13
1.278
0.040
1.297
0.033
1.279
0.017
1.373
0.004


PTK6
1.640
<.001
1.932
<.001
1.369
0.001
1.406
<.001


PTTG1
1.409
<.001
1.510
<.001
1.347
0.001
1.558
<.001


RAD21
1.315
0.035
1.402
0.004
1.589
<.001
1.439
<.001


RAF1




1.503
0.002


RALA
1.521
0.004
1.403
0.007
1.563
<.001
1.229
0.040


RALBP1




1.277
0.033


RGS7
1.154
0.015
1.266
0.010


RRM1
1.570
0.001
1.602
<.001


RRM2
1.368
<.001
1.289
0.004
1.396
<.001
1.230
0.015


SAT1
1.482
0.016
1.403
0.030


SDC1




1.340
0.018
1.396
0.018


SEC14L1


1.260
0.048


1.360
0.002


SESN3
1.485
<.001
1.631
<.001
1.232
0.047
1.292
0.014


SFRP4
1.800
<.001
1.814
<.001
1.496
<.001
1.289
0.027


SHMT2
1.807
<.001
1.658
<.001
1.673
<.001
1.548
<.001


SKIL




1.327
0.008


SLC25A21




1.398
0.001
1.285
0.018


SOX4




1.286
0.020
1.280
0.030


SPARC
1.539
<.001
1.842
<.001


1.269
0.026


SPP1


1.322
0.022


SQLE


1.359
0.020
1.270
0.036


STMN1
1.402
0.007
1.446
0.005
1.279
0.031


SULF1


1.587
<.001


TAF2






1.273
0.027


TFDP1


1.328
0.021
1.400
0.005
1.416
0.001


THBS2
1.812
<.001
1.960
<.001
1.320
0.012
1.256
0.038


THY1
1.362
0.020
1.662
<.001


TK1


1.251
0.011
1.377
<.001
1.401
<.001


TOP2A
1.670
<.001
1.920
<.001
1.869
<.001
1.927
<.001


TPD52
1.324
0.011


1.366
0.002
1.351
0.005


TPX2
1.884
<.001
2.154
<.001
1.874
<.001
1.794
<.001


UAP1




1.244
0.044


UBE2C
1.403
<.001
1.541
<.001
1.306
0.002
1.323
<.001


UBE2T
1.667
<.001
1.282
0.023
1.502
<.001
1.298
0.005


UGT2B15


1.295
0.001


1.275
0.002


UGT2B17






1.294
0.025


UHRF1
1.454
<.001
1.531
<.001
1.257
0.029


VCPIP1
1.390
0.009
1.414
0.004
1.294
0.021
1.283
0.021


WNT5A


1.274
0.038
1.298
0.020


XIAP




1.464
0.006


ZMYND8


1.277
0.048


ZWINT
1.259
0.047
















TABLE 4B







Table 4B.


Genes significantly (p < 0.05) associated with cRFI or bRFI in the primary


Gleason pattern or highest Gleason pattern with hazard ratio (HR) < 1.0


(increased expression is positively associated with good prognosis)












cRFI
cRFI
bRFI
bRFI



Primary
Highest
Primary
Highest



Pattern
Pattern
Pattern
Pattern















Official

p-

p-

p-

p-


Symbol
HR
value
HR
value
HR
value
HR
value


















AAMP
0.564
<.001
0.571
<.001
0.764
0.037
0.786
0.034


ABCA5
0.755
<.001
0.695
<.001


0.800
0.006


ABCB1
0.777
0.026


ABCG2
0.788
0.033
0.784
0.040
0.803
0.018
0.750
0.004


ABHD2


0.734
0.011


ACE


0.782
0.048


ACOX2
0.639
<.001
0.631
<.001
0.713
<.001
0.716
0.002


ADH5
0.625
<.001
0.637
<.001
0.753
0.026


AKAP1
0.764
0.006
0.800
0.005
0.837
0.046


AKR1C1
0.773
0.033


0.802
0.032


AKT1


0.714
0.005


AKT3
0.811
0.015
0.809
0.021


ALDH1A2
0.606
<.001
0.498
<.001
0.613
<.001
0.624
<.001


AMPD3




0.793
0.024


ANPEP
0.584
<.001
0.493
<.001


ANXA2
0.753
0.013
0.781
0.036
0.762
0.008
0.795
0.032


APRT


0.758
0.026
0.780
0.044
0.746
0.008


ATXN1
0.673
0.001
0.776
0.029
0.809
0.031
0.812
0.043


AXIN2
0.674
<.001
0.571
<.001
0.776
0.005
0.757
0.005


AZGP1
0.585
<.001
0.652
<.001
0.664
<.001
0.746
<.001


BAD


0.765
0.023


BCL2
0.788
0.033
0.778
0.036


BDKRB1
0.728
0.039


BIK


0.712
0.005


BIN1
0.607
<.001
0.724
0.002
0.726
<.001
0.834
0.034


BTG3




0.847
0.034


BTRC
0.688
0.001
0.713
0.003


C7
0.589
<.001
0.639
<.001
0.629
<.001
0.691
<.001


CADM1
0.546
<.001
0.529
<.001
0.743
0.008
0.769
0.015


CASP1
0.769
0.014
0.799
0.028
0.799
0.010
0.815
0.018


CAV1
0.736
0.011
0.711
0.005
0.675
<.001
0.743
0.006


CAV2


0.636
0.010
0.648
0.012
0.685
0.012


CCL2
0.759
0.029
0.764
0.024


CCNH
0.689
<.001
0.700
<.001


CD164
0.664
<.001
0.651
<.001


CD1A




0.687
0.004


CD44
0.545
<.001
0.600
<.001
0.788
0.018
0.799
0.023


CD82
0.771
0.009
0.748
0.004


CDC25B
0.755
0.006


0.817
0.025


CDK14
0.845
0.043


CDK2






0.819
0.032


CDK3
0.733
0.005


0.772
0.006
0.838
0.017


CDKN1A


0.766
0.041


CDKN1C
0.662
<.001
0.712
0.002
0.693
<.001
0.761
0.009


CHN1
0.788
0.036


COL6A1
0.608
<.001
0.767
0.013
0.706
<.001
0.775
0.007


CSF1
0.626
<.001
0.709
0.003


CSK




0.837
0.029


CSRP1
0.793
0.024
0.782
0.019


CTNNB1
0.898
0.042


0.885
<.001


CTSB
0.701
0.004
0.713
0.007
0.715
0.002
0.803
0.038


CTSK




0.815
0.042


CXCL12
0.652
<.001
0.802
0.044
0.711
0.001


CYP3A5
0.463
<.001
0.436
<.001
0.727
0.003


CYR61
0.652
0.002
0.676
0.002


DAP


0.761
0.026
0.775
0.025
0.802
0.048


DARC




0.725
0.005
0.792
0.032


DDR2




0.719
0.001
0.763
0.008


DES
0.619
<.001
0.737
0.005
0.638
<.001
0.793
0.017


DHRS9
0.642
0.003


DHX9
0.888
<.001


DLC1
0.710
0.007
0.715
0.009


DLGAP1
0.613
<.001
0.551
<.001


0.779
0.049


DNM3
0.679
<.001


0.812
0.037


DPP4
0.591
<.001
0.613
<.001
0.761
0.003


DPT
0.613
<.001
0.576
<.001
0.647
<.001
0.677
<.001


DUSP1
0.662
0.001
0.665
0.001


0.785
0.024


DUSP6
0.713
0.005
0.668
0.002


EDNRA
0.702
0.002
0.779
0.036


EGF


0.738
0.028


EGR1
0.569
<.001
0.577
<.001


0.782
0.022


EGR3
0.601
<.001
0.619
<.001


0.800
0.038


EIF2S3






0.756
0.015


EIF5
0.776
0.023
0.787
0.028


ELK4
0.628
<.001
0.658
<.001


EPHA2
0.720
0.011
0.663
0.004


EPHA3
0.727
0.003


0.772
0.005


ERBB2
0.786
0.019
0.738
0.003
0.815
0.041


ERBB3
0.728
0.002
0.711
0.002
0.828
0.043
0.813
0.023


ERCC1
0.771
0.023
0.725
0.007
0.806
0.049
0.704
0.002


EREG




0.754
0.016
0.777
0.034


ESR2


0.731
0.026


FAAH
0.708
0.004
0.758
0.012
0.784
0.031
0.774
0.007


FAM107A
0.517
<.001
0.576
<.001
0.642
<.001
0.656
<.001


FAM13C
0.568
<.001
0.526
<.001
0.739
0.002
0.639
<.001


FAS
0.755
0.014


FASLG


0.706
0.021


FGF10
0.653
<.001


0.685
<.001
0.766
0.022


FGF17


0.746
0.023
0.781
0.015
0.805
0.028


FGF7
0.794
0.030


0.820
0.037
0.811
0.040


FGFR2
0.683
<.001
0.686
<.001
0.674
<.001
0.703
<.001


FKBP5


0.676
0.001


FLNA
0.653
<.001
0.741
0.010
0.682
<.001
0.771
0.016


FLNC
0.751
0.029
0.779
0.047
0.663
<.001
0.725
<.001


FLT1


0.799
0.044


FOS
0.566
<.001
0.543
<.001


0.757
0.006


FOXO1




0.816
0.039
0.798
0.023


FOXQ1
0.753
0.017
0.757
0.024
0.804
0.018


FYN
0.779
0.031


GADD45B
0.590
<.001
0.619
<.001


GDF15
0.759
0.019
0.794
0.048


GHR
0.702
0.005
0.630
<.001
0.673
<.001
0.590
<.001


GNRH1




0.742
0.014


GPM6B
0.653
<.001
0.633
<.001
0.696
<.001
0.768
0.007


GSN
0.570
<.001
0.697
0.001
0.697
<.001
0.758
0.005


GSTM1
0.612
<.001
0.588
<.001
0.718
<.001
0.801
0.020


GSTM2
0.540
<.001
0.630
<.001
0.602
<.001
0.706
<.001


HGD
0.796
0.020
0.736
0.002


HIRIP3
0.753
0.011


0.824
0.050


HK1
0.684
<.001
0.683
<.001
0.799
0.011
0.804
0.014


HLA-G


0.726
0.022


HLF
0.555
<.001
0.582
<.001
0.703
<.001
0.702
<.001


HNF1B
0.690
<.001
0.585
<.001


HPS1
0.744
0.003
0.784
0.020
0.836
0.047


HSD3B2






0.733
0.016


HSP90AB1
0.801
0.036


HSPA5


0.776
0.034


HSPB1
0.813
0.020


HSPB2
0.762
0.037


0.699
0.002
0.783
0.034


HSPG2




0.794
0.044


ICAM1
0.743
0.024
0.768
0.040


IER3
0.686
0.002
0.663
<.001


IFIT1
0.649
<.001
0.761
0.026


IGF1
0.634
<.001
0.537
<.001
0.696
<.001
0.688
<.001


IGF2




0.732
0.004


IGFBP2
0.548
<.001
0.620
<.001


IGFBP5
0.681
<.001


IGFBP6
0.577
<.001


0.675
<.001


IL1B
0.712
0.005
0.742
0.009


IL6
0.763
0.028


IL6R


0.791
0.039


IL6ST
0.585
<.001
0.639
<.001
0.730
0.002
0.768
0.006


IL8
0.624
<.001
0.662
0.001


ILK
0.712
0.009
0.728
0.012
0.790
0.047
0.790
0.042


ING5
0.625
<.001
0.658
<.001
0.728
0.002


ITGA5
0.728
0.006
0.803
0.039


ITGA6
0.779
0.007
0.775
0.006


ITGA7
0.584
<.001
0.700
0.001
0.656
<.001
0.786
0.014


ITGAD


0.657
0.020


ITGB4
0.718
0.007
0.689
<.001
0.818
0.041


ITGB5


0.801
0.050


ITPR1
0.707
0.001


JUN
0.556
<.001
0.574
<.001


0.754
0.008


JUNB
0.730
0.017
0.715
0.010


KIT
0.644
0.004
0.705
0.019
0.605
<.001
0.659
0.001


KLC1
0.692
0.003
0.774
0.024
0.747
0.008


KLF6
0.770
0.032
0.776
0.039


KLK1
0.646
<.001
0.652
0.001
0.784
0.037


KLK10


0.716
0.006


KLK2
0.647
<.001
0.628
<.001


0.786
0.009


KLK3
0.706
<.001
0.748
<.001


0.845
0.018


KRT1






0.734
0.024


KRT15
0.627
<.001
0.526
<.001
0.704
<.001
0.782
0.029


KRT18
0.624
<.001
0.617
<.001
0.738
0.005
0.760
0.005


KRT5
0.640
<.001
0.550
<.001
0.740
<.001
0.798
0.023


KRT8
0.716
0.006
0.744
0.008


L1CAM
0.738
0.021
0.692
0.009


0.761
0.036


LAG3
0.741
0.013
0.729
0.011


LAMA4
0.686
0.011


0.592
0.003


LAMA5






0.786
0.025


LAMB3
0.661
<.001
0.617
<.001
0.734
<.001


LGALS3
0.618
<.001
0.702
0.001
0.734
0.001
0.793
0.012


LIG3
0.705
0.008
0.615
<.001


LRP1
0.786
0.050


0.795
0.023
0.770
0.009


MAP3K7




0.789
0.003


MGMT
0.632
<.001
0.693
<.001


MICA
0.781
0.014
0.653
<.001


0.833
0.043


MPPED2
0.655
<.001
0.597
<.001
0.719
<.001
0.759
0.006


MSH6




0.793
0.015


MTSS1
0.613
<.001


0.746
0.008


MVP
0.792
0.028
0.795
0.045
0.819
0.023


MYBPC1
0.648
<.001
0.496
<.001
0.701
<.001
0.629
<.001


NCAM1



0.773
0.015


NCAPD3
0.574
<.001
0.463
<.001
0.679
<.001
0.640
<.001


NEXN
0.701
0.002
0.791
0.035
0.725
0.002
0.781
0.016


NFAT5
0.515
<.001
0.586
<.001
0.785
0.017


NFATC2
0.753
0.023


NFKBIA
0.778
0.037


NRG1
0.644
0.004
0.696
0.017
0.698
0.012


OAZ1
0.777
0.034
0.775
0.022


OLFML3
0.621
<.001
0.720
0.001
0.600
<.001
0.626
<.001


OMD
0.706
0.003


OR51E2
0.820
0.037
0.798
0.027


PAGE4
0.549
<.001
0.613
<.001
0.542
<.001
0.628
<.001


PCA3
0.684
<.001
0.635
<.001


PCDHGB7
0.790
0.045


0.725
0.002
0.664
<.001


PGF
0.753
0.017


PGR
0.740
0.021
0.728
0.018


PIK3CG
0.803
0.024


PLAUR
0.778
0.035


PLG






0.728
0.028


PPAP2B
0.575
<.001
0.629
<.001
0.643
<.001
0.699
<.001


PPP1R12A
0.647
<.001
0.683
0.002
0.782
0.023
0.784
0.030


PRIMA1
0.626
<.001
0.658
<.001
0.703
0.002
0.724
0.003


PRKCA
0.642
<.001
0.799
0.029
0.677
0.001
0.776
0.006


PRKCB
0.675
0.001


0.648
<.001
0.747
0.006


PROM1
0.603
0.018


0.659
0.014
0.493
0.008


PTCH1
0.680
0.001


0.753
0.010
0.789
0.018


PTEN
0.732
0.002
0.747
0.005
0.744
<.001
0.765
0.002


PTGS2
0.596
<.001
0.610
<.001


PTH1R
0.767
0.042


0.775
0.028
0.788
0.047


PTHLH
0.617
0.002
0.726
0.025
0.668
0.002
0.718
0.007


PTK2B
0.744
0.003
0.679
<.001
0.766
0.002
0.726
<.001


PTPN1
0.760
0.020
0.780
0.042


PYCARD


0.748
0.012


RAB27A


0.708
0.004


RAB30
0.755
0.008


RAGE


0.817
0.048


RAP1B




0.818
0.050


RARB
0.757
0.007
0.677
<.001
0.789
0.007
0.746
0.003


RASSF1
0.816
0.035


RHOB
0.725
0.009
0.676
0.001


0.793
0.039


RLN1


0.742
0.033


0.762
0.040


RND3
0.636
<.001
0.647
<.001


RNF114


0.749
0.011


SDC2




0.721
0.004


SDHC
0.725
0.003
0.727
0.006


SEMA3A
0.757
0.024
0.721
0.010


SERPINA3
0.716
0.008
0.660
0.001


SERPINB5
0.747
0.031
0.616
0.002


SH3RF2
0.577
<.001
0.458
<.001
0.702
<.001
0.640
<.001


SLC22A3
0.565
<.001
0.540
<.001
0.747
0.004
0.756
0.007


SMAD4
0.546
<.001
0.573
<.001
0.636
<.001
0.627
<.001


SMARCD1
0.718
<.001
0.775
0.017


SMO
0.793
0.029
0.754
0.021


0.718
0.003


SOD1
0.757
0.049
0.707
0.006


SORBS1
0.645
<.001
0.716
0.003
0.693
<.001
0.784
0.025


SPARCL1
0.821
0.028


0.829
0.014
0.781
0.030


SPDEF
0.778
<.001


SPINT1
0.732
0.009
0.842
0.026


SRC
0.647
<.001
0.632
<.001


SRD5A1




0.813
0.040


SRD5A2
0.489
<.001
0.533
<.001
0.544
<.001
0.611
<.001


ST5
0.713
0.002
0.783
0.011
0.725
<.001
0.827
0.025


STAT3
0.773
0.037
0.759
0.035


STAT5A
0.695
<.001
0.719
0.002
0.806
0.020
0.783
0.008


STAT5B
0.633
<.001
0.655
<.001


0.814
0.028


SUMO1
0.790
0.015


SVIL
0.659
<.001
0.713
0.002
0.711
0.002
0.779
0.010


TARP






0.800
0.040


TBP
0.761
0.010


TFF3
0.734
0.010
0.659
<.001


TGFB1I1
0.618
<.001
0.693
0.002
0.637
<.001
0.719
0.004


TGFB2
0.679
<.001
0.747
0.005
0.805
0.030


TGFB3




0.791
0.037


TGFBR2




0.778
0.035


TIMP3




0.751
0.011


TMPRSS2
0.745
0.003
0.708
<.001


TNF


0.670
0.013


0.697
0.015


TNFRSF10A
0.780
0.018
0.752
0.006
0.817
0.032


TNFRSF10B
0.576
<.001
0.655
<.001
0.766
0.004
0.778
0.002


TNFRSF18
0.648
0.016


0.759
0.034


TNFSF10
0.653
<.001
0.667
0.004


TP53


0.729
0.003


TP63
0.759
0.016
0.636
<.001
0.698
<.001
0.712
0.001


TPM1
0.778
0.048
0.743
0.012
0.783
0.032
0.811
0.046


TPM2
0.578
<.001
0.634
<.001
0.611
<.001
0.710
0.001


TPP2


0.775
0.037


TRAF3IP2
0.722
0.002
0.690
<.001
0.792
0.021
0.823
0.049


TRO
0.744
0.003
0.725
0.003
0.765
0.002
0.821
0.041


TUBB2A
0.639
<.001
0.625
<.001


TYMP
0.786
0.039


VCL
0.594
<.001
0.657
0.001
0.682
<.001


VEGFA


0.762
0.024


VEGFB
0.795
0.037


VIM
0.739
0.009


0.791
0.021


WDR19






0.776
0.015


WFDC1




0.746
<.001


YY1
0.683
0.001


0.728
0.002


ZFHX3
0.684
<.001
0.661
<.001
0.801
0.010
0.762
0.001


ZFP36
0.605
<.001
0.579
<.001


0.815
0.043


ZNF827
0.624
<.001
0.730
0.007
0.738
0.004









Tables 5A and 5B provide genes that were significantly associated (p<0.05), positively or negatively, with recurrence (cRFI, bRFI) after adjusting for AUA risk group in the primary and/or highest Gleason pattern. Increased expression of genes in Table 5A is negatively associated with good prognosis, while increased expression of genes in Table 5B is positively associated with good prognosis.









TABLE 5A







Table 5A.


Gene significantly (p < 0.05) associated with cRFI or bRFI after


adjustment for AUA risk group in the primary Gleason pattern or highest


Gleason pattern with hazard ratio (HR) > 1.0 (increased expression


negatively associated with good prognosis)












cRFI
cRFI
bRFI
bRFI



Primary
Highest
Primary
Highest



Pattern
Pattern
Pattern
Pattern















Official

p-

p-

p-

p-


Symbol
HR
value
HR
value
HR
value
HR
value


















AKR1C3
1.315
0.018
1.283
0.024






ALOX12






1.198
0.024


ANLN
1.406
<.001
1.519
<.001
1.485
<.001
1.632
<.001


AQP2
1.209
<.001
1.302
<.001


ASAP2


1.582
<.001
1.333
0.011
1.307
0.019


ASPN
1.872
<.001
1.741
<.001
1.638
<.001
1.691
<.001


ATP5E
1.309
0.042
1.369
0.012


BAG5


1.291
0.044


BAX




1.298
0.025
1.420
0.004


BGN
1.746
<.001
1.755
<.001


BIRC5
1.480
<.001
1.470
<.001
1.419
<.001
1.503
<.001


BMP6
1.536
<.001
1.815
<.001
1.294
0.033
1.429
0.001


BRCA2






1.184
0.037


BUB1
1.288
0.001
1.391
<.001
1.254
<.001
1.189
0.018


CACNA1D


1.313
0.029


CADPS




1.358
0.007
1.267
0.022


CASP3




1.251
0.037


CCNB1




1.261
0.033
1.318
0.005


CCNE2
1.345
0.005
1.438
<.001
1.606
<.001
1.426
<.001


CD276
1.482
0.002
1.668
<.001
1.451
<.001
1.302
0.011


CDC20
1.417
<.001
1.547
<.001
1.355
<.001
1.446
<.001


CDC6
1.340
0.011
1.265
0.046
1.367
0.002
1.272
0.025


CDH7
1.402
0.003
1.409
0.002


CDKN2B
1.553
<.001
1.746
<.001
1.340
0.014
1.369
0.006


CDKN2C
1.411
<.001
1.604
<.001
1.220
0.033


CDKN3
1.296
0.004


1.226
0.015


CENPF
1.434
0.002
1.570
<.001
1.633
<.001
1.610
<.001


CKS2
1.419
0.008
1.374
0.022
1.380
0.004


COL1A1
1.677
<.001
1.809
<.001
1.401
<.001
1.352
0.003


COL1A2


1.373
0.010


COL3A1
1.669
<.001
1.781
<.001
1.249
0.024
1.234
0.047


COL4A1
1.475
0.002
1.513
0.002


COL8A1
1.506
0.001
1.691
<.001


CRISP3
1.406
0.004
1.471
<.001


CTHRC1
1.426
0.009
1.793
<.001
1.311
0.019


CTNND2




1.462
<.001


DDIT4
1.478
0.003
1.783
<.001


1.236
0.039


DYNLL1
1.431
0.002




1.193
0.004


EIF3H




1.372
0.027


ENY2




1.325
0.023
1.270
0.017


ERG
1.303
0.041


EZH2


1.254
0.049


F2R
1.540
0.002
1.448
0.006
1.286
0.023


FADD
1.235
0.041
1.404
<.001


FAP
1.386
0.015
1.440
0.008
1.253
0.048


FASN
1.303
0.028


FCGR3A


1.439
0.011


1.262
0.045


FGF5
1.289
0.006


GNPTAB
1.290
0.033
1.369
0.022
1.285
0.018
1.355
0.008


GPR68


1.396
0.005


GREM1
1.341
0.022
1.502
0.003
1.366
0.006


HDAC1




1.329
0.016


HDAC9


1.378
0.012


HRAS
1.465
0.006


HSD17B4




1.442
<.001
1.245
0.028


IGFBP3


1.366
0.019


1.302
0.011


INHBA
2.000
<.001
2.336
<.001


1.486
0.002


JAG1
1.251
0.039


KCNN2
1.347
0.020
1.524
<.001
1.312
0.023
1.346
0.011


KHDRBS3


1.500
0.001
1.426
0.001
1.267
0.032


KIAA0196






1.272
0.028


KIF4A
1.199
0.022




1.262
0.004


KPNA2




1.252
0.016


LAMA3




1.332
0.004
1.356
0.010


LAMB1


1.317
0.028


LAMC1
1.516
0.003
1.302
0.040


1.397
0.007


LIMS1






1.261
0.027


LOX




1.265
0.016
1.372
0.001


LTBP2


1.477
0.002


LUM


1.321
0.020


MANF




1.647
<.001
1.284
0.027


MCM2




1.372
0.003
1.302
0.032


MCM3


1.269
0.047


MCM6


1.276
0.033


1.245
0.037


MELK


1.294
0.005
1.394
<.001


MKI67
1.253
0.028
1.246
0.029


MMP11
1.557
<.001
1.290
0.035
1.357
0.005


MRPL13






1.275
0.003


MSH2


1.355
0.009


MYBL2
1.497
<.001
1.509
<.001
1.304
0.003
1.292
0.007


MYO6


1.367
0.010


NDRG1
1.270
0.042




1.314
0.025


NEK2


1.338
0.020


1.269
0.026


NETO2
1.434
0.004
1.303
0.033
1.283
0.012


NOX4
1.413
0.006
1.308
0.037
1.444
<.001


NRIP3






1.171
0.026


NRP1


1.372
0.020


ODC1




1.450
<.001


OR51E1




1.559
<.001
1.413
0.008


PAK6






1.233
0.047


PATE1
1.262
<.001
1.375
<.001
1.143
0.034
1.191
0.036


PCNA




1.227
0.033
1.318
0.003


PEX10
1.517
<.001
1.500
0.001


PGD
1.363
0.028
1.316
0.039
1.652
<.001


PGK1


1.224
0.034


1.206
0.024


PIM1




1.205
0.042


PLA2G7




1.298
0.018
1.358
0.005


PLAU




1.242
0.032


PLK1


1.464
0.001
1.299
0.018
1.275
0.031


PLOD2




1.206
0.039
1.261
0.025


POSTN
1.558
0.001
1.356
0.022
1.363
0.009


PPP3CA




1.445
0.002


PSMD13




1.301
0.017
1.411
0.003


PTK2


1.318
0.031


PTK6
1.582
<.001
1.894
<.001
1.290
0.011
1.354
0.003


PTTG1
1.319
0.004
1.430
<.001
1.271
0.006
1.492
<.001


RAD21


1.278
0.028
1.435
0.004
1.326
0.008


RAF1




1.504
<.001


RALA
1.374
0.028


1.459
0.001


RGS7


1.203
0.031


RRM1
1.535
0.001
1.525
<.001


RRM2
1.302
0.003
1.197
0.047
1.342
<.001


SAT1
1.374
0.043


SDC1




1.344
0.011
1.473
0.008


SEC14L1






1.297
0.006


SESN3
1.337
0.002
1.495
<.001


1.223
0.038


SFRP4
1.610
<.001
1.542
0.002
1.370
0.009


SHMT2
1.567
0.001
1.522
<.001
1.485
0.001
1.370
<.001


SKIL




1.303
0.008


SLC25A21




1.287
0.020
1.306
0.017


SLC44A1


1.308
0.045


SNRPB2
1.304
0.018


SOX4




1.252
0.031


SPARC
1.445
0.004
1.706
<.001


1.269
0.026


SPP1


1.376
0.016


SQLE


1.417
0.007
1.262
0.035


STAT1






1.209
0.029


STMN1
1.315
0.029


SULF1


1.504
0.001


TAF2




1.252
0.048
1.301
0.019


TFDP1




1.395
0.010
1.424
0.002


THBS2
1.716
<.001
1.719
<.001


THY1
1.343
0.035
1.575
0.001


TK1




1.320
<.001
1.304
<.001


TOP2A
1.464
0.001
1.688
<.001
1.715
<.001
1.761
<.001


TPD52




1.286
0.006
1.258
0.023


TPX2
1.644
<.001
1.964
<.001
1.699
<.001
1.754
<.001


TYMS






1.315
0.014


UBE2C
1.270
0.019
1.558
<.001
1.205
0.027
1.333
<.001


UBE2G1
1.302
0.041


UBE2T
1.451
<.001


1.309
0.003


UGT2B15


1.222
0.025


UHRF1
1.370
0.003
1.520
<.001
1.247
0.020


VCPIP1


1.332
0.015


VTI1B




1.237
0.036


XIAP




1.486
0.008


ZMYND8


1.408
0.007


ZNF3






1.284
0.018


ZWINT
1.289
0.028
















TABLE 5B







Table 5B.


Genes significantly (p < 0.05) associated with cRFI or bRFI after adjustment for


AUA risk group in the primary Gleason pattern or highest Gleason pattern with


hazard ratio (HR) < 1.0 (increased expression is positively associated with


good prognosis)












cRFI
cRFI
bRFI
bRFI


Official
Primary Pattern
Highest Pattern
Primary Pattern
Highest Pattern















Symbol
HR
p-value
HR
p-value
HR
p-value
HR
p-value


















AAMP
0.535
<.001
0.581
<.001
0.700
0.002
0.759
0.006


ABCA5
0.798
0.007
0.745
0.002


0.841
0.037


ABCC1


0.800
0.044


ABCC4


0.787
0.022


ABHD2


0.768
0.023


ACOX2
0.678
0.002
0.749
0.027
0.759
0.004


ADH5
0.645
<.001
0.672
0.001


AGTR1
0.780
0.030


AKAP1
0.815
0.045
0.758
<.001


AKT1


0.732
0.010


ALDH1A2
0.646
<.001
0.548
<.001
0.671
<.001
0.713
0.001


ANPEP
0.641
<.001
0.535
<.001


ANXA2
0.772
0.035


0.804
0.046


ATXN1
0.654
<.001
0.754
0.020
0.797
0.017


AURKA


0.788
0.030


AXIN2
0.744
0.005
0.655
<.001


AZGP1
0.656
<.001
0.676
<.001
0.754
0.001
0.791
0.004


BAD


0.700
0.004


BIN1
0.650
<.001
0.764
0.013
0.803
0.015


BTG3




0.836
0.025


BTRC
0.730
0.005


C7
0.617
<.001
0.680
<.001
0.667
<.001
0.755
0.005


CADM1
0.559
<.001
0.566
<.001
0.772
0.020
0.802
0.046


CASP1
0.781
0.030
0.779
0.021
0.818
0.027
0.828
0.036


CAV1




0.775
0.034


CAV2


0.677
0.019


CCL2


0.752
0.023


CCNH
0.679
<.001
0.682
<.001


CD164
0.721
0.002
0.724
0.005


CD1A




0.710
0.014


CD44
0.591
<.001
0.642
<.001


CD82
0.779
0.021
0.771
0.024


CDC25B
0.778
0.035


0.818
0.023


CDK14
0.788
0.011


CDK3
0.752
0.012


0.779
0.005
0.841
0.020


CDKN1A
0.770
0.049
0.712
0.014


CDKN1C
0.684
<.001


0.697
<.001


CHN1
0.772
0.031


COL6A1
0.648
<.001
0.807
0.046
0.768
0.004


CSF1
0.621
<.001
0.671
0.001


CTNNB1




0.905
0.008


CTSB
0.754
0.030
0.716
0.011
0.756
0.014


CXCL12
0.641
<.001
0.796
0.038
0.708
<.001


CYP3A5
0.503
<.001
0.528
<.001
0.791
0.028


CYR61
0.639
0.001
0.659
0.001


0.797
0.048


DARC




0.707
0.004


DDR2




0.750
0.011


DES
0.657
<.001
0.758
0.022
0.699
<.001


DHRS9
0.625
0.002


DHX9
0.846
<.001


DIAPH1
0.682
0.007
0.723
0.008
0.780
0.026


DLC1
0.703
0.005
0.702
0.008


DLGAP1
0.703
0.008
0.636
<.001


DNM3
0.701
0.001


0.817
0.042


DPP4
0.686
<.001
0.716
0.001


DPT
0.636
<.001
0.633
<.001
0.709
0.006
0.773
0.024


DUSP1
0.683
0.006
0.679
0.003


DUSP6
0.694
0.003
0.605
<.001


EDN1




0.773
0.031


EDNRA
0.716
0.007


EGR1
0.575
<.001
0.575
<.001


0.771
0.014


EGR3
0.633
0.002
0.643
<.001


0.792
0.025


EIF4E
0.722
0.002


ELK4
0.710
0.009
0.759
0.027


ENPP2
0.786
0.039


EPHA2


0.593
0.001


EPHA3
0.739
0.006


0.802
0.020


ERBB2


0.753
0.007


ERBB3
0.753
0.009
0.753
0.015


ERCC1






0.727
0.001


EREG




0.722
0.012
0.769
0.040


ESR1


0.742
0.015


FABP5
0.756
0.032


FAM107A
0.524
<.001
0.579
<.001
0.688
<.001
0.699
0.001


FAM13C
0.639
<.001
0.601
<.001
0.810
0.019
0.709
<.001


FAS
0.770
0.033


FASLG
0.716
0.028
0.683
0.017


FGF10




0.798
0.045


FGF17


0.718
0.018
0.793
0.024
0.790
0.024


FGFR2
0.739
0.007
0.783
0.038
0.740
0.004


FGFR4


0.746
0.050


FKBP5


0.689
0.003


FLNA
0.701
0.006
0.766
0.029
0.768
0.037


FLNC




0.755
<.001
0.820
0.022


FLT1


0.729
0.008


FOS
0.572
<.001
0.536
<.001


0.750
0.005


FOXQ1
0.778
0.033


0.820
0.018


FYN
0.708
0.006


GADD45B
0.577
<.001
0.589
<.001


GDF15
0.757
0.013
0.743
0.006


GHR


0.712
0.004


0.679
0.001


GNRH1




0.791
0.048


GPM6B
0.675
<.001
0.660
<.001
0.735
<.001
0.823
0.049


GSK3B
0.783
0.042


GSN
0.587
<.001
0.705
0.002
0.745
0.004
0.796
0.021


GSTM1
0.686
0.001
0.631
<.001
0.807
0.018


GSTM2
0.607
<.001
0.683
<.001
0.679
<.001
0.800
0.027


HIRIP3
0.692
<.001


0.782
0.007


HK1
0.724
0.002
0.718
0.002


HLF
0.580
<.001
0.571
<.001
0.759
0.008
0.750
0.004


HNF1B


0.669
<.001


HPS1
0.764
0.008


HSD17B10
0.802
0.045


HSD17B2




0.723
0.048


HSD3B2






0.709
0.010


HSP90AB1
0.780
0.034


0.809
0.041


HSPA5


0.738
0.017


HSPB1
0.770
0.006
0.801
0.032


HSPB2




0.788
0.035


ICAM1
0.728
0.015
0.716
0.010


IER3
0.735
0.016
0.637
<.001


0.802
0.035


IFIT1
0.647
<.001
0.755
0.029


IGF1
0.675
<.001
0.603
<.001
0.762
0.006
0.770
0.030


IGF2




0.761
0.011


IGFBP2
0.601
<.001
0.605
<.001


IGFBP5
0.702
<.001


IGFBP6
0.628
<.001


0.726
0.003


IL1B
0.676
0.002
0.716
0.004


IL6
0.688
0.005
0.766
0.044


IL6R


0.786
0.036


IL6ST
0.618
<.001
0.639
<.001
0.785
0.027
0.813
0.042


IL8
0.635
<.001
0.628
<.001


ILK
0.734
0.018
0.753
0.026


ING5
0.684
<.001
0.681
<.001
0.756
0.006


ITGA4
0.778
0.040


ITGA5
0.762
0.026


ITGA6


0.811
0.038


ITGA7
0.592
<.001
0.715
0.006
0.710
0.002


ITGAD


0.576
0.006


ITGB4


0.693
0.003


ITPR1
0.789
0.029


JUN
0.572
<.001
0.581
<.001


0.777
0.019


JUNB
0.732
0.030
0.707
0.016


KCTD12
0.758
0.036


KIT




0.691
0.009
0.738
0.028


KLC1
0.741
0.024


0.781
0.024


KLF6
0.733
0.018
0.727
0.014


KLK1


0.744
0.028


KLK2
0.697
0.002
0.679
<.001


KLK3
0.725
<.001
0.715
<.001


0.841
0.023


KRT15
0.660
<.001
0.577
<.001
0.750
0.002


KRT18
0.623
<.001
0.642
<.001
0.702
<.001
0.760
0.006


KRT2




0.740
0.044


KRT5
0.674
<.001
0.588
<.001
0.769
0.005


KRT8
0.768
0.034


L1CAM
0.737
0.036


LAG3
0.711
0.013
0.748
0.029


LAMA4




0.649
0.009


LAMB3
0.709
0.002
0.684
0.006
0.768
0.006


LGALS3
0.652
<.001
0.752
0.015
0.805
0.028


LIG3
0.728
0.016
0.667
<.001


LRP1






0.811
0.043


MDM2


0.788
0.033


MGMT
0.645
<.001
0.766
0.015


MICA
0.796
0.043
0.676
<.001


MPPED2
0.675
<.001
0.616
<.001
0.750
0.006


MRC1






0.788
0.028


MTSS1
0.654
<.001


0.793
0.036


MYBPC1
0.706
<.001
0.534
<.001
0.773
0.004
0.692
<.001


NCAPD3
0.658
<.001
0.566
<.001
0.753
0.011
0.733
0.009


NCOR1


0.838
0.045


NEXN
0.748
0.025


0.785
0.020


NFAT5
0.531
<.001
0.626
<.001


NFATC2


0.759
0.024


OAZ1


0.766
0.024


OLFML3
0.648
<.001
0.748
0.005
0.639
<.001
0.675
<.001


OR51E2
0.823
0.034


PAGE4
0.599
<.001
0.698
0.002
0.606
<.001
0.726
<.001


PCA3
0.705
<.001
0.647
<.001


PCDHGB7






0.712
<.001


PGF
0.790
0.039


PLG






0.764
0.048


PLP2


0.766
0.037


PPAP2B
0.589
<.001
0.647
<.001
0.691
<.001
0.765
0.013


PPP1R12A
0.673
0.001
0.677
0.001


0.807
0.045


PRIMA1
0.622
<.001
0.712
0.008
0.740
0.013


PRKCA
0.637
<.001


0.694
<.001


PRKCB
0.741
0.020


0.664
<.001


PROM1
0.599
0.017
0.527
0.042
0.610
0.006
0.420
0.002


PTCH1
0.752
0.027


0.762
0.011


PTEN
0.779
0.011
0.802
0.030
0.788
0.009


PTGS2
0.639
<.001
0.606
<.001


PTHLH
0.632
0.007
0.739
0.043
0.654
0.002
0.740
0.015


PTK2B


0.775
0.019
0.831
0.028
0.810
0.017


PTPN1
0.721
0.012
0.737
0.024


PYCARD


0.702
0.005


RAB27A


0.736
0.008


RAB30
0.761
0.011


RARB


0.746
0.010


RASSF1
0.805
0.043


RHOB
0.755
0.029
0.672
0.001


RLN1
0.742
0.036
0.740
0.036


RND3
0.607
<.001
0.633
<.001


RNF114
0.782
0.041
0.747
0.013


SDC2




0.714
0.002


SDHC
0.698
<.001
0.762
0.029


SERPINA3


0.752
0.030


SERPINB5


0.669
0.014


SH3RF2
0.705
0.012
0.568
<.001


0.755
0.016


SLC22A3
0.650
<.001
0.582
<.001


SMAD4
0.636
<.001
0.684
0.002
0.741
0.007
0.738
0.007


SMARCD1
0.757
0.001


SMO
0.790
0.049




0.766
0.013


SOD1
0.741
0.037
0.713
0.007


SORBS1
0.684
0.003
0.732
0.008
0.788
0.049


SPDEF
0.840
0.012


SPINT1


0.837
0.048


SRC
0.674
<.001
0.671
<.001


SRD5A2
0.553
<.001
0.588
<.001
0.618
<.001
0.701
<.001


ST5
0.747
0.012
0.761
0.010
0.780
0.016
0.832
0.041


STAT3


0.735
0.020


STAT5A
0.731
0.005
0.743
0.009


0.817
0.027


STAT5B
0.708
<.001
0.696
0.001


SUMO1
0.815
0.037


SVIL
0.689
0.003
0.739
0.008
0.761
0.011


TBP
0.792
0.037


TFF3
0.719
0.007
0.664
0.001


TGFB1I1
0.676
0.003
0.707
0.007
0.709
0.005
0.777
0.035


TGFB2
0.741
0.010
0.785
0.017


TGFBR2




0.759
0.022


TIMP3




0.785
0.037


TMPRSS2
0.780
0.012
0.742
<.001


TNF


0.654
0.007


0.682
0.006


TNFRSF10B
0.623
<.001
0.681
<.001
0.801
0.018
0.815
0.019


TNFSF10
0.721
0.004


TP53


0.759
0.011


TP63


0.737
0.020
0.754
0.007


TPM2
0.609
<.001
0.671
<.001
0.673
<.001
0.789
0.031


TRAF3IP2
0.795
0.041
0.727
0.005


TRO
0.793
0.033
0.768
0.027
0.814
0.023


TUBB2A
0.626
<.001
0.590
<.001


VCL
0.613
<.001
0.701
0.011


VIM
0.716
0.005


0.792
0.025


WFDC1




0.824
0.029


YY1
0.668
<.001
0.787
0.014
0.716
0.001
0.819
0.011


ZFHX3
0.732
<.001
0.709
<.001


ZFP36
0.656
0.001
0.609
<.001


0.818
0.045


ZNF827
0.750
0.022









Tables 6A and 6B provide genes that were significantly associated (p<0.05), positively or negatively, with recurrence (cRFI, bRFI) after adjusting for Gleason pattern in the primary and/or highest Gleason pattern. Increased expression of genes in Table 6A is negatively associated with good prognosis, while increased expression of gene in Table 6B is positively associated with good prognosis.









TABLE 6A







Table 6A.


Genes significantly (p < 0.05) associated with cRFI or bRFI after adjustment for


Gleason pattern in the primary Gleason pattern or highest Gleason pattern with


a hazard ratio (HR) > 1.0 (increased expression is negatively associated with


good prognosis)












cRFI
cRFI
bRFI
bRFI


Official
Primary Pattern
Highest Pattern
Primary Pattern
Highest Pattern















Symbol
HR
p-value
HR
p-value
HR
p-value
HR
p-value


















AKR1C3
1.258
0.039








ANLN
1.292
0.023


1.449
<.001
1.420
0.001


AQP2
1.178
0.008
1.287
<.001


ASAP2


1.396
0.015


ASPN
1.809
<.001
1.508
0.009
1.506
0.002
1.438
0.002


BAG5


1.367
0.012


BAX






1.234
0.044


BGN
1.465
0.009
1.342
0.046


BIRC5
1.338
0.008


1.364
0.004
1.279
0.006


BMP6
1.369
0.015
1.518
0.002


BUB1
1.239
0.024
1.227
0.001
1.236
0.004


CACNA1D


1.337
0.025


CADPS




1.280
0.029


CCNE2


1.256
0.043
1.577
<.001
1.324
0.001


CD276
1.320
0.029
1.396
0.007
1.279
0.033


CDC20
1.298
0.016
1.334
0.002
1.257
0.032
1.279
0.003


CDH7
1.258
0.047
1.338
0.013


CDKN2B
1.342
0.032
1.488
0.009


CDKN2C
1.344
0.010
1.450
<.001


CDKN3
1.284
0.012


CENPF
1.289
0.048


1.498
0.001
1.344
0.010


COL1A1
1.481
0.003
1.506
0.002


COL3A1
1.459
0.004
1.430
0.013


COL4A1
1.396
0.015


COL8A1
1.413
0.008


CRISP3
1.346
0.012
1.310
0.025


CTHRC1


1.588
0.002


DDIT4
1.363
0.020
1.379
0.028


DICER1






1.294
0.008


ENY2




1.269
0.024


FADD


1.307
0.010


FAS






1.243
0.025


FGF5
1.328
0.002


GNPTAB






1.246
0.037


GREM1
1.332
0.024
1.377
0.013
1.373
0.011


HDAC1




1.301
0.018
1.237
0.021


HSD17B4






1.277
0.011


IFN-γ




1.219
0.048


IMMT




1.230
0.049


INHBA
1.866
<.001
1.944
<.001


JAG1


1.298
0.030


KCNN2


1.378
0.020


1.282
0.017


KHDRBS3


1.353
0.029
1.305
0.014


LAMA3




1.344
<.001
1.232
0.048


LAMC1
1.396
0.015


LIMS1






1.337
0.004


LOX




1.355
0.001
1.341
0.002


LTBP2


1.304
0.045


MAGEA4
1.215
0.024


MANF




1.460
<.001


MCM6


1.287
0.042


1.214
0.046


MELK




1.329
0.002


MMP11
1.281
0.050


MRPL13






1.266
0.021


MYBL2
1.453
<.001


1.274
0.019


MYC




1.265
0.037


MYO6


1.278
0.047


NETO2
1.322
0.022


NFKB1






1.255
0.032


NOX4




1.266
0.041


OR51E1




1.566
<.001
1.428
0.003


PATE1
1.242
<.001
1.347
<.001


1.177
0.011


PCNA






1.251
0.025


PEX10


1.302
0.028


PGD


1.335
0.045
1.379
0.014
1.274
0.025


PIM1




1.254
0.019


PLA2G7




1.289
0.025
1.250
0.031


PLAU




1.267
0.031


PSMD13






1.333
0.005


PTK6
1.432
<.001
1.577
<.001
1.223
0.040


PTTG1




1.279
0.013
1.308
0.006


RAGE






1.329
0.011


RALA
1.363
0.044


1.471
0.003


RGS7
1.120
0.040
1.173
0.031


RRM1
1.490
0.004
1.527
<.001


SESN3


1.353
0.017


SFRP4
1.370
0.025


SHMT2
1.460
0.008
1.410
0.006
1.407
0.008
1.345
<.001


SKIL




1.307
0.025


SLC25A21




1.414
0.002
1.330
0.004


SMARCC2




1.219
0.049


SPARC


1.431
0.005


TFDP1




1.283
0.046
1.345
0.003


THBS2
1.456
0.005
1.431
0.012


TK1




1.214
0.015
1.222
0.006


TOP2A


1.367
0.018
1.518
0.001
1.480
<.001


TPX2
1.513
0.001
1.607
<.001
1.588
<.001
1.481
<.001


UBE2T
1.409
0.002


1.285
0.018


UGT2B15


1.216
0.009


1.182
0.021


XIAP




1.336
0.037
1.194
0.043
















TABLE 6B







Table 6B.


Genes significantly (p < 0.05) associated with cRFI or bRFI after adjustment for


Gleason pattern in the primary Gleason pattern or highest Gleason pattern with


hazard ration (HR) < 1.0 (increased expression is positively associated with


good prognosis)












cRFI
cRFI
bRFI
bRFI


Official
Primary Pattern
Highest Pattern
Primary Pattern
Highest Pattern















Symbol
HR
p-value
HR
p-value
HR
p-value
HR
p-value


















AAMP
0.660
0.001
0.675
<.001


0.836
0.045


ABCA5
0.807
0.014
0.737
<.001


0.845
0.030


ABCC1
0.780
0.038
0.794
0.015


ABCG2






0.807
0.035


ABHD2


0.720
0.002


ADH5
0.750
0.034


AKAP1


0.721
<.001


ALDH1A2
0.735
0.009
0.592
<.001
0.756
0.007
0.781
0.021


ANGPT2




0.741
0.036


ANPEP
0.637
<.001
0.536
<.001


ANXA2


0.762
0.044


APOE


0.707
0.013


APRT


0.727
0.004


0.771
0.006


ATXN1
0.725
0.013


AURKA
0.784
0.037
0.735
0.003


AXIN2
0.744
0.004
0.630
<.001


AZGP1
0.672
<.001
0.720
<.001
0.764
0.001


BAD


0.687
<.001


BAK1


0.783
0.014


BCL2
0.777
0.033
0.772
0.036


BIK


0.768
0.040


BIN1
0.691
<.001


BTRC


0.776
0.029


C7
0.707
0.004


0.791
0.024


CADM1
0.587
<.001
0.593
<.001


CASP1
0.773
0.023


0.820
0.025


CAV1




0.753
0.014


CAV2


0.627
0.009


0.682
0.003


CCL2


0.740
0.019


CCNH
0.736
0.003


CCR1


0.755
0.022


CD1A




0.740
0.025


CD44
0.590
<.001
0.637
<.001


CD68
0.757
0.026


CD82
0.778
0.012
0.759
0.016


CDC25B
0.760
0.021


CDK3
0.762
0.024


0.774
0.007


CDKN1A


0.714
0.015


CDKN1C
0.738
0.014


0.768
0.021


COL6A1
0.690
<.001
0.805
0.048


CSF1
0.675
0.002
0.779
0.036


CSK




0.825
0.004


CTNNB1
0.884
0.045


0.888
0.027


CTSB
0.740
0.017
0.676
0.003
0.755
0.010


CTSD
0.673
0.031
0.722
0.009


CTSK




0.804
0.034


CTSL2


0.748
0.019


CXCL12
0.731
0.017


CYP3A5
0.523
<.001
0.518
<.001


CYR61
0.744
0.041


DAP




0.755
0.011


DARC




0.763
0.029


DDR2






0.813
0.041


DES
0.743
0.020


DHRS9
0.606
0.001


DHX9
0.916
0.021


DIAPH1
0.749
0.036
0.688
0.003


DLGAP1
0.758
0.042
0.676
0.002


DLL4






0.779
0.010


DNM3
0.732
0.007


DPP4
0.732
0.004
0.750
0.014


DPT


0.704
0.014


DUSP6
0.662
<.001
0.665
0.001


EBNA1BP2






0.828
0.019


EDNRA
0.782
0.048


EGF


0.712
0.023


EGR1
0.678
0.004
0.725
0.028


EGR3
0.680
0.006
0.738
0.027


EIF2C2


0.789
0.032


EIF2S3






0.759
0.012


ELK4
0.745
0.024


EPHA2


0.661
0.007


EPHA3
0.781
0.026




0.828
0.037


ERBB2
0.791
0.022
0.760
0.014
0.789
0.006


ERBB3


0.757
0.009


ERCC1






0.760
0.008


ESR1


0.742
0.014


ESR2


0.711
0.038


ETV4


0.714
0.035


FAM107A
0.619
<.001
0.710
0.011


0.781
0.019


FAM13C
0.664
<.001
0.686
<.001


0.813
0.014


FAM49B
0.670
<.001
0.793
0.014
0.815
0.044
0.843
0.047


FASLG


0.616
0.004


0.813
0.038


FGF10
0.751
0.028


0.766
0.019


FGF17


0.718
0.031
0.765
0.019


FGFR2
0.740
0.009


0.738
0.002


FKBP5


0.749
0.031


FLNC




0.826
0.029


FLT1
0.779
0.045
0.729
0.006


FLT4






0.815
0.024


FOS
0.657
0.003
0.656
0.004


FSD1






0.763
0.017


FYN
0.716
0.004


0.792
0.024


GADD45B
0.692
0.009
0.697
0.010


GDF15


0.767
0.016


GHR


0.701
0.002
0.704
0.002
0.640
<.001


GNRH1




0.778
0.039


GPM6B
0.749
0.010
0.750
0.010
0.827
0.037


GRB7


0.696
0.005


GSK3B
0.726
0.005


GSN
0.660
<.001
0.752
0.019


GSTM1
0.710
0.004
0.676
<.001


GSTM2
0.643
<.001


0.767
0.015


HK1
0.798
0.035


HLA-G


0.660
0.013


HLF
0.644
<.001
0.727
0.011


HNF1B


0.755
0.013


HPS1
0.756
0.006
0.791
0.043


HSD17B10
0.737
0.006


HSD3B2






0.674
0.003


HSP90AB1


0.763
0.015


HSPB1
0.787
0.020
0.778
0.015


HSPE1


0.794
0.039


ICAM1


0.664
0.003


IER3
0.699
0.003
0.693
0.010


IFIT1
0.621
<.001
0.733
0.027


IGF1
0.751
0.017
0.655
<.001


IGFBP2
0.599
<.001
0.605
<.001


IGFBP5
0.745
0.007
0.775
0.035


IGFBP6
0.671
0.005


IL1B
0.732
0.016
0.717
0.005


IL6
0.763
0.040


IL6R


0.764
0.022


IL6ST
0.647
<.001
0.739
0.012


IL8
0.711
0.015
0.694
0.006


ING5
0.729
0.007
0.727
0.003


ITGA4


0.755
0.009


ITGA5
0.743
0.018
0.770
0.034


ITGA6
0.816
0.044
0.772
0.006


ITGA7
0.680
0.004


ITGAD


0.590
0.009


ITGB4
0.663
<.001
0.658
<.001
0.759
0.004


JUN
0.656
0.004
0.639
0.003


KIAA0196
0.737
0.011


KIT




0.730
0.021
0.724
0.008


KLC1
0.755
0.035


KLK1
0.706
0.008


KLK2
0.740
0.016
0.723
0.001


KLK3
0.765
0.006
0.740
0.002


KRT1






0.774
0.042


KRT15
0.658
<.001
0.632
<.001
0.764
0.008


KRT18
0.703
0.004
0.672
<.001
0.779
0.015
0.811
0.032


KRT5
0.686
<.001
0.629
<.001
0.802
0.023


KRT8
0.763
0.034
0.771
0.022


L1CAM
0.748
0.041


LAG3
0.693
0.008
0.724
0.020


LAMA4




0.689
0.039


LAMB3
0.667
<.001
0.645
<.001
0.773
0.006


LGALS3
0.666
<.001


0.822
0.047


LIG3


0.723
0.008


LRP1
0.777
0.041




0.769
0.007


MDM2


0.688
<.001


MET
0.709
0.010
0.736
0.028
0.715
0.003


MGMT
0.751
0.031


MICA


0.705
0.002


MPPED2
0.690
0.001
0.657
<.001
0.708
<.001


MRC1






0.812
0.049


MSH6






0.860
0.049


MTSS1
0.686
0.001


MVP
0.798
0.034
0.761
0.033


MYBPC1
0.754
0.009
0.615
<.001


NCAPD3
0.739
0.021
0.664
0.005


NEXN


0.798
0.037


NFAT5
0.596
<.001
0.732
0.005


NFATC2
0.743
0.016
0.792
0.047


NOS3
0.730
0.012
0.757
0.032


OAZ1
0.732
0.020
0.705
0.002


OCLN




0.746
0.043
0.784
0.025


OLFML3
0.711
0.002


0.709
<.001
0.720
0.001


OMD
0.729
0.011
0.762
0.033


OSM






0.813
0.028


PAGE4
0.668
0.003
0.725
0.004
0.688
<.001
0.766
0.005


PCA3
0.736
0.001
0.691
<.001


PCDHGB7




0.769
0.019
0.789
0.022


PIK3CA


0.768
0.010


PIK3CG
0.792
0.019
0.758
0.009


PLG






0.682
0.009


PPAP2B
0.688
0.005


0.815
0.046


PPP1R12A
0.731
0.026
0.775
0.042


PRIMA1
0.697
0.004
0.757
0.032


PRKCA
0.743
0.019


PRKCB
0.756
0.036


0.767
0.029


PROM1
0.640
0.027


0.699
0.034
0.503
0.013


PTCH1
0.730
0.018


PTEN
0.779
0.015


0.789
0.007


PTGS2
0.644
<.001
0.703
0.007


PTHLH
0.655
0.012
0.706
0.038
0.634
0.001
0.665
0.003


PTK2B
0.779
0.023
0.702
0.002
0.806
0.015
0.806
0.024


PYCARD


0.659
0.001


RAB30
0.779
0.033
0.754
0.014


RARB
0.787
0.043
0.742
0.009


RASSF1
0.754
0.005


RHOA


0.796
0.041


0.819
0.048


RND3
0.721
0.011
0.743
0.028


SDC1


0.707
0.011


SDC2




0.745
0.002


SDHC
0.750
0.013


SERPINA3


0.730
0.016


SERPINB5


0.715
0.041


SH3RF2


0.698
0.025


SIPA1L1


0.796
0.014


0.820
0.004


SLC22A3
0.724
0.014
0.700
0.008


SMAD4
0.668
0.002


0.771
0.016


SMARCD1
0.726
<.001
0.700
0.001


0.812
0.028


SMO






0.785
0.027


SOD1


0.735
0.012


SORBS1


0.785
0.039


SPDEF
0.818
0.002


SPINT1
0.761
0.024
0.773
0.006


SRC
0.709
<.001
0.690
<.001


SRD5A1
0.746
0.010
0.767
0.024
0.745
0.003


SRD5A2
0.575
<.001
0.669
0.001
0.674
<.001
0.781
0.018


ST5
0.774
0.027


STAT1
0.694
0.004


STAT5A
0.719
0.004
0.765
0.006


0.834
0.049


STAT5B
0.704
0.001
0.744
0.012


SUMO1
0.777
0.014


SVIL


0.771
0.026


TBP
0.774
0.031


TFF3
0.742
0.015
0.719
0.024


TGFB1I1
0.763
0.048


TGFB2
0.729
0.011
0.758
0.002


TMPRSS2
0.810
0.034
0.692
<.001


TNF






0.727
0.022


TNFRSF10A


0.805
0.025


TNFRSF10B
0.581
<.001
0.738
0.014
0.809
0.034


TNFSF10
0.751
0.015
0.700
<.001


TP63


0.723
0.018
0.736
0.003


TPM2
0.708
0.010
0.734
0.014


TRAF3IP2


0.718
0.004


TRO


0.742
0.012


TSTA3


0.774
0.028


TUBB2A
0.659
<.001
0.650
<.001


TYMP
0.695
0.002


VCL
0.683
0.008


VIM
0.778
0.040


WDR19






0.775
0.014


XRCC5
0.793
0.042


YY1
0.751
0.025




0.810
0.008


ZFHX3
0.760
0.005
0.726
0.001


ZFP36
0.707
0.008
0.672
0.003


ZNF827
0.667
0.002


0.792
0.039









Tables 7A and 7B provide genes significantly associated (p<0.05), positively or negatively, with clinical recurrence (cRFI) in negative TMPRSS fusion specimens in the primary or highest Gleason pattern specimen. Increased expression of genes in Table 7A is negatively associated with good prognosis, while increased expression of genes in Table 7B is positively associated with good prognosis.









TABLE 7A







Table 7A. Genes significantly (p < 0.05) associated with


cRFI for TMPRSS2-ERG fusion negative in the primary Gleason


pattern or highest Gleason pattern with hazard ratio (HR) > 1.0


(increased expression is negatively associated with good prognosis)












Primary

Highest




Pattern

Pattern













Official Symbol
HR
p-value
HR
p-value

















ANLN
1.42
0.012
1.36
0.004



AQP2
1.25
0.033



ASPN
2.48
<.001
1.65
<.001



BGN
2.04
<.001
1.45
0.007



BIRC5
1.59
<.001
1.37
0.005



BMP6
1.95
<.001
1.43
0.012



BMPR1B
1.93
0.002



BUB1
1.51
<.001
1.35
<.001



CCNE2
1.48
0.007



CD276
1.93
<.001
1.79
<.001



CDC20
1.49
0.004
1.47
<.001



CDC6
1.52
0.009
1.34
0.022



CDKN2B
1.54
0.008
1.55
0.003



CDKN2C
1.55
0.003
1.57
<.001



CDKN3
1.34
0.026



CENPF
1.63
0.002
1.33
0.018



CKS2
1.50
0.026
1.43
0.009



CLTC


1.46
0.014



COL1A1
1.98
<.001
1.50
0.002



COL3A1
2.03
<.001
1.42
0.007



COL4A1
1.81
0.002



COL8A1
1.63
0.004
1.60
0.001



CRISP3


1.31
0.016



CTHRC1
1.67
0.006
1.48
0.005



DDIT4
1.49
0.037



ENY2


1.29
0.039



EZH2


1.35
0.016



F2R
1.46
0.034
1.46
0.007



FAP
1.66
0.006
1.38
0.012



FGF5


1.46
0.001



GNPTAB
1.49
0.013



HSD17B4
1.34
0.039
1.44
0.002



INHBA
2.92
<.001
2.19
<.001



JAG1
1.38
0.042



KCNN2
1.71
0.002
1.73
<.001



KHDRBS3


1.46
0.015



KLK14
1.28
0.034



KPNA2
1.63
0.016



LAMC1
1.41
0.044



LOX


1.29
0.036



LTBP2
1.57
0.017



MELK
1.38
0.029



MMP11
1.69
0.002
1.42
0.004



MYBL2
1.78
<.001
1.49
<.001



NETO2
2.01
<.001
1.43
0.007



NME1


1.38
0.017



PATE1
1.43
<.001
1.24
0.005



PEX10
1.46
0.030



PGD
1.77
0.002



POSTN
1.49
0.037
1.34
0.026



PPFIA3
1.51
0.012



PPP3CA
1.46
0.033
1.34
0.020



PTK6
1.69
<.001
1.56
<.001



PTTG1
1.35
0.028



RAD51
1.32
0.048



RALBP1


1.29
0.042



RGS7
1.18
0.012
1.32
0.009



RRM1
1.57
0.016
1.32
0.041



RRM2
1.30
0.039



SAT1
1.61
0.007



SESN3
1.76
<.001
1.36
0.020



SFRP4
1.55
0.016
1.48
0.002



SHMT2
2.23
<.001
1.59
<.001



SPARC
1.54
0.014



SQLE
1.86
0.003



STMN1
2.14
<.001



THBS2
1.79
<.001
1.43
0.009



TK1
1.30
0.026



TOP2A
2.03
<.001
1.47
0.003



TPD52
1.63
0.003



TPX2
2.11
<.001
1.63
<.001



TRAP1
1.46
0.023



UBE2C
1.57
<.001
1.58
<.001



UBE2G1
1.56
0.008



UBE2T
1.75
<.001



UGT2B15
1.31
0.036
1.33
0.004



UHRF1
1.46
0.007



UTP23
1.52
0.017

















TABLE 7B







Table 7B. Genes significantly (p < 0.05) associated with cRFI


for TMPRSS2-ERG fusion negative in the primary Gleason pattern


or highest Gleason pattern with hazard ratio (HR) < 1.0


(increased expression is positively associated with good prognosis)












Primary

Highest




Pattern

Pattern













Official Symbol
HR
p-value
HR
p-value

















AAMP
0.56
<.001
0.65
0.001



ABCA5
0.64
<.001
0.71
<.001



ABCB1
0.62
0.004



ABCC3


0.74
0.031



ABCG2


0.78
0.050



ABHD2
0.71
0.035



ACOX2
0.54
<.001
0.71
0.007



ADH5
0.49
<.001
0.61
<.001



AKAP1
0.77
0.031
0.76
0.013



AKR1C1
0.65
0.006
0.78
0.044



AKT1


0.72
0.020



AKT3
0.75
<.001



ALDH1A2
0.53
<.001
0.60
<.001



AMPD3
0.62
<.001
0.78
0.028



ANPEP
0.54
<.001
0.61
<.001



ANXA2
0.63
0.008
0.74
0.016



ARHGAP29
0.67
0.005
0.77
0.016



ARHGDIB
0.64
0.013



ATP5J
0.57
0.050



ATXN1
0.61
0.004
0.77
0.043



AXIN2
0.51
<.001
0.62
<.001



AZGP1
0.61
<.001
0.64
<.001



BCL2
0.64
0.004
0.75
0.029



BIN1
0.52
<.001
0.74
0.010



BTG3
0.75
0.032
0.75
0.010



BTRC
0.69
0.011



C7
0.51
<.001
0.67
<.001



CADM1
0.49
<.001
0.76
0.034



CASP1
0.71
0.010
0.74
0.007



CAV1


0.73
0.015



CCL5
0.67
0.018
0.67
0.003



CCNH
0.63
<.001
0.75
0.004



CCR1


0.77
0.032



CD164
0.52
<.001
0.63
<.001



CD44
0.53
<.001
0.74
0.014



CDH10
0.69
0.040



CDH18
0.40
0.011



CDK14
0.75
0.013



CDK2


0.81
0.031



CDK3
0.73
0.022



CDKN1A
0.68
0.038



CDKN1C
0.62
0.003
0.72
0.005



COL6A1
0.54
<.001
0.70
0.004



COL6A3
0.64
0.004



CSF1
0.56
<.001
0.78
0.047



CSRP1
0.40
<.001
0.66
0.002



CTGF
0.66
0.015
0.74
0.027



CTNNB1
0.69
0.043



CTSB
0.60
0.002
0.71
0.011



CTSS
0.67
0.013



CXCL12
0.56
<.001
0.77
0.026



CYP3A5
0.43
<.001
0.63
<.001



CYR61
0.43
<.001
0.58
<.001



DAG1


0.72
0.012



DARC
0.66
0.016



DDR2
0.65
0.007



DES
0.52
<.001
0.74
0.018



DHRS9
0.54
0.007



DICER1
0.70
0.044



DLC1


0.75
0.021



DLGAP1
0.55
<.001
0.72
0.005



DNM3
0.61
0.001



DPP4
0.55
<.001
0.77
0.024



DPT
0.48
<.001
0.61
<.001



DUSP1
0.47
<.001
0.59
<.001



DUSP6
0.65
0.009
0.65
0.002



DYNLL1


0.74
0.045



EDNRA
0.61
0.002
0.75
0.038



EFNB2
0.71
0.043



EGR1
0.43
<.001
0.58
<.001



EGR3
0.47
<.001
0.66
<.001



EIF5


0.77
0.028



ELK4
0.49
<.001
0.72
0.012



EPHA2


0.70
0.007



EPHA3
0.62
<.001
0.72
0.009



EPHB2
0.68
0.009



ERBB2
0.64
<.001
0.63
<.001



ERBB3
0.69
0.018



ERCC1
0.69
0.019
0.77
0.021



ESR2
0.61
0.020



FAAH
0.57
<.001
0.77
0.035



FABP5
0.67
0.035



FAM107A
0.42
<.001
0.59
<.001



FAM13C
0.53
<.001
0.59
<.001



FAS
0.71
0.035



FASLG
0.56
0.017
0.67
0.014



FGF10
0.57
0.002



FGF17
0.70
0.039
0.70
0.010



FGF7
0.63
0.005
0.70
0.004



FGFR2
0.63
0.003
0.71
0.003



FKBP5


0.72
0.020



FLNA
0.48
<.001
0.74
0.022



FOS
0.45
<.001
0.56
<.001



FOXO1
0.59
<.001



FOXQ1
0.57
<.001
0.69
0.008



FYN
0.62
0.001
0.74
0.013



G6PD


0.77
0.014



GADD45A
0.73
0.045



GADD45B
0.45
<.001
0.64
0.001



GDF15
0.58
<.001



GHR
0.62
0.008
0.68
0.002



GPM6B
0.60
<.001
0.70
0.003



GSK3B
0.71
0.016
0.71
0.006



GSN
0.46
<.001
0.66
<.001



GSTM1
0.56
<.001
0.62
<.001



GSTM2
0.47
<.001
0.67
<.001



HGD


0.72
0.002



HIRIP3
0.69
0.021
0.69
0.002



HK1
0.68
0.005
0.73
0.005



HLA-G
0.54
0.024
0.65
0.013



HLF
0.41
<.001
0.68
0.001



HNF1B
0.55
<.001
0.59
<.001



HPS1
0.74
0.015
0.76
0.025



HSD17B3
0.65
0.031



HSPB2
0.62
0.004
0.76
0.027



ICAM1
0.61
0.010



IER3
0.55
<.001
0.67
0.003



IFIT1
0.57
<.001
0.70
0.008



IFNG


0.69
0.040



IGF1
0.63
<.001
0.59
<.001



IGF2
0.67
0.019
0.70
0.005



IGFBP2
0.53
<.001
0.63
<.001



IGFBP5
0.57
<.001
0.71
0.006



IGFBP6
0.41
<.001
0.71
0.012



IL10
0.59
0.020



IL1B
0.53
<.001
0.70
0.005



IL6
0.55
0.001



IL6ST
0.45
<.001
0.68
<.001



IL8
0.60
0.005
0.70
0.008



ILK
0.68
0.029
0.76
0.036



ING5
0.54
<.001
0.82
0.033



ITGA1
0.66
0.017



ITGA3
0.70
0.020



ITGA5
0.64
0.011



ITGA6
0.66
0.003
0.74
0.006



ITGA7
0.50
<.001
0.71
0.010



ITGB4
0.63
0.014
0.73
0.010



ITPR1
0.55
<.001



ITPR3


0.76
0.007



JUN
0.37
<.001
0.54
<.001



JUNB
0.58
0.002
0.71
0.016



KCTD12
0.68
0.017



KIT
0.49
0.002
0.76
0.043



KLC1
0.61
0.005
0.77
0.045



KLF6
0.65
0.009



KLK1
0.68
0.036



KLK10


0.76
0.037



KLK2
0.64
<.001
0.73
0.006



KLK3
0.65
<.001
0.76
0.021



KLRK1
0.63
0.005



KRT15
0.52
<.001
0.58
<.001



KRT18
0.46
<.001



KRT5
0.51
<.001
0.58
<.001



KRT8
0.53
<.001



L1CAM
0.65
0.031



LAG3
0.58
0.002
0.76
0.033



LAMA4
0.52
0.018



LAMB3
0.60
0.002
0.65
0.003



LGALS3
0.52
<.001
0.71
0.002



LIG3
0.65
0.011



LRP1
0.61
0.001
0.75
0.040



MGMT
0.66
0.003



MICA
0.59
0.001
0.68
0.001



MLXIP
0.70
0.020



MMP2
0.68
0.022



MMP9
0.67
0.036



MPPED2
0.57
<.001
0.66
<.001



MRC1
0.69
0.028



MTSS1
0.63
0.005
0.79
0.037



MVP
0.62
<.001



MYBPC1
0.53
<.001
0.70
0.011



NCAM1
0.70
0.039
0.77
0.042



NCAPD3
0.52
<.001
0.59
<.001



NDRG1


0.69
0.008



NEXN
0.62
0.002



NFAT5
0.45
<.001
0.59
<.001



NFATC2
0.68
0.035
0.75
0.036



NFKBIA
0.70
0.030



NRG1
0.59
0.022
0.71
0.018



OAZ1
0.69
0.018
0.62
<.001



OLFML3
0.59
<.001
0.72
0.003



OR51E2
0.73
0.013



PAGE4
0.42
<.001
0.62
<.001



PCA3
0.53
<.001



PCDHGB7
0.70
0.032



PGF
0.68
0.027
0.71
0.013



PGR


0.76
0.041



PIK3C2A


0.80
<.001



PIK3CA
0.61
<.001
0.80
0.036



PIK3CG
0.67
0.001
0.76
0.018



PLP2
0.65
0.015
0.72
0.010



PPAP2B
0.45
<.001
0.69
0.003



PPP1R12A
0.61
0.007
0.73
0.017



PRIMA1
0.51
<.001
0.68
0.004



PRKCA
0.55
<.001
0.74
0.009



PRKCB
0.55
<.001



PROM1


0.67
0.042



PROS1
0.73
0.036



PTCH1
0.69
0.024
0.72
0.010



PTEN
0.54
<.001
0.64
<.001



PTGS2
0.48
<.001
0.55
<.001



PTH1R
0.57
0.003
0.77
0.050



PTHLH
0.55
0.010



PTK2B
0.56
<.001
0.70
0.001



PYCARD


0.73
0.009



RAB27A
0.65
0.009
0.71
0.014



RAB30
0.59
0.003
0.72
0.010



RAGE


0.76
0.011



RARB
0.59
<.001
0.63
<.001



RASSF1
0.67
0.003



RB1
0.67
0.006



RFX1
0.71
0.040
0.70
0.003



RHOA
0.71
0.038
0.65
<.001



RHOB
0.58
0.001
0.71
0.006



RND3
0.54
<.001
0.69
0.003



RNF114
0.59
0.004
0.68
0.003



SCUBE2


0.77
0.046



SDHC
0.72
0.028
0.76
0.025



SEC23A


0.75
0.029



SEMA3A
0.61
0.004
0.72
0.011



SEPT9
0.66
0.013
0.76
0.036



SERPINB5


0.75
0.039



SH3RF2
0.44
<.001
0.48
<.001



SHH


0.74
0.049



SLC22A3
0.42
<.001
0.61
<.001



SMAD4
0.45
<.001
0.66
<.001



SMARCD1
0.69
0.016



SOD1
0.68
0.042



SORBS1
0.51
<.001
0.73
0.012



SPARCL1
0.58
<.001
0.77
0.040



SPDEF
0.77
<.001



SPINT1
0.65
0.004
0.79
0.038



SRC
0.61
<.001
0.69
0.001



SRD5A2
0.39
<.001
0.55
<.001



ST5
0.61
<.001
0.73
0.012



STAT1
0.64
0.006



STAT3
0.63
0.010



STAT5A
0.62
0.001
0.70
0.003



STAT5B
0.58
<.001
0.73
0.009



SUMO1
0.66
<.001



SVIL
0.57
0.001
0.74
0.022



TBP
0.65
0.002



TFF1
0.65
0.021



TFF3
0.58
<.001



TGFB1I1
0.51
<.001
0.75
0.026



TGFB2
0.48
<.001
0.62
<.001



TGFBR2
0.61
0.003



TIAM1
0.68
0.019



TIMP2
0.69
0.020



TIMP3
0.58
0.002



TNFRSF10A
0.73
0.047



TNFRSF10B
0.47
<.001
0.70
0.003



TNFSF10
0.56
0.001



TP63


0.67
0.001



TPM1
0.58
0.004
0.73
0.017



TPM2
0.46
<.001
0.70
0.005



TRA2A
0.68
0.013



TRAF3IP2
0.73
0.041
0.71
0.004



TRO
0.72
0.016
0.71
0.004



TUBB2A
0.53
<.001
0.73
0.021



TYMP
0.70
0.011



VCAM1
0.69
0.041



VCL
0.46
<.001



VEGFA


0.77
0.039



VEGFB
0.71
0.035



VIM
0.60
0.001



XRCC5


0.75
0.026



YY1
0.62
0.008
0.77
0.039



ZFHX3
0.53
<.001
0.58
<.001



ZFP36
0.43
<.001
0.54
<.001



ZNF827
0.55
0.001










Tables 8A and 8B provide genes that were significantly associated (p<0.05), positively or negatively, with clinical recurrence (cRFI) in positive TMPRSS fusion specimens in the primary or highest Gleason pattern specimen. Increased expression of genes in Table 8A is negatively associated with good prognosis, while increased expression of genes in Table 8B is positively associated with good prognosis.









TABLE 8A







Table 8A. Genes significantly (p < 0.05) associated with cRFI


for TMPRSS2-ERG fusion positive in the primary Gleason pattern


or highest Gleason pattern with hazard ratio (HR) > 1.0


(increased expression is negatively associated with good prognosis)












Primary

Highest




Pattern

Pattern













Official Symbol
HR
p-value
HR
p-value

















ACTR2
1.78
0.017





AKR1C3
1.44
0.013



ALCAM


1.44
0.022



ANLN
1.37
0.046
1.81
<.001



APOE
1.49
0.023
1.66
0.005



AQP2


1.30
0.013



ARHGDIB
1.55
0.021



ASPN
2.13
<.001
2.43
<.001



ATP5E
1.69
0.013
1.58
0.014



BGN
1.92
<.001
2.55
<.001



BIRC5
1.48
0.006
1.89
<.001



BMP6
1.51
0.010
1.96
<.001



BRCA2


1.41
0.007



BUB1
1.36
0.007
1.52
<.001



CCNE2
1.55
0.004
1.59
<.001



CD276


1.65
<.001



CDC20
1.68
<.001
1.74
<.001



CDH11


1.50
0.017



CDH18
1.36
<.001



CDH7
1.54
0.009
1.46
0.026



CDKN2B
1.68
0.008
1.93
0.001



CDKN2C
2.01
<.001
1.77
<.001



CDKN3
1.51
0.002
1.33
0.049



CENPF
1.51
0.007
2.04
<.001



CKS2
1.43
0.034
1.56
0.007



COL1A1
2.23
<.001
3.04
<.001



COL1A2
1.79
0.001
2.22
<.001



COL3A1
1.96
<.001
2.81
<.001



COL4A1


1.52
0.020



COL5A1


1.50
0.020



COL5A2
1.64
0.017
1.55
0.010



COL8A1
1.96
<.001
2.38
<.001



CRISP3
1.68
0.002
1.67
0.002



CTHRC1


2.06
<.001



CTNND2
1.42
0.046
1.50
0.025



CTSK


1.43
0.049



CXCR4
1.82
0.001
1.64
0.007



DDIT4
1.54
0.016
1.58
0.009



DLL4


1.51
0.007



DYNLL1
1.50
0.021
1.22
0.002



F2R
2.27
<.001
2.02
<.001



FAP


2.12
<.001



FCGR3A


1.94
0.002



FGF5
1.23
0.047



FOXP3
1.52
0.006
1.48
0.018



GNPTAB


1.44
0.042



GPR68


1.51
0.011



GREM1
1.91
<.001
2.38
<.001



HDAC1


1.43
0.048



HDAC9
1.65
<.001
1.67
0.004



HRAS
1.65
0.005
1.58
0.021



IGFBP3
1.94
<.001
1.85
<.001



INHBA
2.03
<.001
2.64
<.001



JAG1
1.41
0.027
1.50
0.008



KCTD12


1.51
0.017



KHDRBS3
1.48
0.029
1.54
0.014



KPNA2


1.46
0.050



LAMA3
1.35
0.040



LAMC1
1.77
0.012



LTBP2


1.82
<.001



LUM
1.51
0.021
1.53
0.009



MELK
1.38
0.020
1.49
0.001



MKI67


1.37
0.014



MMP11
1.73
<.001
1.69
<.001



MRPL13


1.30
0.046



MYBL2
1.56
<.001
1.72
<.001



MYLK3


1.17
0.007



NOX4
1.58
0.005
1.96
<.001



NRIP3


1.30
0.040



NRP1


1.53
0.021



OLFML2B


1.54
0.024



OSM
1.43
0.018



PATE1
1.20
<.001
1.33
<.001



PCNA


1.64
0.003



PEX10
1.41
0.041
1.64
0.003



PIK3CA
1.38
0.037



PLK1
1.52
0.009
1.67
0.002



PLOD2


1.65
0.002



POSTN
1.79
<.001
2.06
<.001



PTK6
1.67
0.002
2.38
<.001



PTTG1
1.56
0.002
1.54
0.003



RAD21
1.61
0.036
1.53
0.005



RAD51


1.33
0.009



RALA
1.95
0.004
1.60
0.007



REG4


1.43
0.042



ROBO2
1.46
0.024



RRM1


1.44
0.033



RRM2
1.50
0.003
1.48
<.001



SAT1
1.42
0.009
1.43
0.012



SEC14L1


1.64
0.002



SFRP4
2.07
<.001
2.40
<.001



SHMT2
1.52
0.030
1.60
0.001



SLC44A1


1.42
0.039



SPARC
1.93
<.001
2.21
<.001



SULF1
1.63
0.006
2.04
<.001



THBS2
1.95
<.001
2.26
<.001



THY1
1.69
0.016
1.95
0.002



TK1


1.43
0.003



TOP2A
1.57
0.002
2.11
<.001



TPX2
1.84
<.001
2.27
<.001



UBE2C
1.41
0.011
1.44
0.006



UBE2T
1.63
0.001



UHRF1
1.51
0.007
1.69
<.001



WISP1
1.47
0.045



WNT5A
1.35
0.027
1.63
0.001



ZWINT
1.36
0.045

















TABLE 8B







Table 8B. Genes significantly (p < 0.05) associated with cRFI


for TMPRSS2-ERG fusion positive in the primary Gleason pattern


or highest Gleason pattern with hazard ratio (HR) < 1.0


(increased expression is positively associated with good prognosis)












Primary

Highest




Pattern

Pattern













Official Symbol
HR
p-value
HR
p-value

















AAMP
0.57
0.007
0.58
<.001



ABCA5


0.80
0.044



ACE
0.65
0.023
0.55
<.001



ACOX2


0.55
<.001



ADH5


0.68
0.022



AKAP1


0.81
0.043



ALDH1A2
0.72
0.036
0.43
<.001



ANPEP
0.66
0.022
0.46
<.001



APRT


0.73
0.040



AXIN2


0.60
<.001



AZGP1
0.57
<.001
0.65
<.001



BCL2


0.69
0.035



BIK
0.71
0.045



BIN1
0.71
0.004
0.71
0.009



BTRC
0.66
0.003
0.58
<.001



C7


0.64
0.006



CADM1
0.61
<.001
0.47
<.001



CCL2


0.73
0.042



CCNH
0.69
0.022



CD44
0.56
<.001
0.58
<.001



CD82


0.72
0.033



CDC25B
0.74
0.028



CDH1
0.75
0.030
0.72
0.010



CDH19


0.56
0.015



CDK3


0.78
0.045



CDKN1C
0.74
0.045
0.70
0.014



CSF1


0.72
0.037



CTSB


0.69
0.048



CTSL2


0.58
0.005



CYP3A5
0.51
<.001
0.30
<.001



DHX9
0.89
0.006
0.87
0.012



DLC1


0.64
0.023



DLGAP1
0.69
0.010
0.49
<.001



DPP4
0.64
<.001
0.56
<.001



DPT


0.63
0.003



EGR1


0.69
0.035



EGR3


0.68
0.025



EIF2S3


0.70
0.021



EIF5
0.71
0.030



ELK4
0.71
0.041
0.60
0.003



EPHA2
0.72
0.036
0.66
0.011



EPHB4


0.65
0.007



ERCC1


0.68
0.023



ESR2


0.64
0.027



FAM107A
0.64
0.003
0.61
0.003



FAM13C
0.68
0.006
0.55
<.001



FGFR2
0.73
0.033
0.59
<.001



FKBP5


0.60
0.006



FLNC
0.68
0.024
0.65
0.012



FLT1


0.71
0.027



FOS


0.62
0.006



FOXO1


0.75
0.010



GADD45B


0.68
0.020



GHR


0.62
0.006



GPM6B


0.57
<.001



GSTM1
0.68
0.015
0.58
<.001



GSTM2
0.65
0.005
0.47
<.001



HGD
0.63
0.001
0.71
0.020



HK1
0.67
0.003
0.62
0.002



HLF


0.59
<.001



HNF1B
0.66
0.004
0.61
0.001



IER3


0.70
0.026



IGF1
0.63
0.005
0.55
<.001



IGF1R


0.76
0.049



IGFBP2
0.59
0.007
0.64
0.003



IL6ST


0.65
0.005



IL8
0.61
0.005
0.66
0.019



ILK


0.64
0.015



ING5
0.73
0.033
0.70
0.009



ITGA7
0.72
0.045
0.69
0.019



ITGB4


0.63
0.002



KLC1


0.74
0.045



KLK1
0.56
0.002
0.49
<.001



KLK10


0.68
0.013



KLK11


0.66
0.003



KLK2
0.66
0.045
0.65
0.011



KLK3
0.75
0.048
0.77
0.014



KRT15
0.71
0.017
0.50
<.001



KRT5
0.73
0.031
0.54
<.001



LAMA5


0.70
0.044



LAMB3
0.70
0.005
0.58
<.001



LGALS3


0.69
0.025



LIG3


0.68
0.022



MDK
0.69
0.035



MGMT
0.59
0.017
0.60
<.001



MGST1


0.73
0.042



MICA


0.70
0.009



MPPED2
0.72
0.031
0.54
<.001



MTSS1
0.62
0.003



MYBPC1


0.50
<.001



NCAPD3
0.62
0.007
0.38
<.001



NCOR1


0.82
0.048



NFAT5
0.60
0.001
0.62
<.001



NRG1
0.66
0.040
0.61
0.029



NUP62
0.75
0.037



OMD
0.54
<.001



PAGE4


0.64
0.005



PCA3


0.66
0.012



PCDHGB7


0.68
0.018



PGR


0.60
0.012



PPAP2B


0.62
0.010



PPP1R12A
0.73
0.031
0.58
0.003



PRIMA1


0.65
0.013



PROM1
0.41
0.013



PTCH1
0.64
0.006



PTEN


0.75
0.047



PTGS2


0.67
0.011



PTK2B


0.66
0.005



PTPN1


0.71
0.026



RAGE
0.70
0.012



RARB


0.68
0.016



RGS10


0.84
0.034



RHOB


0.66
0.016



RND3


0.63
0.004



SDHC
0.73
0.044
0.69
0.016



SERPINA3
0.67
0.011
0.51
<.001



SERPINB5


0.42
<.001



SH3RF2
0.66
0.012
0.51
<.001



SLC22A3
0.59
0.003
0.48
<.001



SMAD4
0.64
0.004
0.49
<.001



SMARCC2


0.73
0.042



SMARCD1
0.73
<.001
0.76
0.035



SMO


0.64
0.006



SNAI1


0.53
0.008



SOD1


0.60
0.003



SRC
0.64
<.001
0.61
<.001



SRD5A2
0.63
0.004
0.59
<.001



STAT3


0.64
0.014



STAT5A


0.70
0.032



STAT5B
0.74
0.034
0.63
0.003



SVIL


0.71
0.028



TGFB1I1


0.68
0.036



TMPRSS2
0.72
0.015
0.67
<.001



TNFRSF10A


0.69
0.010



TNFRSF10B
0.67
0.007
0.64
0.001



TNFRSF18
0.38
0.003



TNFSF10


0.71
0.025



TP53
0.68
0.004
0.57
<.001



TP63
0.75
0.049
0.52
<.001



TPM2


0.62
0.007



TRAF3IP2
0.71
0.017
0.68
0.005



TRO


0.72
0.033



TUBB2A


0.69
0.038



VCL


0.62
<.001



VEGFA


0.71
0.037



WWOX


0.65
0.004



ZFHX3
0.77
0.011
0.73
0.012



ZFP36


0.69
0.018



ZNF827
0.68
0.013
0.49
<.001










Tables 9A and 9B provide genes significantly associated (p<0.05), positively or negatively, with TMPRSS fusion status in the primary Gleason pattern. Increased expression of genes in Table 9A are positively associated with TMPRSS fusion positivity, while increased expression of genes in Table 10A are negatively associated with TMPRSS fusion positivity.









TABLE 9A







Table 9A. Genes significantly (p < 0.05) associated with


TMPRSS fusion status in the primary Gleason pattern with odds


ratio (OR) > 1.0 (increased expression is positively associated


with TMPRSS fusion positivity











Official Symbol
p-value
Odds Ratio















ABCC8
<.001
1.86



ALDH18A1
0.005
1.49



ALKBH3
0.043
1.30



ALOX5
<.001
1.66



AMPD3
<.001
3.92



APEX1
<.001
2.00



ARHGDIB
<.001
1.87



ASAP2
0.019
1.48



ATXN1
0.013
1.41



BMPR1B
<.001
2.37



CACNA1D
<.001
9.01



CADPS
0.015
1.39



CD276
0.003
2.25



CDH1
0.016
1.37



CDH7
<.001
2.22



CDK7
0.025
1.43



COL9A2
<.001
2.58



CRISP3
<.001
2.60



CTNND1
0.033
1.48



ECE1
<.001
2.22



EIF5
0.023
1.34



EPHB4
0.005
1.51



ERG
<.001
14.5



FAM171B
0.047
1.32



FAM73A
0.008
1.45



FASN
0.004
1.50



GNPTAB
<.001
1.60



GPS1
0.006
1.45



GRB7
0.023
1.38



HDAC1
<.001
4.95



HGD
<.001
1.64



HIP1
<.001
1.90



HNF1B
<.001
3.55



HSPA8
0.041
1.32



IGF1R
0.001
1.73



ILF3
<.001
1.91



IMMT
0.025
1.36



ITPR1
<.001
2.72



ITPR3
<.001
5.91



JAG1
0.007
1.42



KCNN2
<.001
2.80



KHDRBS3
<.001
2.63



KIAA0247
0.019
1.38



KLK11
<.001
1.98



LAMC1
0.008
1.56



LAMC2
<.001
3.30



LOX
0.009
1.41



LRP1
0.044
1.30



MAP3K5
<.001
2.06



MAP7
<.001
2.74



MSH2
0.005
1.59



MSH3
0.006
1.45



MUC1
0.012
1.42



MYO6
<.001
3.79



NCOR2
0.001
1.62



NDRG1
<.001
6.77



NETO2
<.001
2.63



ODC1
<.001
1.98



OR51E1
<.001
2.24



PDE9A
<.001
2.21



PEX10
<.001
3.41



PGK1
0.022
1.33



PLA2G7
<.001
5.51



PPP3CA
0.047
1.38



PSCA
0.013
1.43



PSMD13
0.004
1.51



PTCH1
0.022
1.38



PTK2
0.014
1.38



PTK6
<.001
2.29



PTK7
<.001
2.45



PTPRK
<.001
1.80



RAB30
0.001
1.60



REG4
0.018
1.58



RELA
0.001
1.62



RFX1
0.020
1.43



RGS10
<.001
1.71



SCUBE2
0.009
1.48



SEPT9
<.001
3.91



SH3RF2
0.004
1.48



SH3YL1
<.001
1.87



SHH
<.001
2.45



SIM2
<.001
1.74



SIPA1L1
0.021
1.35



SLC22A3
<.001
1.63



SLC44A1
<.001
1.65



SPINT1
0.017
1.39



TFDP1
0.005
1.75



TMPRSS2ERGA
0.002
14E5



TMPRSS2ERGB
<.001
1.97



TRIM14
<.001
1.65



TSTA3
0.018
1.38



UAP1
0.046
1.39



UBE2G1
0.001
1.66



UGDH
<.001
2.22



XRCC5
<.001
1.66



ZMYND8
<.001
2.19

















TABLE 9B







Table 9B. Genes significantly (p < 0.05) associated with TMPRSS


fusion status in the primary Gleason pattern with odds ratio (OR) < 1.0


(increased expression is negatively associated with TMPRSS fusion


positivity)











Official Symbol
p-value
Odds Ratio















ABCC4
0.045
0.77



ABHD2
<.001
0.38



ACTR2
0.027
0.73



ADAMTS1
0.024
0.58



ADH5
<.001
0.58



AGTR2
0.016
0.64



AKAP1
0.013
0.70



AKT2
0.015
0.71



ALCAM
<.001
0.45



ALDH1A2
0.004
0.70



ANPEP
<.001
0.43



ANXA2
0.010
0.71



APC
0.036
0.73



APOC1
0.002
0.56



APOE
<.001
0.44



ARF1
0.041
0.77



ATM
0.036
0.74



AURKB
<.001
0.62



AZGP1
<.001
0.54



BBC3
0.030
0.74



BCL2
0.012
0.70



BIN1
0.021
0.74



BTG1
0.004
0.67



BTG3
0.003
0.63



C7
0.023
0.74



CADM1
0.007
0.69



CASP1
0.011
0.70



CAV1
0.011
0.71



CCND1
0.019
0.72



CCR1
0.022
0.73



CD44
<.001
0.57



CD68
<.001
0.54



CD82
0.002
0.66



CDH5
0.007
0.66



CDKN1A
<.001
0.60



CDKN2B
<.001
0.54



CDKN2C
0.012
0.72



CDKN3
0.037
0.77



CHN1
0.038
0.75



CKS2
<.001
0.48



COL11A1
0.017
0.72



COL1A1
<.001
0.59



COL1A2
0.001
0.62



COL3A1
0.027
0.73



COL4A1
0.043
0.76



COL5A1
0.039
0.74



COL5A2
0.026
0.73



COL6A1
0.008
0.66



COL6A3
<.001
0.59



COL8A1
0.022
0.74



CSF1
0.011
0.70



CTNNB1
0.021
0.69



CTSB
<.001
0.62



CTSD
0.036
0.68



CTSK
0.007
0.70



CTSS
0.002
0.64



CXCL12
<.001
0.48



CXCR4
0.005
0.68



CXCR7
0.046
0.76



CYR61
0.004
0.65



DAP
0.002
0.64



DARC
0.021
0.73



DDR2
0.021
0.73



DHRS9
<.001
0.52



DIAPH1
<.001
0.56



DICER1
0.029
0.75



DLC1
0.013
0.72



DLGAP1
<.001
0.60



DLL4
<.001
0.57



DPT
0.006
0.68



DUSP1
0.012
0.68



DUSP6
0.001
0.62



DVL1
0.037
0.75



EFNB2
<.001
0.32



EGR1
0.003
0.65



ELK4
<.001
0.60



ERBB2
<.001
0.61



ERBB3
0.045
0.76



ESR2
0.010
0.70



ETV1
0.042
0.74



FABP5
<.001
0.21



FAM13C
0.006
0.67



FCGR3A
0.018
0.72



FGF17
0.009
0.71



FGF6
0.011
0.70



FGF7
0.003
0.63



FN1
0.006
0.69



FOS
0.035
0.74



FOXP3
0.010
0.71



GABRG2
0.029
0.74



GADD45B
0.003
0.63



GDF15
<.001
0.54



GPM6B
0.004
0.67



GPNMB
0.001
0.62



GSN
0.009
0.69



HLA-G
0.050
0.74



HLF
0.018
0.74



HPS1
<.001
0.48



HSD17B3
0.003
0.60



HSD17B4
<.001
0.56



HSPB1
<.001
0.38



HSPB2
0.002
0.62



IFI30
0.049
0.75



IFNG
0.006
0.64



IGF1
0.016
0.73



IGF2
0.001
0.57



IGFBP2
<.001
0.51



IGFBP3
<.001
0.59



IGFBP6
<.001
0.57



IL10
<.001
0.62



IL17A
0.012
0.63



IL1A
0.011
0.59



IL2
0.001
0.63



IL6ST
<.001
0.52



INSL4
0.014
0.71



ITGA1
0.009
0.69



ITGA4
0.007
0.68



JUN
<.001
0.59



KIT
<.001
0.64



KRT76
0.016
0.70



LAG3
0.002
0.63



LAPTM5
<.001
0.58



LGALS3
<.001
0.53



LTBP2
0.011
0.71



LUM
0.012
0.70



MAOA
0.020
0.73



MAP4K4
0.007
0.68



MGST1
<.001
0.54



MMP2
<.001
0.61



MPPED2
<.001
0.45



MRC1
0.005
0.67



MTPN
0.002
0.56



MTSS1
<.001
0.53



MVP
0.009
0.72



MYBPC1
<.001
0.51



MYLK3
0.001
0.58



NCAM1
<.001
0.59



NCAPD3
<.001
0.40



NCOR1
0.004
0.69



NFKBIA
<.001
0.63



NNMT
0.006
0.66



NPBWR1
0.027
0.67



OAZ1
0.049
0.64



OLFML3
<.001
0.56



OSM
<.001
0.64



PAGE1
0.012
0.52



PDGFRB
0.016
0.73



PECAM1
<.001
0.55



PGR
0.048
0.77



PIK3CA
<.001
0.55



PIK3CG
0.008
0.71



PLAU
0.044
0.76



PLK1
0.006
0.68



PLOD2
0.013
0.71



PLP2
0.024
0.73



PNLIPRP2
0.009
0.70



PPAP2B
<.001
0.62



PRKAR2B
<.001
0.61



PRKCB
0.044
0.76



PROS1
0.005
0.67



PTEN
<.001
0.47



PTGER3
0.007
0.69



PTH1R
0.011
0.70



PTK2B
<.001
0.61



PTPN1
0.028
0.73



RAB27A
<.001
0.21



RAD51
<.001
0.51



RAD9A
0.030
0.75



RARB
<.001
0.62



RASSF1
0.038
0.76



RECK
0.009
0.62



RHOB
0.004
0.64



RHOC
<.001
0.56



RLN1
<.001
0.30



RND3
0.014
0.72



S100P
0.002
0.66



SDC2
<.001
0.61



SEMA3A
0.001
0.64



SMAD4
<.001
0.64



SPARC
<.001
0.59



SPARCL1
<.001
0.56



SPINK1
<.001
0.26



SRD5A1
0.039
0.76



STAT1
0.026
0.74



STS
0.006
0.64



SULF1
<.001
0.53



TFF3
<.001
0.19



TGFA
0.002
0.65



TGFB1I1
0.040
0.77



TGFB2
0.003
0.66



TGFB3
<.001
0.54



TGFBR2
<.001
0.61



THY1
<.001
0.63



TIMP2
0.004
0.66



TIMP3
<.001
0.60



TMPRSS2
<.001
0.40



TNFSF11
0.026
0.63



TPD52
0.002
0.64



TRAM1
<.001
0.45



TRPC6
0.002
0.64



TUBB2A
<.001
0.49



VCL
<.001
0.57



VEGFB
0.033
0.73



VEGFC
<.001
0.61



VIM
0.012
0.69



WISP1
0.030
0.75



WNT5A
<.001
0.50










A molecular field effect was investigated, and determined that the expression levels of histologically normal-appearing cells adjacent to the tumor exhibited a molecular signature of prostate cancer. Tables 10A and 10B provide genes significantly associated (p<0.05), positively or negatively, with cRFI or bRFI in non-tumor samples. Table 10A is negatively associated with good prognosis, while increased expression of genes in Table 10B is positively associated with good prognosis.









TABLE 10A







Table 10A Genes significantly (p < 0.05) associated with


cRFI or bRFI in Non-Tumor Samples with hazard ratio (HR) >


1.0 (increased expression is negatively associated with good prognosis)












cRFI

bRFI














Official Symbol
HR
p-value
HR
p-value

















ALCAM


1.278
0.036



ASPN
1.309
0.032



BAG5
1.458
0.004



BRCA2
1.385
<.001



CACNA1D


1.329
0.035



CD164


1.339
0.020



CDKN2B
1.398
0.014



COL3A1
1.300
0.035



COL4A1
1.358
0.019



CTNND2


1.370
0.001



DARC
1.451
0.003



DICER1


1.345
<.001



DPP4


1.358
0.008



EFNB2


1.323
0.007



FASN


1.327
0.035



GHR


1.332
0.048



HSPA5


1.260
0.048



INHBA
1.558
<.001



KCNN2


1.264
0.045



KRT76


1.115
<.001



LAMC1
1.390
0.014



LAMC2


1.216
0.042



LIG3


1.313
0.030



MAOA


1.405
0.013



MCM6
1.307
0.036



MKI67
1.271
0.008



NEK2


1.312
0.016



NPBWR1
1.278
0.035



ODC1


1.320
0.010



PEX10


1.361
0.014



PGK1
1.488
0.004



PLA2G7


1.337
0.025



POSTN
1.306
0.043



PTK6


1.344
0.005



REG4


1.348
0.009



RGS7


1.144
0.047



SFRP4
1.394
0.009



TARP


1.412
0.011



TFF1


1.346
0.010



TGFBR2
1.310
0.035



THY1
1.300
0.038



TMPRSS2ERGA


1.333
<.001



TPD52


1.374
0.015



TRPC6
1.272
0.046



UBE2C
1.323
0.007



UHRF1
1.325
0.021

















TABLE 10B







Table 10B Genes significantly (p < 0.05) associated with


cRFI or bRFI in Non-Tumor Samples with hazard ratio (HR) <


1.0 (increased expression is positively associated with good prognosis)












cRFI

bRFI














Official Symbol
HR
p-value
HR
p-value

















ABCA5
0.807
0.028





ABCC3
0.760
0.019
0.750
0.003



ABHD2
0.781
0.028



ADAM15
0.718
0.005



AKAP1
0.740
0.009



AMPD3


0.793
0.013



ANGPT2


0.752
0.027



ANXA2


0.776
0.035



APC
0.755
0.014



APRT
0.762
0.025



AR
0.752
0.015



ARHGDIB


0.753
<.001



BIN1
0.738
0.016



CADM1
0.711
0.004



CCNH
0.820
0.041



CCR1


0.749
0.007



CDK14


0.772
0.014



CDK3
0.819
0.044



CDKN1C
0.808
0.038



CHAF1A
0.634
0.002
0.779
0.045



CHN1


0.803
0.034



CHRAC1
0.751
0.014
0.779
0.021



COL5A1


0.736
0.012



COL5A2


0.762
0.013



COL6A1


0.757
0.032



COL6A3


0.757
0.019



CSK
0.663
<.001
0.698
<.001



CTSK


0.782
0.029



CXCL12


0.771
0.037



CXCR7


0.753
0.008



CYP3A5
0.790
0.035



DDIT4


0.725
0.017



DIAPH1


0.771
0.015



DLC1
0.744
0.004
0.807
0.015



DLGAP1
0.708
0.004



DUSP1
0.740
0.034



EDN1


0.742
0.010



EGR1
0.731
0.028



EIF3H
0.761
0.024



EIF4E
0.786
0.041



ERBB2
0.664
0.001



ERBB4
0.764
0.036



ERCC1
0.804
0.041



ESR2


0.757
0.025



EZH2


0.798
0.048



FAAH
0.798
0.042



FAM13C
0.764
0.012



FAM171B


0.755
0.005



FAM49B


0.811
0.043



FAM73A
0.778
0.015



FASLG


0.757
0.041



FGFR2
0.735
0.016



FOS
0.690
0.008



FYN
0.788
0.035
0.777
0.011



GPNMB


0.762
0.011



GSK3B
0.792
0.038



HGD
0.774
0.017



HIRIP3
0.802
0.033



HSP90AB1
0.753
0.013



HSPB1
0.764
0.021



HSPE1
0.668
0.001



IFI30


0.732
0.002



IGF2


0.747
0.006



IGFBP5


0.691
0.006



IL6ST


0.748
0.010



IL8


0.785
0.028



IMMT


0.708
<.001



ITGA6
0.747
0.008



ITGAV


0.792
0.016



ITGB3


0.814
0.034



ITPR3
0.769
0.009



JUN
0.655
0.005



KHDRBS3


0.764
0.012



KLF6
0.714
<.001



KLK2
0.813
0.048



LAMA4


0.702
0.009



LAMA5
0.744
0.011



LAPTM5


0.740
0.009



LGALS3
0.773
0.036
0.788
0.024



LIMS1


0.807
0.012



MAP3K5


0.815
0.034



MAP3K7


0.809
0.032



MAP4K4
0.735
0.018
0.761
0.010



MAPKAPK3
0.754
0.014



MICA
0.785
0.019



MTA1


0.808
0.043



MVP


0.691
0.001



MYLK3


0.730
0.039



MYO6
0.780
0.037



NCOA1


0.787
0.040



NCOR1


0.876
0.020



NDRG1
0.761
<.001



NFAT5
0.770
0.032



NFKBIA


0.799
0.018



NME2


0.753
0.005



NUP62


0.842
0.032



OAZ1


0.803
0.043



OLFML2B


0.745
0.023



OLFML3


0.743
0.009



OSM


0.726
0.018



PCA3
0.714
0.019



PECAM1


0.774
0.023



PIK3C2A


0.768
0.001



PIM1
0.725
0.011



PLOD2


0.713
0.008



PPP3CA
0.768
0.040



PROM1


0.482
<.001



PTEN


0.807
0.012



PTGS2
0.726
0.011



PTTG1


0.729
0.006



PYCARD


0.783
0.012



RAB30


0.730
0.002



RAGE
0.792
0.012



RFX1
0.789
0.016
0.792
0.010



RGS10
0.781
0.017



RUNX1


0.747
0.007



SDHC


0.827
0.036



SEC23A


0.752
0.010



SEPT9


0.889
0.006



SERPINA3


0.738
0.013



SLC25A21


0.788
0.045



SMARCD1
0.788
0.010
0.733
0.007



SMO
0.813
0.035



SRC
0.758
0.026



SRD5A2


0.738
0.005



ST5


0.767
0.022



STAT5A


0.784
0.039



TGFB2
0.771
0.027



TGFB3


0.752
0.036



THBS2


0.751
0.015



TNFRSF10B
0.739
0.010



TPX2


0.754
0.023



TRAF3IP2


0.774
0.015



TRAM1
0.868
<.001
0.880
<.001



TRIM14
0.785
0.047



TUBB2A
0.705
0.010



TYMP


0.778
0.024



UAP1
0.721
0.013



UTP23
0.763
0.007
0.826
0.018



VCL


0.837
0.040



VEGFA
0.755
0.009



WDR19
0.724
0.005



YBX1


0.786
0.027



ZFP36
0.744
0.032



ZNF827
0.770
0.043










Table 11 provides genes that are significantly associated (p<0.05) with cRFI or bRFI after adjustment for Gleason pattern or highest Gleason pattern.









TABLE 11







Table 11


Genes significantly (p < 0.05) associated with cRFI or bRFI after


adjustment for Gleason pattern in the primary Gleason pattern


or highest Gleason pattern Some HR <= 1.0 and some HR > 1.0











cRFI
bRFI
bRFI



Highest Pattern
Primary Pattern
Highest Pattern













Official Symbol
HR
p-value
HR
p-value
HR
p-value
















HSPA5
0.710
0.009
1.288
0.030




ODC1
0.741
0.026
1.343
0.004
1.261
0.046









Tables 12A and 12B provide genes that are significantly associated (p<0.05) with prostate cancer specific survival (PCSS) in the primary Gleason pattern. Increased expression of genes in Table 12A is negatively associated with good prognosis, while increased expression of genes in Table 12B is positively associated with good prognosis.









TABLE 12A







Table 12A Genes significantly (p < 0.05) associated


with prostate cancer specific survival (PCSS) in the


Primary Gleason Pattern HR > 1.0 (Increased expression


is negatively associated with good prognosis)











Official Symbol
HR
p-value















AKR1C3
1.476
0.016



ANLN
1.517
0.006



APOC1
1.285
0.016



APOE
1.490
0.024



ASPN
3.055
<.001



ATP5E
1.788
0.012



AURKB
1.439
0.008



BGN
2.640
<.001



BIRC5
1.611
<.001



BMP6
1.490
0.021



BRCA1
1.418
0.036



CCNB1
1.497
0.021



CD276
1.668
0.005



CDC20
1.730
<.001



CDH11
1.565
0.017



CDH7
1.553
0.007



CDKN2B
1.751
0.003



CDKN2C
1.993
0.013



CDKN3
1.404
0.008



CENPF
2.031
<.001



CHAF1A
1.376
0.011



CKS2
1.499
0.031



COL1A1
2.574
<.001



COL1A2
1.607
0.011



COL3A1
2.382
<.001



COL4A1
1.970
<.001



COL5A2
1.938
0.002



COL8A1
2.245
<.001



CTHRC1
2.085
<.001



CXCR4
1.783
0.007



DDIT4
1.535
0.030



DYNLL1
1.719
0.001



F2R
2.169
<.001



FAM171B
1.430
0.044



FAP
1.993
0.002



FCGR3A
2.099
<.001



FN1
1.537
0.024



GPR68
1.520
0.018



GREM1
1.942
<.001



IFI30
1.482
0.048



IGFBP3
1.513
0.027



INHBA
3.060
<.001



KIF4A
1.355
0.001



KLK14
1.187
0.004



LAPTM5
1.613
0.006



LTBP2
2.018
<.001



MMP11
1.869
<.001



MYBL2
1.737
0.013



NEK2
1.445
0.028



NOX4
2.049
<.001



OLFML2B
1.497
0.023



PLK1
1.603
0.006



POSTN
2.585
<.001



PPFIA3
1.502
0.012



PTK6
1.527
0.009



PTTG1
1.382
0.029



RAD51
1.304
0.031



RGS7
1.251
<.001



RRM2
1.515
<.001



SAT1
1.607
0.004



SDC1
1.710
0.007



SESN3
1.399
0.045



SFRP4
2.384
<.001



SHMT2
1.949
0.003



SPARC
2.249
<.001



STMN1
1.748
0.021



SULF1
1.803
0.004



THBS2
2.576
<.001



THY1
1.908
0.001



TK1
1.394
0.004



TOP2A
2.119
<.001



TPX2
2.074
0.042



UBE2C
1.598
<.001



UGT2B15
1.363
0.016



UHRF1
1.642
0.001



ZWINT
1.570
0.010

















TABLE 12B







Table 12B Genes significantly (p < 0.05) associated


with prostate cancer specific survival (PCSS) in the


Primary Gleason Pattern HR < 1.0 (Increased expression


is positively associated with good prognosis)











Official Symbol
HR
p-value















AAMP
0.649
0.040



ABCA5
0.777
0.015



ABCG2
0.715
0.037



ACOX2
0.673
0.016



ADH5
0.522
<.001



ALDH1A2
0.561
<.001



AMACR
0.693
0.029



AMPD3
0.750
0.049



ANPEP
0.531
<.001



ATXN1
0.640
0.011



AXIN2
0.657
0.002



AZGP1
0.617
<.001



BDKRB1
0.553
0.032



BIN1
0.658
<.001



BTRC
0.716
0.011



C7
0.531
<.001



CADM1
0.646
0.015



CASP7
0.538
0.029



CCNH
0.674
0.001



CD164
0.606
<.001



CD44
0.687
0.016



CDK3
0.733
0.039



CHN1
0.653
0.014



COL6A1
0.681
0.015



CSF1
0.675
0.019



CSRP1
0.711
0.007



CXCL12
0.650
0.015



CYP3A5
0.507
<.001



CYR61
0.569
0.007



DLGAP1
0.654
0.004



DNM3
0.692
0.010



DPP4
0.544
<.001



DPT
0.543
<.001



DUSP1
0.660
0.050



DUSP6
0.699
0.033



EGR1
0.490
<.001



EGR3
0.561
<.001



EIF5
0.720
0.035



ERBB3
0.739
0.042



FAAH
0.636
0.010



FAM107A
0.541
<.001



FAM13C
0.526
<.001



FAS
0.689
0.030



FGF10
0.657
0.024



FKBP5
0.699
0.040



FLNC
0.742
0.036



FOS
0.556
0.005



FOXQ1
0.666
0.007



GADD45B
0.554
0.002



GDF15
0.659
0.009



GHR
0.683
0.027



GPM6B
0.666
0.005



GSN
0.646
0.006



GSTM1
0.672
0.006



GSTM2
0.514
<.001



HGD
0.771
0.039



HIRIP3
0.730
0.013



HK1
0.778
0.048



HLF
0.581
<.001



HNF1B
0.643
0.013



HSD17B10
0.742
0.029



IER3
0.717
0.049



IGF1
0.612
<.001



IGFBP6
0.578
0.003



IL2
0.528
0.010



IL6ST
0.574
<.001



IL8
0.540
0.001



ING5
0.688
0.015



ITGA6
0.710
0.005



ITGA7
0.676
0.033



JUN
0.506
0.001



KIT
0.628
0.047



KLK1
0.523
0.002



KLK2
0.581
<.001



KLK3
0.676
<.001



KRT15
0.684
0.005



KRT18
0.536
<.001



KRT5
0.673
0.004



KRT8
0.613
0.006



LAMB3
0.740
0.027



LGALS3
0.678
0.007



MGST1
0.640
0.002



MPPED2
0.629
<.001



MTSS1
0.705
0.041



MYBPC1
0.534
<.001



NCAPD3
0.519
<.001



NFAT5
0.536
<.001



NRG1
0.467
0.007



OLFML3
0.646
0.001



OMD
0.630
0.006



OR51E2
0.762
0.017



PAGE4
0.518
<.001



PCA3
0.581
<.001



PGF
0.705
0.038



PPAP2B
0.568
<.001



PPP1R12A
0.694
0.017



PRIMA1
0.678
0.014



PRKCA
0.632
0.001



PRKCB
0.692
0.028



PROM1
0.393
0.017



PTEN
0.689
0.002



PTGS2
0.611
0.004



PTH1R
0.629
0.031



RAB27A
0.721
0.046



RND3
0.678
0.029



RNF114
0.714
0.035



SDHC
0.590
<.001



SERPINA3
0.710
0.050



SH3RF2
0.570
0.005



SLC22A3
0.517
<.001



SMAD4
0.528
<.001



SMO
0.751
0.026



SRC
0.667
0.004



SRD5A2
0.488
<.001



STAT5B
0.700
0.040



SVIL
0.694
0.024



TFF3
0.701
0.045



TGFB1I1
0.670
0.029



TGFB2
0.646
0.010



TNFRSF10B
0.685
0.014



TNFSF10
0.532
<.001



TPM2
0.623
0.005



TRO
0.767
0.049



TUBB2A
0.613
0.003



VEGFB
0.780
0.034



ZFP36
0.576
0.001



ZNF827
0.644
0.014










Analysis of gene expression and upgrading/upstaging was based on univariate ordinal logistic regression models using weighted maximum likelihood estimators for each gene in the gene list (727 test genes and 5 reference genes). P-values were generated using a Wald test of the null hypothesis that the odds ratio (OR) is one. Both unadjusted p-values and the q-value (smallest FDR at which the hypothesis test in question is rejected) were reported. Un-adjusted p-values <0.05 were considered statistically significant. Since two tumor specimens were selected for each patient, this analysis was performed using the 2 specimens from each patient as follows: (1) analysis using the primary Gleason pattern specimen from each patient (Specimens A1 and B2 as described in Table 2); and (2) analysis using the highest Gleason pattern specimen from each patient (Specimens A1 and B1 as described in Table 2). 200 genes were found to be significantly associated (p<0.05) with upgrading/upstaging in the primary Gleason pattern sample (PGP) and 203 genes were found to be significantly associated (p<0.05) with upgrading/upstaging in the highest Gleason pattern sample (HGP).


Tables 13A and 13B provide genes significantly associated (p<0.05), positively or negatively, with upgrading/upstaging in the primary and/or highest Gleason pattern. Increased expression of genes in Table 13A is positively associated with higher risk of upgrading/upstaging (poor prognosis), while increased expression of genes in Table 13B is negatively associated with risk of upgrading/upstaging (good prognosis).









TABLE 13A







Table 13A Genes significantly (p < 0.05) associated


with upgrading/upstaging in the Primary Gleason Pattern


(PGP) and Highest Gleason Pattern (HGP) OR > 1.0


(Increased expression is positively associated with higher


risk of upgrading/upstaging (poor prognosis))












PGP

HGP














Gene
OR
p-value
OR
p-value







ALCAM
1.52
0.0179
1.50
0.0184



ANLN
1.36
0.0451
.
.



APOE
1.42
0.0278
1.50
0.0140



ASPN
1.60
0.0027
2.06
0.0001



AURKA
1.47
0.0108
.
.



AURKB
.
.
1.52
0.0070



BAX
.
.
1.48
0.0095



BGN
1.58
0.0095
1.73
0.0034



BIRC5
1.38
0.0415
.
.



BMP6
1.51
0.0091
1.59
0.0071



BUB1
1.38
0.0471
1.59
0.0068



CACNA1D
1.36
0.0474
1.52
0.0078



CASP7
.
.
1.32
0.0450



CCNE2
1.54
0.0042
.
.



CD276
.
.
1.44
0.0265



CDC20
1.35
0.0445
1.39
0.0225



CDKN2B
.
.
1.36
0.0415



CENPF
1.43
0.0172
1.48
0.0102



CLTC
1.59
0.0031
1.57
0.0038



COL1A1
1.58
0.0045
1.75
0.0008



COL3A1
1.45
0.0143
1.47
0.0131



COL8A1
1.40
0.0292
1.43
0.0258



CRISP3
.
.
1.40
0.0256



CTHRC1
.
.
1.56
0.0092



DBN1
1.43
0.0323
1.45
0.0163



DIAPH1
1.51
0.0088
1.58
0.0025



DICER1
.
.
1.40
0.0293



DIO2
.
.
1.49
0.0097



DVL1
.
.
1.53
0.0160



F2R
1.46
0.0346
1.63
0.0024



FAP
1.47
0.0136
1.74
0.0005



FCGR3A
.
.
1.42
0.0221



HPN
.
.
1.36
0.0468



HSD17B4
.
.
1.47
0.0151



HSPA8
1.65
0.0060
1.58
0.0074



IL11
1.50
0.0100
1.48
0.0113



IL1B
1.41
0.0359
.
.



INHBA
1.56
0.0064
1.71
0.0042



KHDRBS3
1.43
0.0219
1.59
0.0045



KIF4A
.
.
1.50
0.0209



KPNA2
1.40
0.0366
.
.



KRT2
.
.
1.37
0.0456



KRT75
.
.
1.44
0.0389



MANF
.
.
1.39
0.0429



MELK
1.74
0.0016
.
.



MKI67
1.35
0.0408
.
.



MMP11
.
.
1.56
0.0057



NOX4
1.49
0.0105
1.49
0.0138



PLAUR
1.44
0.0185
.
.



PLK1
.
.
1.41
0.0246



PTK6
.
.
1.36
0.0391



RAD51
.
.
1.39
0.0300



RAF1
.
.
1.58
0.0036



RRM2
1.57
0.0080
.
.



SESN3
1.33
0.0465
.
.



SFRP4
2.33
<0.0001  
2.51
0.0015



SKIL
1.44
0.0288
1.40
0.0368



SOX4
1.50
0.0087
1.59
0.0022



SPINK1
1.52
0.0058
.
.



SPP1
.
.
1.42
0.0224



THBS2
.
.
1.36
0.0461



TK1
.
.
1.38
0.0283



TOP2A
1.85
0.0001
1.66
0.0011



TPD52
1.78
0.0003
1.64
0.0041



TPX2
1.70
0.0010
.
.



UBE2G1
1.38
0.0491
.
.



UBE2T
1.37
0.0425
1.46
0.0162



UHRF1
.
.
1.43
0.0164



VCPIP1
.
.
1.37
0.0458

















TABLE 13B







Table 13B Genes significantly (p < 0.05) associated


with upgrading/upstaging in the Primary Gleason Pattern


(PGP) and Highest Gleason Pattern (HGP) OR < 1.0


(Increased expression is negatively associated with higher


risk of upgrading/upstaging (good prognosis))












PGP

HGP














Gene
OR
p-value
OR
p-value







ABCC3
.
.
0.70
0.0216



ABCC8
0.66
0.0121
.
.



ABCG2
0.67
0.0208
0.61
0.0071



ACE
.
.
0.73
0.0442



ACOX2
0.46
0.0000
0.49
0.0001



ADH5
0.69
0.0284
0.59
0.0047



AIG1
.
.
0.60
0.0045



AKR1C1
.
.
0.66
0.0095



ALDH1A2
0.36
<0.0001  
0.36
<0.0001  



ALKBH3
0.70
0.0281
0.61
0.0056



ANPEP
.
.
0.68
0.0109



ANXA2
0.73
0.0411
0.66
0.0080



APC
.
.
0.68
0.0223



ATXN1
.
.
0.70
0.0188



AXIN2
0.60
0.0072
0.68
0.0204



AZGP1
0.66
0.0089
0.57
0.0028



BCL2
.
.
0.71
0.0182



BIN1
0.55
0.0005
.
.



BTRC
0.69
0.0397
0.70
0.0251



C7
0.53
0.0002
0.51
<0.0001  



CADM1
0.57
0.0012
0.60
0.0032



CASP1
0.64
0.0035
0.72
0.0210



CAV1
0.64
0.0097
0.59
0.0032



CAV2
.
.
0.58
0.0107



CD164
.
.
0.69
0.0260



CD82
0.67
0.0157
0.69
0.0167



CDH1
0.61
0.0012
0.70
0.0210



CDK14
0.70
0.0354
.
.



CDK3
.
.
0.72
0.0267



CDKN1C
0.61
0.0036
0.56
0.0003



CHN1
0.71
0.0214
.
.



COL6A1
0.62
0.0125
0.60
0.0050



COL6A3
0.65
0.0080
0.68
0.0181



CSRP1
0.43
0.0001
0.40
0.0002



CTSB
0.66
0.0042
0.67
0.0051



CTSD
0.64
0.0355
.
.



CTSK
0.69
0.0171
.
.



CTSL1
0.72
0.0402
.
.



CUL1
0.61
0.0024
0.70
0.0120



CXCL12
0.69
0.0287
0.63
0.0053



CYP3A5
0.68
0.0099
0.62
0.0026



DDR2
0.68
0.0324
0.62
0.0050



DES
0.54
0.0013
0.46
0.0002



DHX9
0.67
0.0164
.
.



DLGAP1
.
.
0.66
0.0086



DPP4
0.69
0.0438
0.69
0.0132



DPT
0.59
0.0034
0.51
0.0005



DUSP1
.
.
0.67
0.0214



EDN1
.
.
0.66
0.0073



EDNRA
0.66
0.0148
0.54
0.0005



EIF2C2
.
.
0.65
0.0087



ELK4
0.55
0.0003
0.58
0.0013



ENPP2
0.65
0.0128
0.59
0.0007



EPHA3
0.71
0.0397
0.73
0.0455



EPHB2
0.60
0.0014
.
.



EPHB4
0.73
0.0418
.
.



EPHX3
.
.
0.71
0.0419



ERCC1
0.71
0.0325
.
.



FAM107A
0.56
0.0008
0.55
0.0011



FAM13C
0.68
0.0276
0.55
0.0001



FAS
0.72
0.0404
.
.



FBN1
0.72
0.0395
.
.



FBXW7
0.69
0.0417
.
.



FGF10
0.59
0.0024
0.51
0.0001



FGF7
0.51
0.0002
0.56
0.0007



FGFR2
0.54
0.0004
0.47
<0.0001  



FLNA
0.58
0.0036
0.50
0.0002



FLNC
0.45
0.0001
0.40
<0.0001  



FLT4
0.61
0.0045
.
.



FOXO1
0.55
0.0005
0.53
0.0005



FOXP3
0.71
0.0275
0.72
0.0354



GHR
0.59
0.0074
0.53
0.0001



GNRH1
0.72
0.0386
.
.



GPM6B
0.59
0.0024
0.52
0.0002



GSN
0.65
0.0107
0.65
0.0098



GSTM1
0.44
<0.0001  
0.43
<0.0001  



GSTM2
0.42
<0.0001  
0.39
<0.0001  



HLF
0.46
<0.0001  
0.47
0.0001



HPS1
0.64
0.0069
0.69
0.0134



HSPA5
0.68
0.0113
.
.



HSPB2
0.61
0.0061
0.55
0.0004



HSPG2
0.70
0.0359
.
.



ID3
.
.
0.70
0.0245



IGF1
0.45
<0.0001  
0.50
0.0005



IGF2
0.67
0.0200
0.68
0.0152



IGFBP2
0.59
0.0017
0.69
0.0250



IGFBP6
0.49
<0.0001  
0.64
0.0092



IL6ST
0.56
0.0009
0.60
0.0012



ILK
0.51
0.0010
0.49
0.0004



ITGA1
0.58
0.0020
0.58
0.0016



ITGA3
0.71
0.0286
0.70
0.0221



ITGA5
.
.
0.69
0.0183



ITGA7
0.56
0.0035
0.42
<0.0001  



ITGB1
0.63
0.0095
0.68
0.0267



ITGB3
0.62
0.0043
0.62
0.0040



ITPR1
0.62
0.0032
.
.



JUN
0.73
0.0490
0.68
0.0152



KIT
0.55
0.0003
0.57
0.0005



KLC1
.
.
0.70
0.0248



KLK1
.
.
0.60
0.0059



KRT15
0.58
0.0009
0.45
<0.0001  



KRT5
0.70
0.0262
0.59
0.0008



LAMA4
0.56
0.0359
0.68
0.0498



LAMB3
.
.
0.60
0.0017



LGALS3
0.58
0.0007
0.56
0.0012



LRP1
0.69
0.0176
.
.



MAP3K7
0.70
0.0233
0.73
0.0392



MCM3
0.72
0.0320
.
.



MMP2
0.66
0.0045
0.60
0.0009



MMP7
0.61
0.0015
0.65
0.0032



MMP9
0.64
0.0057
0.72
0.0399



MPPED2
0.72
0.0392
0.63
0.0042



MTA1
.
.
0.68
0.0095



MTSS1
0.58
0.0007
0.71
0.0442



MVP
0.57
0.0003
0.70
0.0152



MYBPC1
.
.
0.70
0.0359



NCAM1
0.63
0.0104
0.64
0.0080



NCAPD3
0.67
0.0145
0.64
0.0128



NEXN
0.54
0.0004
0.55
0.0003



NFAT5
0.72
0.0320
0.70
0.0177



NUDT6
0.66
0.0102
.
.



OLFML3
0.56
0.0035
0.51
0.0011



OMD
0.61
0.0011
0.73
0.0357



PAGE4
0.42
<0.0001  
0.36
<0.0001  



PAK6
0.72
0.0335
.
.



PCDHGB7
0.70
0.0262
0.55
0.0004



PGF
0.72
0.0358
0.71
0.0270



PLP2
0.66
0.0088
0.63
0.0041



PPAP2B
0.44
<0.0001  
0.50
0.0001



PPP1R12A
0.45
0.0001
0.40
<0.0001  



PRIMA1
.
.
0.63
0.0102



PRKAR2B
0.71
0.0226
.
.



PRKCA
0.34
<0.0001  
0.42
<0.0001  



PRKCB
0.66
0.0120
0.49
<0.0001  



PROM1
0.61
0.0030
.
.



PTEN
0.59
0.0008
0.55
0.0001



PTGER3
0.67
0.0293
.
.



PTH1R
0.69
0.0259
0.71
0.0327



PTK2
0.75
0.0461
.
.



PTK2B
0.70
0.0244
0.74
0.0388



PYCARD
0.73
0.0339
0.67
0.0100



RAD9A
0.64
0.0124
.
.



RARB
0.67
0.0088
0.65
0.0116



RGS10
0.70
0.0219
.
.



RHOB
.
.
0.72
0.0475



RND3
.
.
0.67
0.0231



SDHC
0.72
0.0443
.
.



SEC23A
0.66
0.0101
0.53
0.0003



SEMA3A
0.51
0.0001
0.69
0.0222



SH3RF2
0.55
0.0002
0.54
0.0002



SLC22A3
0.48
0.0001
0.50
0.0058



SMAD4
0.49
0.0001
0.50
0.0003



SMARCC2
0.59
0.0028
0.65
0.0052



SMO
0.60
0.0048
0.52
<0.0001  



SORBS1
0.56
0.0024
0.48
0.0002



SPARCL1
0.43
0.0001
0.50
0.0001



SRD5A2
0.26
<0.0001  
0.31
<0.0001  



ST5
0.63
0.0103
0.52
0.0006



STAT5A
0.60
0.0015
0.61
0.0037



STAT5B
0.54
0.0005
0.57
0.0008



SUMO1
0.65
0.0066
0.66
0.0320



SVIL
0.52
0.0067
0.46
0.0003



TGFB1I1
0.44
0.0001
0.43
0.0000



TGFB2
0.55
0.0007
0.58
0.0016



TGFB3
0.57
0.0010
0.53
0.0005



TIMP1
0.72
0.0224
.
.



TIMP2
0.68
0.0198
0.69
0.0206



TIMP3
0.67
0.0105
0.64
0.0065



TMPRSS2
.
.
0.72
0.0366



TNFRSF10A
0.71
0.0181
.
.



TNFSF10
0.71
0.0284
.
.



TOP2B
0.73
0.0432
.
.



TP63
0.62
0.0014
0.50
<0.0001  



TPM1
0.54
0.0007
0.52
0.0002



TPM2
0.41
<0.0001  
0.40
<0.0001  



TPP2
0.65
0.0122
.
.



TRA2A
0.72
0.0318
.
.



TRAF3IP2
0.62
0.0064
0.59
0.0053



TRO
0.57
0.0003
0.51
0.0001



VCL
0.52
0.0005
0.52
0.0004



VIM
0.65
0.0072
0.65
0.0045



WDR19
0.66
0.0097
.
.



WFDC1
0.58
0.0023
0.60
0.0026



ZFHX3
0.69
0.0144
0.62
0.0046



ZNF827
0.62
0.0030
0.53
0.0001










Example 3
Identification of MicroRNAs Associated with Clinical Recurrence and Death Due to Prostate Cancer

MicroRNAs function by binding to portions of messenger RNA (mRNA) and changing how frequently the mRNA is translated into protein. They can also influence the turnover of mRNA and thus how long the mRNA remains intact in the cell. Since microRNAs function primarily as an adjunct to mRNA, this study evaluated the joint prognostic value of microRNA expression and gene (mRNA) expression. Since the expression of certain microRNAs may be a surrogate for expression of genes that are not in the assessed panel, we also evaluated the prognostic value of microRNA expression by itself.


Patients and Samples


Samples from the 127 patients with clinical recurrence and 374 patients without clinical recurrence after radical prostatectomy described in Example 2 were used in this study. The final analysis set comprised 416 samples from patients in which both gene expression and microRNA expression were successfully assayed. Of these, 106 patients exhibited clinical recurrence and 310 did not have clinical recurrence. Tissue samples were taken from each prostate sample representing (1) the primary Gleason pattern in the sample, and (2) the highest Gleason pattern in the sample. In addition, a sample of histologically normal-appearing tissue adjacent to the tumor (NAT) was taken. The number of patients in the analysis set for each tissue type and the number of them who experienced clinical recurrence or death due to prostate cancer are shown in Table 14.









TABLE 14







Number of Patients and Events in Analysis Set













Deaths Due to



Patients
Clinical Recurrences
Prostate Cancer














Primary Gleason
416
106
36


Pattern Tumor Tissue


Highest Gleason
405
102
36


Pattern Tumor Tissue


Normal Adjacent
364
81
29


Tissue









Assay Method


Expression of 76 test microRNAs and 5 reference microRNAs were determined from RNA extracted from fixed paraffin-embedded (FPE) tissue. MicroRNA expression in all three tissue type was quantified by reverse transcriptase polymerase chain reaction (RT-PCR) using the crossing point (Cp) obtained from the Taqman® MicroRNA Assay kit (Applied Biosystems, Inc., Carlsbad, Calif.).


Statistical Analysis


Using univariate proportional hazards regression (Cox D R, Journal of the Royal Statistical Society, Series B 34:187-220, 1972), applying the sampling weights from the cohort sampling design, and using variance estimation based on the Lin and Wei method (Lin and Wei, Journal of the American Statistical Association 84:1074-1078, 1989), microRNA expression, normalized by the average expression for the 5 reference microRNAs hsa-miR-106a, hsa-miR-146b-5p, hsa-miR-191, hsa-miR-19b, and hsa-miR-92a, and reference-normalized gene expression of the 733 genes (including the reference genes) discussed above, were assessed for association with clinical recurrence and death due to prostate cancer. Standardized hazard ratios (the proportional change in the hazard associated with a change of one standard deviation in the covariate value) were calculated.


This analysis included the following classes of predictors:


1. MicroRNAs alone


2. MicroRNA-gene pairs Tier 1


3. MicroRNA-gene pairs Tier 2


4. MicroRNA-gene pairs Tier 3


5. All other microRNA-gene pairs Tier 4


The four tiers were pre-determined based on the likelihood (Tier 1 representing the highest likelihood) that the gene-microRNA pair functionally interacted or that the microRNA was related to prostate cancer based on a review of the literature and existing microarray data sets.


False discovery rates (FDR) (Benjamini and Hochberg, Journal of the Royal Statistical Society, Series B 57:289-300, 1995) were assessed using Efron's separate class methodology (Efron, Annals of Applied Statistics 2:197-223., 2008). The false discovery rate is the expected proportion of the rejected null hypotheses that are rejected incorrectly (and thus are false discoveries). Efron's methodology allows separate FDR assessment (q-values) (Storey, Journal of the Royal Statistical Society, Series B 64:479-498, 2002) within each class while utilizing the data from all the classes to improve the accuracy of the calculation. In this analysis, the q-value for a microRNA or microRNA-gene pair can be interpreted as the empirical Bayes probability that the microRNA or microRNA-gene pair identified as being associated with clinical outcome is in fact a false discovery given the data. The separate class approach was applied to a true discovery rate degree of association (TDRDA) analysis (Crager, Statistics in Medicine 29:33-45, 2010) to determine sets of microRNAs or microRNA-gene pairs that have standardized hazard ratio for clinical recurrence or prostate cancer-specific death of at least a specified amount while controlling the FDR at 10%. For each microRNA or microRNA-gene pair, a maximum lower bound (MLB) standardized hazard ratio was computed, showing the highest lower bound for which the microRNA or microRNA-gene pair was included in a TDRDA set with 10% FDR. Also calculated was an estimate of the true standardized hazard ratio corrected for regression to the mean (RM) that occurs in subsequent studies when the best predictors are selected from a long list (Crager, 2010 above). The RM-corrected estimate of the standardized hazard ratio is a reasonable estimate of what could be expected if the selected microRNA or microRNA-gene pair were studied in a separate, subsequent study.


These analyses were repeated adjusting for clinical and pathology covariates available at the time of patient biopsy: biopsy Gleason score, baseline PSA level, and clinical T-stage (T1-T2A vs. T2B or T2C) to assess whether the microRNAs or microRNA-gene pairs have predictive value independent of these clinical and pathology covariates.


Results

The analysis identified 21 microRNAs assayed from primary Gleason pattern tumor tissue that were associated with clinical recurrence of prostate cancer after radical prostatectomy, allowing a false discovery rate of 10% (Table 15). Results were similar for microRNAs assessed from highest Gleason pattern tumor tissue (Table 16), suggesting that the association of microRNA expression with clinical recurrence does not change markedly depending on the location within a tumor tissue sample. No microRNA assayed from normal adjacent tissue was associated with the risk of clinical recurrence at a false discovery rate of 10%. The sequences of the microRNAs listed in Tables 15-21 are shown in Table B.









TABLE 15







MicroRNAs Associated with Clinical Recurrence of Prostate Cancer


Primary Gleason Pattern Tumor Tissue









Absolute Standardized Hazard Ratio



















95%
Max. Lower
RM-




q-valuea
Direction
Uncorrected
Confidence
Bound
Corrected


MicroRNA
p-value
(FDR)
of Associationb
Estimate
Interval
@10% FDR
Estimatec

















hsa-miR-93
<0.0001
0.0%
(+)
1.79
(1.38, 2.32)
1.19
1.51


hsa-miR-106b
<0.0001
0.1%
(+)
1.80
(1.38, 2.34)
1.19
1.51


hsa-miR-30e-5p
<0.0001
0.1%
(−)
1.63
(1.30, 2.04)
1.18
1.46


hsa-miR-21
<0.0001
0.1%
(+)
1.66
(1.31, 2.09)
1.18
1.46


hsa-miR-133a
<0.0001
0.1%
(−)
1.72
(1.33, 2.21)
1.18
1.48


hsa-miR-449a
<0.0001
0.1%
(+)
1.56
(1.26, 1.92)
1.17
1.42


hsa-miR-30a
0.0001
0.1%
(−)
1.56
(1.25, 1.94)
1.16
1.41


hsa-miR-182
0.0001
0.2%
(+)
1.74
(1.31, 2.31)
1.17
1.45


hsa-miR-27a
0.0002
0.2%
(+)
1.65
(1.27, 2.14)
1.16
1.43


hsa-miR-222
0.0006
0.5%
(−)
1.47
(1.18, 1.84)
1.12
1.35


hsa-miR-103
0.0036
2.1%
(+)
1.77
(1.21, 2.61)
1.12
1.36


hsa-miR-1
0.0037
2.2%
(−)
1.32
(1.10, 1.60)
1.07
1.26


hsa-miR-145
0.0053
2.9%
(−)
1.34
(1.09, 1.65)
1.07
1.27


hsa-miR-141
0.0060
3.2%
(+)
1.43
(1.11, 1.84)
1.07
1.29


hsa-miR-92a
0.0104
4.8%
(+)
1.32
(1.07, 1.64)
1.05
1.25


hsa-miR-22
0.0204
7.7%
(+)
1.31
(1.03, 1.64)
1.03
1.23


hsa-miR-29b
0.0212
7.9%
(+)
1.36
(1.03, 1.76)
1.03
1.24


hsa-miR-210
0.0223
8.2%
(+)
1.33
(1.03, 1.70)
1.00
1.23


hsa-miR-486-5p
0.0267
9.4%
(−)
1.25
(1.00, 1.53)
1.00
1.20


hsa-miR-19b
0.0280
9.7%
(−)
1.24
(1.00, 1.50)
1.00
1.19


hsa-miR-205
0.0289
10.0%
(−)
1.25
(1.00, 1.53)
1.00
1.20






aThe q-value is the empirical Bayes probability that the microRNA's association with clinical recurrence is a false discovery, given the data.




bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of clinical recurrence.




cRM: regression to the mean.














TABLE 16







MicroRNAs Associated with Clinical Recurrence of Prostate Cancer


Highest Gleason Pattern Tumor Tissue









Absolute Standardized Hazard Ratio



















95%
Max. Lower
RM-




q-valuea
Direction
Uncorrected
Confidence
Bound
Corrected


MicroRNA
p-value
(FDR)
of Associationb
Estimate
Interval
@10% FDR
Estimatec

















hsa-miR-93
<0.0001
0.0%
(+)
1.91
(1.48, 2.47)
1.24
1.59


hsa-miR-449a
<0.0001
0.0%
(+)
1.75
(1.40, 2.18)
1.23
1.54


hsa-miR-205
<0.0001
0.0%
(−)
1.53
(1.29, 1.81)
1.20
1.43


hsa-miR-19b
<0.0001
0.0%
(−)
1.37
(1.19, 1.57)
1.15
1.32


hsa-miR-106b
<0.0001
0.0%
(+)
1.84
(1.39, 2.42)
1.22
1.51


hsa-miR-21
<0.0001
0.0%
(+)
1.68
(1.32, 2.15)
1.19
1.46


hsa-miR-30a
0.0005
0.4%
(−)
1.44
(1.17, 1.76)
1.13
1.33


hsa-miR-30e-5p
0.0010
0.6%
(−)
1.37
(1.14, 1.66)
1.11
1.30


hsa-miR-133a
0.0015
0.8%
(−)
1.57
(1.19, 2.07)
1.13
1.36


hsa-miR-1
0.0016
0.8%
(−)
1.42
(1.14, 1.77)
1.11
1.31


hsa-miR-103
0.0021
1.1%
(+)
1.69
(1.21, 2.37)
1.13
1.37


hsa-miR-210
0.0024
1.2%
(+)
1.43
(1.13, 1.79)
1.11
1.31


hsa-miR-182
0.0040
1.7%
(+)
1.48
(1.13, 1.93)
1.11
1.31


hsa-miR-27a
0.0055
2.1%
(+)
1.46
(1.12, 1.91)
1.09
1.30


hsa-miR-222
0.0093
3.2%
(−)
1.38
(1.08, 1.77)
1.08
1.27


hsa-miR-331
0.0126
3.9%
(+)
1.38
(1.07, 1.77)
1.07
1.26


hsa-miR-191*
0.0143
4.3%
(+)
1.38
(1.06, 1.78)
1.07
1.26


hsa-miR-425
0.0151
4.5%
(+)
1.40
(1.06, 1.83)
1.07
1.26


hsa-miR-31
0.0176
5.1%
(−)
1.29
(1.04, 1.60)
1.05
1.22


hsa-miR-92a
0.0202
5.6%
(+)
1.31
(1.03, 1.65)
1.05
1.23


hsa-miR-155
0.0302
7.6%
(−)
1.32
(1.00, 1.69)
1.03
1.22


hsa-miR-22
0.0437
9.9%
(+)
1.30
(1.00, 1.67)
1.00
1.21






aThe q-value is the empirical Bayes probability that the microRNA's association with death due to prostate cancer is a false discovery, given the data.




bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of clinical recurrence.




cRM: regression to the mean.







Table 17 shows microRNAs assayed from primary Gleason pattern tissue that were identified as being associated with the risk of prostate-cancer-specific death, with a false discovery rate of 10%. Table 18 shows the corresponding analysis for microRNAs assayed from highest Gleason pattern tissue. No microRNA assayed from normal adjacent tissue was associated with the risk of prostate-cancer-specific death at a false discovery rate of 10%.









TABLE 17







MicroRNAs Associated with Death Due to Prostate Cancer


Primary Gleason Pattern Tumor Tissue









Absolute Standardized Hazard Ratio




















Max.









Lower







95%
Bound
RM-




q-valuea
Direction
Uncorrected
Confidence
@10%
Corrected


MicroRNA
p-value
(FDR)
of Associationb
Estimate
Interval
FDR
Estimatec

















hsa-miR-30e-5p
0.0001
0.6%
(−)
1.88
(1.37, 2.58)
1.15
1.46


hsa-miR-30a
0.0001
0.7%
(−)
1.78
(1.33, 2.40)
1.14
1.44


hsa-miR-133a
0.0005
1.2%
(−)
1.85
(1.31, 2.62)
1.13
1.41


hsa-miR-222
0.0006
1.4%
(−)
1.65
(1.24, 2.20)
1.12
1.38


hsa-miR-106b
0.0024
2.7%
(+)
1.85
(1.24, 2.75)
1.11
1.35


hsa-miR-1
0.0028
3.0%
(−)
1.43
(1.13, 1.81)
1.08
1.30


hsa-miR-21
0.0034
3.3%
(+)
1.63
(1.17, 2.25)
1.09
1.33


hsa-miR-93
0.0044
3.9%
(+)
1.87
(1.21, 2.87)
1.09
1.32


hsa-miR-26a
0.0072
5.3%
(−)
1.47
(1.11, 1.94)
1.07
1.29


hsa-miR-152
0.0090
6.0%
(−)
1.46
(1.10, 1.95)
1.06
1.28


hsa-miR-331
0.0105
6.5%
(+)
1.46
(1.09, 1.96)
1.05
1.27


hsa-miR-150
0.0159
8.3%
(+)
1.51
(1.07, 2.10)
1.03
1.27


hsa-miR-27b
0.0160
8.3%
(+)
1.97
(1.12, 3.42)
1.05
1.25






aThe q-value is the empirical Bayes probability that the microRNA's association with death due to prostate cancer endpoint is a false discovery, given the data.




bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of death due to prostate cancer.




cRM: regression to the mean.














TABLE 18







MicroRNAs Associated with Death Due to Prostate Cancer


Highest Gleason Pattern Tumor Tissue









Absolute Standardized Hazard Ratio




















Max.









Lower








Bound




q-valuea
Direction
Uncorrected
95% Confidence
@10%
RM-Corrected


MicroRNA
p-value
(FDR)
of Associationb
Estimate
Interval
FDR
Estimatec

















hsa-miR-27b
0.0016
6.1%
(+)
2.66
(1.45, 4.88)
1.07
1.32


hsa-miR-21
0.0020
6.4%
(+)
1.66
(1.21, 2.30)
1.05
1.34


hsa-miR-10a
0.0024
6.7%
(+)
1.78
(1.23, 2.59)
1.05
1.34


hsa-miR-93
0.0024
6.7%
(+)
1.83
(1.24, 2.71)
1.05
1.34


hsa-miR-106b
0.0028
6.8%
(+)
1.79
(1.22, 2.63)
1.05
1.33


hsa-miR-150
0.0035
7.1%
(+)
1.61
(1.17, 2.22)
1.05
1.32


hsa-miR-1
0.0104
9.0%
(−)
1.52
(1.10, 2.09)
1.00
1.28






aThe q-value is the empirical Bayes probability that the microRNA's association with clinical endpoint is a false discovery, given the data.




bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of death due to prostate cancer.




cRM: regression to the mean.







Table 19 and Table 20 shows the microRNAs that can be identified as being associated with the risk of clinical recurrence while adjusting for the clinical and pathology covariates of biopsy Gleason score, baseline PSA level, and clinical T-stage. The distributions of these covariates are shown in FIG. 1. Fifteen (15) of the microRNAs identified in Table 15 are also present in Table 19, indicating that these microRNAs have predictive value for clinical recurrence that is independent of the Gleason score, baseline PSA, and clinical T-stage.


Two microRNAs assayed from primary Gleason pattern tumor tissue were found that had predictive value for death due to prostate cancer independent of Gleason score, baseline PSA, and clinical T-stage (Table 21).









TABLE 19







MicroRNAs Associated with Clinical Recurrence of Prostate Cancer


Adjusting for Biopsy Gleason Score, Baseline PSA Level, and Clinical


T-Stage Primary Gleason Pattern Tumor Tissue









Absolute Standardized Hazard Ratio




















Max.









Lower







95%
Bound
RM-




q-valuea
Direction
Uncorrected
Confidence
@10%
Corrected


MicroRNA
p-value
(FDR)
of Associationb
Estimate
Interval
FDR
Estimatec

















hsa-miR-30e-5p
<0.0001
0.0%
(−)
1.80
(1.42, 2.27)
1.23
1.53


hsa-miR-30a
<0.0001
0.0%
(−)
1.75
(1.40, 2.19)
1.22
1.51


hsa-miR-93
<0.0001
0.1%
(+)
1.70
(1.32, 2.20)
1.19
1.44


hsa-miR-449a
0.0001
0.1%
(+)
1.54
(1.25, 1.91)
1.17
1.39


hsa-miR-133a
0.0001
0.1%
(−)
1.58
(1.25, 2.00)
1.17
1.39


hsa-miR-27a
0.0002
0.1%
(+)
1.66
(1.28, 2.16)
1.17
1.41


hsa-miR-21
0.0003
0.2%
(+)
1.58
(1.23, 2.02)
1.16
1.38


hsa-miR-182
0.0005
0.3%
(+)
1.56
(1.22, 1.99)
1.15
1.37


hsa-miR-106b
0.0008
0.5%
(+)
1.57
(1.21, 2.05)
1.15
1.36


hsa-miR-222
0.0028
1.1%
(−)
1.39
(1.12, 1.73)
1.11
1.28


hsa-miR-103
0.0048
1.7%
(+)
1.69
(1.17, 2.43)
1.13
1.32


hsa-miR-486-5p
0.0059
2.0%
(−)
1.34
(1.09, 1.65)
1.09
1.25


hsa-miR-1
0.0083
2.7%
(−)
1.29
(1.07, 1.57)
1.07
1.23


hsa-miR-141
0.0088
2.8%
(+)
1.43
(1.09, 1.87)
1.09
1.27


hsa-miR-200c
0.0116
3.4%
(+)
1.39
(1.07, 1.79)
1.07
1.25


hsa-miR-145
0.0201
5.1%
(−)
1.27
(1.03, 1.55)
1.05
1.20


hsa-miR-206
0.0329
7.2%
(−)
1.40
(1.00, 1.91)
1.05
1.23


hsa-miR-29b
0.0476
9.4%
(+)
1.30
(1.00, 1.69)
1.00
1.20






aThe q-value is the empirical Bayes probability that the microRNA's association with clinical recurrence is a false discovery, given the data.




bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of clinical recurrence.




cRM: regression to the mean.














TABLE 20







MicroRNAs Associated with Clinical Recurrence of Prostate Cancer


Adjusting for Biopsy Gleason Score, Baseline PSA Level, and Clinical


T-Stage Highest Gleason Pattern Tumor Tissue









Absolute Standardized Hazard Ratio




















Max.









Lower







95%
Bound
RM-




q-valuea
Direction
Uncorrected
Confidence
@10%
Corrected


MicroRNA
p-value
(FDR)
of Associationb
Estimate
Interval
FDR
Estimatec

















hsa-miR-30a
<0.0001
0.0%
(−)
1.62
(1.32, 1.99)
1.20
1.43


hsa-miR-30e-5p
<0.0001
0.0%
(−)
1.53
(1.27, 1.85)
1.19
1.39


hsa-miR-93
<0.0001
0.0%
(+)
1.76
(1.37, 2.26)
1.20
1.45


hsa-miR-205
<0.0001
0.0%
(−)
1.47
(1.23, 1.74)
1.18
1.36


hsa-miR-449a
0.0001
0.1%
(+)
1.62
(1.27, 2.07)
1.18
1.38


hsa-miR-106b
0.0003
0.2%
(+)
1.65
(1.26, 2.16)
1.17
1.36


hsa-miR-133a
0.0005
0.2%
(−)
1.51
(1.20, 1.90)
1.16
1.33


hsa-miR-1
0.0007
0.3%
(−)
1.38
(1.15, 1.67)
1.13
1.28


hsa-miR-210
0.0045
1.2%
(+)
1.35
(1.10, 1.67)
1.11
1.25


hsa-miR-182
0.0052
1.3%
(+)
1.40
(1.10, 1.77)
1.11
1.26


hsa-miR-425
0.0066
1.6%
(+)
1.48
(1.12, 1.96)
1.12
1.26


hsa-miR-155
0.0073
1.8%
(−)
1.36
(1.09, 1.70)
1.10
1.24


hsa-miR-21
0.0091
2.1%
(+)
1.42
(1.09, 1.84)
1.10
1.25


hsa-miR-222
0.0125
2.7%
(−)
1.34
(1.06, 1.69)
1.09
1.23


hsa-miR-27a
0.0132
2.8%
(+)
1.40
(1.07, 1.84)
1.09
1.23


hsa-miR-191*
0.0150
3.0%
(+)
1.37
(1.06, 1.76)
1.09
1.23


hsa-miR-103
0.0180
3.4%
(+)
1.45
(1.06, 1.98)
1.09
1.23


hsa-miR-31
0.0252
4.3%
(−)
1.27
(1.00, 1.57)
1.07
1.19


hsa-miR-19b
0.0266
4.5%
(−)
1.29
(1.00, 1.63)
1.07
1.20


hsa-miR-99a
0.0310
5.0%
(−)
1.26
(1.00, 1.56)
1.06
1.18


hsa-miR-92a
0.0348
5.4%
(+)
1.31
(1.00, 1.69)
1.06
1.19


hsa-miR-146b-5p
0.0386
5.8%
(−)
1.29
(1.00, 1.65)
1.06
1.19


hsa-miR-145
0.0787
9.7%
(−)
1.23
(1.00, 1.55)
1.00
1.15






aThe q-value is the empirical Bayes probability that the microRNA's association with clinical clinical recurrence is a false discovery, given the data.




bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of clinical recurrence.




c RM: regression to the mean.














TABLE 21







MicroRNAs Associated with Death Due to Prostate Cancer Adjusting


for Biopsy Gleason Score, Baseline PSA Level, and Clinical T-Stage


Primary Gleason Pattern Tumor Tissue









Absolute Standardized Hazard Ratio




















Max.









Lower







95%
Bound
RM-




q-valuea
Direction
Uncorrected
Confidence
@10%
Corrected


MicroRNA
p-value
(FDR)
of Associationb
Estimate
Interval
FDR
Estimatec

















hsa-miR-30e-5p
0.0001
2.9%
(−)
1.97
(1.40, 2.78)
1.09
1.39


hsa-miR-30a
0.0002
3.3%
(−)
1.90
(1.36, 2.65)
1.08
1.38






aThe q-value is the empirical Bayes probability that the microRNA's association with clinical recurrence is a false discovery, given the data.




bDirection of association indicates where higher microRNA expression is associated with higher (+) or lower (−) risk of clinical recurrence.




cRM: regression to the mean.







Accordingly, the normalized expression levels of hsa-miR-93; hsa-miR-106b; hsa-miR-21; hsa-miR-449a; hsa-miR-182; hsa-miR-27a; hsa-miR-103; hsa-miR-141; hsa-miR-92a; hsa-miR-22; hsa-miR-29b; hsa-miR-210; hsa-miR-331; hsa-miR-191; hsa-miR-425; and hsa-miR-200c are positively associated with an increased risk of recurrence; and hsa-miR-30e-5p; hsa-miR-133a; hsa-miR-30a; hsa-miR-222; hsa-miR-1; hsa-miR-145; hsa-miR-486-5p; hsa-miR-19b; hsa-miR-205; hsa-miR-31; hsa-miR-155; hsa-miR-206; hsa-miR-99a; and hsa-miR-146b-5p are negatively associated with an increased risk of recurrence.


Furthermore, the normalized expression levels of hsa-miR-106b; hsa-miR-21; hsa-miR-93; hsa-miR-331; hsa-miR-150; hsa-miR-27b; and hsa-miR-10a are positively associated with an increased risk of prostate cancer specific death; and the normalized expression levels of hsa-miR-30e-5p; hsa-miR-30a; hsa-miR-133a; hsa-miR-222; hsa-miR-1; hsa-miR-26a; and hsa-miR-152 are negatively associated with an increased risk of prostate cancer specific death.


Table 22 shows the number of microRNA-gene pairs that were grouped in each tier (Tiers 1-4) and the number and percentage of those that were predictive of clinical recurrence at a false discovery rate of 10%.












TABLE 22







Number of Pairs Predictive of




Total Number of
Clinical Recurrence at False


Tier
MicroRNA-Gene Pairs
Discovery Rate 10% (%)


















Tier 1
80
46
(57.5%)


Tier 2
719
591
(82.2%)


Tier 3
3,850
2,792
(72.5%)


Tier 4
54,724
38,264
(69.9%)

























TABLE A







SEQ

SEQ

SEQ

SEQ



Official
Accession
ID
Forward
ID
Reverse
ID

ID



Symbol:
Number:
NO
Primer Sequence:
NO
Primer Sequence:
NO
Probe Sequence:
NO
Amplicon Sequence:
























AAMP
NM_001087
1
GTGTGGCAGGTGGAC
2
CTCCATCCACTCCAGG
3
CGCTTCAAAGGACC
4
GTGTGGCAGGTGGACACTAAGGAGGAGGTCTGGTCCTTT





ACTAA

TCTC

AGACCTCCTC

GAAGCGGGAGACCTGGAGTGGATGGAG





ABCA5
NM_172232
5
GGTATGGATCCCAAA
6
CAGCCCGCTTTCTGTT
7
CACATGTGGCAGAG
8
GGTATGGATCCCAAAGCCAAACAGCACATGTGGCGAGCA





GCCA

TTTA

CAATTCGAACT

ATTCGAACTGCATTTAAAAACAGAAAGCGGGCT





ABCD1
NM_000927
9
AAACACCACTGGAGC
10
CAAGCCTGGAACCTAT
11
CAAGCCTGGAACCT
12
AAACACCACTGGAGCATTGACTACCAGGCTCGCCAATGA





ATTGA

AGCC

ATAGCC

TGCTGCTCAAGTTAAAGGGGCTATAGGTTCCAG





ABCC1
NM_004996
13
TCATGGTGCCCGTCA
14
CGATTGTCTTTGCTCT
15
ACCTGATACGTCTT
16
TCATGGTGCCCGTCAATGCTGTGATGGCGATGAAGACCA





ATG

TCATGTG

GGTCTTCATCGCCA

AGACGTATCAGGTGGCCCACATGAAGAGCAAAG









T







ABCC3
NM_003786
17
TCATCCTGGCGATCT
18
CCGTTGAGTGGAATCA
19
TCTGTCCTGGCTGG
20
TCATCCTGGCGATCTACTTCCTCTGGCAGAACCTAGGTC





ACTTCCT

GCAA

AGTCGCTTTCAT

CCTCTGTCCTGGCTGGAGTCGCTTTCATGGTCTTGCTGA











TTCCACTCAACGG





ABCC4
NM_005845
21
AGCGCCTGGAATCTA
22
AGAGCCCCTGGAGAGA
23
CGGAGTCCAGTGTT
24
AGCGCCTGGAATCTACAACTCGGAGTCCAGTGTTTTCCC





CAACT

AGAT

TTCCCACTTA

ACTTATCATCTTCTCTCCAGGGGCTCT





ABCC8
NM_000351
25
CGTCTGTCACTGTGG
26
TGATCCGGTTTAGCAG
27
AGTCTCTTGGCCAC
28
CGTCTGTCACTGTGGAGTGGACAGGGCTGAAGGTGGCCA





AGTGG

GC

CTTCAGCCCT

AGAGACTGCACCGCAGCCTGCTAAACCGGATCA





ABCG2
NM_004827
29
GGTCTCAACGGCATC
30
CTTGGATCTTTCCTTG
31
ACGAAGATTTGCCT
32
GGTCTCAACGCCATCCTGGGACCCACAGGTGGAGGCAAA





CTG

CAGC

CCACCTGTGG

TCTTCGTTATTAGATGTCTTAGCTGCAAGGAAAG





ABHD2
NM_007011
33
GTAGTGGGTCTGCAT
34
TGAGGGTTGGCACTCA
35
CAGGTGGCTCCTTT
36
GTAGTGGGTCTGCATGGATGTTTCAGGGATCAAAGGAGC





GGATGT

GG

GATCCCTGA

CACCTGGGCGCCTGAGTGCCAACCCTCA





ACE
NM_000789
37
CCGCTGTACGAGGAT
38
CCGTGTCTGTGAAGCC
39
TGCCCTCAGCAATG
40
CCGCTGTACGAGGATTTCACTGCCCTCAGCAATGAAGCC





TTCA

GT

AAGCCTACAA

TACAAGCAGGACGGCTTCACAGACACGG





ACOX2
NM_003500
41
ATGGAGGTGCCCAGA
42
ACTCCGGGTAACTGTG
43
TGCTCTCAACTTTC
44
ATGGAGGTGCCCAGAACACTGCACTCCGCAGGAAAGTTG





ACAC

GATG

CTGCGGAGTG

AGAGCATCATCCACAGTTACCCGGAGT





ACTR2
NM_005722
45
ATCCGCATTGAAGAC
46
ATCCGCTAGAACTGCA
47
CCCGCAGAAAGCAC
48
ATCCGCATTGAAGACCCACCCCGCAGAAAGCACATGGTA





CCA

CCAC

ATGGTATTCC

TTCCTGGGTGGTGCAGTTCTAGCGGAT





ADAM15
NM_003815
49
GGCGGGATGTGGT
50
ATTTCTGGGCCTCCG
51
TCAGCCACAATCAC
52
GGCGGGATGTGGTAACAGAGACCAAGACTGTGGAGT









CAACTC







ADAMTS1
NM_006988
53
GGACAGGTGCAAGCT
54
ATCTACAACCTTGGGC
55
CAAGCCAAAGGCAT
56
GGACAGGTGCAAGCTCATCTGCCAAGCCAAAGGCATTGG





CATCTG

TGCAA

TGGCTACTTCTTCG

CTACTTCTTCGTTTTGCAGCCCAAGGTTGTAGAT





ADH5
NM_000671
57
ATGCTGTCATCATT
58
CTGCTTCCTTTCCCTT
59
TGTCTGCCCATTAT
60
ATGCTGTCATCATTGTCACGGTTTGTCTGCCCATTAT









CTTCAT







AFAP1
NM_198595
61
GATGTCCATCCTT
62
CAACCCTGATGCCTG
63
CCTCCAGTGCTGTG
64
GATGTCCATCCTTGAAACAGCCTCTTCTGGGAACACA









TTCCCA







AGTR1
NM_000685
65
AGCATTGATCGAT
66
CTACAAGCATTGTGC
67
ATTGTTCACCCAAT
68
AGCATTGATCGATACCTGGCTATTGTTCACCCAATGA









GAAGTC







AGTR2
NM_000686
69
ACTGGCATAGGAA
70
ATTGACTGGGTCTCTT
71
CCACCCAGACCCCA
72
ACTGGCATAGGAAATGGTATCCAGAATGGAATTTTG









TGTAGC







AIG1
NM_016108
73
CGACGGTTCTGCC
74
TGCTCCTGCTGGGAT
75
AATCGAGATGAGGA
76
CGACGGTTCTGCCCTTTATATTAATCGAGATGAGGAC









CATCGC







AKAP1
NM_003488
77
TGTGGTTGGAGAT
78
GTCTACCCACTGGGC
79
CTCCACCAGGGACC
80
TGTGGTTGGAGATGAAGTGGTGTTGATAAACCGGTC









GGTTTA







AKR1C1
BC040210
81
GTGTGTGAAGCTG
82
CTCTGCAGGCGCATA
83
CCAAATCCCAGGAC
84
GTGTGTGAAGCTGAATGATGGTCACTTCATGCCTGTG









AGGCAT







AKR1C3
NM_003739
85
GCTTTGCCTGATGTC
86
GTCCAGTCACCGGCAT
87
TGCGTCACCATCCA
88
GCTTTGCCTGATGTCTACCAGAAGCCCTGTGTGTGGATG





TACCAGAA

AGAGA

CACACAGGG

GTGACGCAGAGGACGTCTCTATGCCGGTGACTGG





AKT1
NM_005163
89
CGCTTCTATGGCG
90
TCCCGGTACACCACG
91
CAGCCCTGGACTAC
92
CGCTTCTATGGCGCTGAGATTGTGTCAGCCCTGGACT









CTGCAC







AKT2
NM_001626
93
TCCTGCCACCCTTC
94
GGCGGTAAATTCATC
95
CAGGTCACGTCCGA
96
TCCTGCCACCCTTCAAACCTCAGGTCACGTCCGAGGT









GGTCGA







AKT3
NM_005465
97
TTGTCTCTGCCTTGG
98
CCAGCATTAGATTCTC
99
TCACGGTACACAAT
100
TTGTCTCTGCCTTGGACTATCTACATTCCGGAAAGATTG





ACTATCTACA

CAACTTGA

CTTTCCGGA

TGTACCGTGATCTCAAGTTGGAGAATCTAATGCTG





ALCAM
NM_001627
101
GAGGAATATGGAA
102
GTGGCGGAGATCAAG
103
CCAGTTCCTGCCGT
104
GAGGAATATGGAATCCAAGGGGGCCAGTTCCTGCCG









CTGCTC







ALDH18A1
NM_002860
105
GATGCAGCTGGAACC
106
CTCCAGCTCAGTGGGG
107
CCTGAAACTTGCAT
108
GATGCAGCTGGAACCCAAGCTGCAGCAGGAGATGCAAGT





CAA

AA

CTCCTGCTGC

TTCAGGATGTTCCCCACTGAGCTGGAG





ALDH1A
NM_170696
109
CACGTCTGTCCCT
110
GACCGTGGCTCAACT
111
TCTCTGTAGGGCCC
112
CACGTCTGTCCCTCTCTGCTTTCTCTGTAGGGCCCAG









AGCTCT







ALKBH3
NM_139178
113
TCGCTTAGTCTGC
114
TCTGAGCCCCAGTTTT
115
TAAACAGGGCAGTC
116
TCGCTTAGTCTGCACCTCAACCGTGCGGAAAGTGACT









ACTTTC







ALOX12
NM_000697
117
AGTTCCTCAATGG
118
AGCACTAGCCTGGAG
119
CATGCTGTTGAGAC
120
AGTTCCTCAATGGTGCCAACCCCATGCTGTTGAGACG









GCTCGA







ALOX5
NM_000698
121
GAGCTGCAGGACT
122
GAAGCCTGAGGACTT
123
CCGCATGCCGTACA
124
GAGCTGCAGGACTTCGTGAACGATGTCTACGTGTAC









CGTAGA







AMACR
NM_203382
125
GTCTCTGGGCTGTCA
126
TGGGTATAAGATCCAG
127
TCCATGTGTTTGAT
128
GTCTCTGGGCTGTCAGCTTTCCTTTCTCCATGTGTTTGA





GCTTT

AACTTGC

TTCTCCTCAGGC

TTTCTCCTCAGGCTGGTAGCAAGTTCTGGATCTTA





AMPD3
NM_000480
129
TGGTTCATCCAGCAC
130
CATAAATCCGGGGCAC
131
TACTCTCCCAACAT
132
TGGTTCATCCAGCACAAGGTCTACTCTCCCAACATGCGC





AAGG

CT

GCGCTGGATC

TGGATCATCCAGGTGCCCCGGATTTATG





ANGPT2
NM_001147
133
CCGTGAAAGCTGC
134
TTGCAGTGGGAAGAA
135
AAGCTGACACAGCC
136
CCGTGAAAGCTGCTCTGTAAAAGCTGACACAGCCCT









CTCCCA







ANLN
NM_018685
137
TGAAAGTCCAAAA
138
CAGAACCAAGGCTAT
139
CCAAAGAACTCGTG
140
TGAAAGTCCAAAACCAGGAAAATTCCAAAGAACTCG









TCCCTC







ANPEP
NM_001150
141
CCACCTTGGACCAAA
142
TCTCAGCGTCACCTGG
143
CTCCCCAACACGCT
144
CCACCTTGGACCAAAGTAAAGCGTGGAATCTTACCGCCT





GTAAAGC

TAGGA

GAAACCCG

CCCCAACACGCTGAAACCCGATTCCTACCGGG





ANXA2
NM_004039
145
CAAGACACTAAGGGC
146
CGTGTCGGGCTTCAGT
147
CCACCACACAGGTA
148
CAAGACACTAAGGGCGACTACCAGAAAGCGCTGCTGTAC





GACTACCA

CAT

CAGCAGCGCT

CTGTGTGGTGGAGATGACTGAAGCCCGACACG





APC
NM_000038
149
GGACAGCAGGAAT
150
ACCCACTCGATTTGTT
151
CATTGGCTCCCCGT
152
GGACAGCAGGAATGTGTTTCTCCATACAGGTCACGG









GACCTG







APEX1
NM_001641
153
GATGAAGCCTTTC
154
AGGTCTCCACACAGC
155
CTTTCGGGAAGCCA
156
GATGAAGCCTTTCGCAAGTTCCTGAAGGGCCTGGCTT









GGCCCT







APOC1
NM_001645
157
CCAGCCTGATAAA
158
CACTCTGAATCCTTGC
159
AGGACAGGACCTCC
160
CCAGCCTGATAAAGGTCCTGCGGGCAGGACAGGACC









CAACCA







APOE
NM_000041
161
GCCTCAAGAGCTGGT
162
CCTGCACCTTCTCCAC
163
ACTGGCGCTGCATG
164
GCCTCAAGAGCTGGTTCGAGCCCCTGGTGGAAGACATGC





TCG

CA

TCTTCCAC

AGCGCCAGTGGGCCGGGCTGGTGGAGAAGGTGC





APRT
NM_000485
165
GAGGTCCTGGAGT
166
AGGTGCCAGCTTCTC
167
CCTTAAGCGAGGTC
168
GAGGTCCTGGAGTGCGTGAGCCTGGTGGAGCTGACC









AGCTCC







AQP2
NM_000486
169
GTGTGGGTGCCAG
170
CCCTTCAGCCCTCTCA
171
CTCCTTCCCTTCCC
172
GTGTGGGTGCCAGTCCTCCTCAGGAGAAGGGGAAGG









CTTCTCC







AR
NM_000044
173
CGACTTCACCGCA
174
TGACACAAGTGGGAC
175
ACCATGCCGCCAGG
176
CAGCTTCACCGCACCTGATGTGTGGTACCCTGGCGG









GTACCA







ARF1
NM_001658
177
CAGTAGAGATCCC
178
ACAAGCACATGGCTA
179
CTTGTCCTTGGGTC
180
CAGTAGAGATCCCCGCAACTCGCTTGTCCTTGGGTCA









ACCCTG







ARHGAP29
NM_004815
181
CACGGTCTCGTGGTG
182
CAGTTGCTTGCCCAGG
183
ATGCCAGACCCAGA
184
CACGGTCTCGTGGTGAAGTCAATGCCAGACCCAGACAAA





AAGT

AC

CAAAGCATCA

GCATCAGCTTGTCCTGGGCAAGCAACTG





ARHGD1
NM_001175
185
TGGTCCCTAGAAC
186
TGATGGAGGATCAGA
187
TAAAACCGGGCTTT
188
TGGTCCCTAGAACAAGAGGCTTAAAACCGGGCTTTC









CACCCA







ASAP2
NM_003887
189
CGGCCCATCAGCT
190
CTCTGGCCAAAGATA
191
CTGGGCTCCAACCA
192
CGGCCCATCAGCTTCTACCAGCTGGGCTCCAACCAG









GCTTCA







ASPN
NM_017680
193
TGGACTAATCTGT
194
AAACACCCTTCAACA
195
AGTATCACCCAGGG
196
TGGACTAATCTGTGGGAGCAGTTTATTCCAGTATCAC









TGCAGC







ATM
NM_000051
197
TGCTTTCTACACAT
198
GTTGTGGATCGGCTC
199
CCAGCTGTCTTCGA
200
TGCTTTCTACACATGTTCAGGGATTTTTCACCAGCTG









CACTTC







ATP5E
NM_006886
201
CCGCTTTCGCTAC
202
TGGGAGTATCGGATG
203
TCCAGCCTGTCTCC
204
CCGCTTTCGCTACAGCATGGTGGCCTACTGGAGACA









AGTAGG







ATP5J
NM_0010037
205
GTCGACCGACTGAAA
206
CTCTACTTCCGGCCC
207
CTACCCGCCATCGC
208
GTCGACCGACTGAAACGGCGGCCCATAATGCATTGCGAT



03

CGG

TGG

AATGCATTAT

GGCGGGTAGGCGTGTGGGGGCGGAGCCAGGGCC





ATXN1
NM_000332
209
GATCGACTCCAGC
210
GAACTGTATCACGGC
211
CGGGCTATGGCTGT
212
GATCGACTCCAGCACCGTAGAGGATTGAAGACAG









CTTCAA







AURKA
NM_003600
213
CATCTTCCAGGAG
214
TCCGACCTTCAATCAT
215
CTCTGTGGCACCCT
216
CATCTTCCAGGAGGACCACTCTCTGTGGCACCCTGGA









GGACTA







AURKB
NM_004217
217
AGCTGCAGAAGAG
218
GCATCTGCCAACTCC
219
TGACGAGCAGCGAA
220
AGCTGCAGAAGAGCTGCACATTTGACGAGCAGCGAA









CAGCC







AXIN2
NM_004655
221
GGCTATGTCTTTG
222
ATCCGTCAGCGCATC
223
ACCAGCGCCAACGA
224
GGCTATGTCTTTGCACCAGCCACCAGCGCCAACGAC









CAGTG







AZGP1
NM_001185
225
GAGGCCAGCTAGG
226
CAGGAAGGGCAGCTA
227
TCTGAGATCCCACA
228
GAGGCCAGCTAGGAAGCAAGGGTTGGAGGCAATGTG









TTGCCT







BAD
NM_032989
229
GGGTCAGGGGCCT
230
CTGCTCACTCGGCTC
231
TGGGCCCAGAGCAT
232
GGGTCAGGGGCCTCGAGATCGGGCTTGGGCCCAGAG









GTTCCA







BAG5
NM_001015049
233
ACTCCTGCAATGAAC
234
ACAAACAGCTCCCCAC
235
ACACCGGATTTAGC
236
ACTCCTGCAATGAACCCTGTTGACACCGGATTTAGCTCT





CCTGT

GA

TCTTGTCGGC

TGTCGGCCTTCGTGGGGAGCTGTTTGT





BAK1
NM_001188
237
CCATTCCCACCATT
238
GGGAACATAGACCCA
239
ACACCCCAGACGTC
240
CCATTCCCACCATTCTACCTGAGGCCAGGACGTCTGG









CTGGCC







BAX
NM_004324
241
CCGCCGTGGACAC
242
TTGCCGTCAGAAAAC
243
TGCCACTCGGAAAA
244
CCGCCGTGGACACAGACTCCCCCCGAGAGGTCTTTTT









AGACCT







BBC3
NM_014417
245
CCTGGAGGGTCCTGT
246
CTAATTGGGCTCCATC
247
CATCATGGGACTCC
248
CCTGGAGGGTCCTGTACAATCTCATCATGGGACTCCTGC





ACAAT

TCG

TGCCCTTACC

CCTTACCCAGGGGCCACAGAGCCCCCGAGATGGA





BCL2
NM_000633
249
CAGATGGACCTAGTA
250
CCTATGATTTAAGGGC
251
TTCCACGCCGAAGG
252
CAGATGGACCTAGTACCCACTGAGATTTCCACGCCGAAG





CCCACTGAGA

ATTTTTCC

ACAGCGAT

GACAGCGATGGGAAAAATGCCCTTAAATCATAG





BDKRB1
NM_000710
253
GTGGCAGAAATCT
254
GAAGGGCAAGCCCAA
255
ACCTGGCAGCCTCT
256
GTGGCAGAAATCTACCTGGCCAACCTGGCAGCCTCT









GATCTG







BGN
NM_001711
257
GAGCTCCGCAAGG
258
CTTGTTGTTCACCAGG
259
CAAGGGTCTCCAGC
260
GAGCTCCGCAAGGATGACTTCAAGGGTCTCCAGCAC









ACCTCT







BIK
NM_001197
261
ATTCCTATGGCTCTG
262
GGCAGGAGTGAATGGC
263
CCGGTTAACTGTGG
264
ATTCCTATGGCTCTGCAATTGTCACCGGTTAACTGTGGC





CAATTGTC

TCTTC

CCTGTGCCC

CTGTGCCCAGGAAGAGCCATTCACTCCTGCC





BIN1
NM_004305
265
CCTGCAAAAGGGAAC
266
CGTGGTTGACTCTGAT
267
CTTCGCCTCCAGAT
268
CCTGCAAAAGGGAACAAGAGCCCTTCGCCTCCAGATGGC





AAGAG

CTCG

GGCTCCC

TCCCCTGCCGCCACCCCCGAGATCAGAGTCAAC





BIRC5
NM_001012271
269
TTCAGGTGGATGAGG
270
CACACAGCAGTGGCAA
271
TCTGCCAGACGCTT
272
TTCAGGTGGATGAGGAGACAGAATAGAGTGATAGGAAGC





AGACA

AAG

CCTATCACTCTATT

GTCTGGCAGATACTCCTTTTGCCACTGCTGTGTG









C







BMP6
NM_001718
273
GTGCAGACCTTGG
274
CTTAGTTGGCGCACA
275
TGAACCCCGAGTAT
276
GTGCAGACCTTGGTTCACCTTATGAACCCCGAGTATG









GTCCCC







BMPR1B
NM_001203
277
ACCACTTTGGCCA
278
GCGGTGTTTGTACCC
279
ATTCACATTACCAT
280
ACCACTTTGGCCATCCCTGCATTTGGGGCCGTCTATGG









AGCGGC







BRCA1
NM_007294
281
TCAGGGGGCTAGA
282
CCATTCCAGTTGATCT
283
CTATGGGCCCTTCA
284
TCAGGGGGCTAGAAATCTGTTGCTATGGGCCCTTCAC









CCAACA







BRCA2
NM_000059
285
AGTTCGTGCTTTG
286
AAGGTAAGCTGGGTC
287
CATTCTTCACTGCT
288
AGTTCGTGCTTTGCAAGATGGTGCAGAGCTTTATGAA









TCATAA







BTG1
NM_001731
289
GAGGTCCGAGCGA
290
AGTTATTTTCGAGAC
291
CGCTCGTCTCTTCC
292
GAGGTCCGAGCGATGTGACCAGGCCGCCATCGCTCG









TCTCTC







BTG3
NM_006806
293
CCATATCGCCCAA
294
CCAGTGATTCCGGTC
295
CATGGGTACCTCCT
296
CCATATCGCCCAATTCCAGTGACATGGGTACCTCCTC









CCTGGA







BTRC
NM_033637
297
GTTGGGACACAGT
298
TGAAGCAGTCAGTTG
299
CAGTCGGCCCAGGA
300
GTTGGGACACAGTTGGTCTGCAGTCGGCCCAGGACG









CGGTCT







BUB1
NM_004336
301
CCGAGGTTAATCC
302
AAGACATGGCGCTCT
303
TGCTGGGAGCCTAC
304
CCGAGGTTAATCCAGCACGTATGGGGCCAAGTGTAG









ACTTGG







C7
NM_000587
305
ATGTCTGAGTGTG
306
AGGCCTTATGCTGGT
307
ATGCTCTGCCCTCT
308
ATGTCTGAGTGTGAGGCGGGCGCTCTGAGATGCAGA









GCATCT







CACNA1D
NM_000720
309
AGGACCCAGCTCCAT
310
CCTACATTCCGTGCC
311
CAGTACACTGGCGT
312
AGGACCCAGCTCCATGTGCGTTCTCAGGGAATGGACGCC





GTG

ATTG

CCATTCCCTG

AGTGTACTGCCAATGGCACGGAATGTAGG


CADM1
NM_014333
313
CCACCACCATCCT
314
GATCCACTGCCCTGA
315
TCTTCACCTGCTCG
316
CCACCACCATCCTTACCATCATCACAGATTCCCGAGC









GGAATC







CADPS
NM_003716
317
CAGCAAGGAGACT
318
GGTCCTCTTCTCCACG
319
CTCCTGGATGGCCA
320
CAGCAAGGAGACTGTGCTGAGCTCCTGGATGGCCAA









AATTTG







CASP1
NM_001223
321
AACTGGAGCTGAG
322
CATCTACGCTGTACC
323
TCACAGGCATGACA
324
AACTGGAGCTGAGGTTGACATCACAGGCATGACAAT









ATGCTG







CASP3
NM_032991
325
TGAGCCTGAGCAG
326
CCTTCCTGCGTGGTCC
327
TCAGCCTGTTCCAT
328
TGAGCCTGAGCAGAGACATGACTCAGCCTGTTCCAT









GAAGGC







CASP7
NM_033338
329
GCAGCGCCGAGAC
330
AGTCTCTCTCCGTCGC
331
CTTTCGCTAAAGGG
332
GCAGCGCCGAGACTTTAGTTTCGCTTTCGCTAAAGG









GCCCCA







CAV1
NM_001753
333
GTGGCTCAACATT
334
CAATGGCCTCCATTTT
335
ATTTCAGCTGATCA
336
GTGGCTCAACATTGTGTTCCCATTTCAGCTGATCAGT









GTGGGC







CAV2
NM_198212
337
CTTCCCTGGGACG
338
CTCCTGGTCACCCTTC
339
CCCGTACTGTCATG
340
CTTCCCTGGGACGACTTGCCAGCTCTGAGGCATGAC









CCTCAG







CCL2
NM_002982
341
CGCTCAGCCAGATGC
342
GCACTGAGATCTTCCT
343
TGCCCCAGTCACCT
344
CGCTCAGCCAGATGCAATCAATGCCCCAGTCACCTGCTG





AATC

ATTGGTGAA

GCTGTTA

TTATAACTTCACCAATAGGAAGATCTCAGTGC





CCL5
NM_002985
345
AGGTTCTGAGCTC
346
ATGCTGACTTCCTTCC
347
ACAGAGCCCTGGCA
348
AGGTTCTGAGCTCTGGCTTTGCCTTGGCTTTGCCAGG









AAGCC







CCNB1
NM_031996
349
TTCAGGTTGTTGCAG
350
CATCTTCTTGGGCACA
351
TGTCTCCATTATGA
352
TTCAGGTTGTTGCAGGAGACCATGTACATGACTGTCTCC





GAGAC

CAAT

TCGGTTCATGCA

ATTATTGATCGGTTCATGCAGAATAATTGTGTGCC


CCND1
NM_001758
353
GCATGTTCGTGGC
354
CGGTGTAGATGCACA
355
AAGGAGACCATCCC
356
GCATGTTCGTGGCCTCTAAGATGAAGGAGACCATCC









CCTGAC







CCNE2
NM_057749
357
ATGCTGTGGCTCCTT
358
ACCCAAATTGTGATAT
359
TACCAAGCAACCTA
360
ATGCTGTGGCTCCTTCCTAACTGGGGCTTTCTTGACATGT





CCTAACT

ACAAAAAGGTT

CATGTCAAGAAAGC

AGGTTGCTTGGTAATAACCTTTTTGTATATCACA









CC







CCNH
NM_001239
361
GAGATCTTCGGTG
362
CTGCAGACGAGAACC
363
CATCAGCGTCCTGG
364
GAGATCTTCGGTGGGGGTACGGGTGTTTTACGCCAG









CGTAAA







CCR1
NM_001295
365
TCCAAGACCCAAT
366
TCGTAGGCTTTCGTG
367
ACTCACCACACCTG
368
TCCAAGACCCAATGGGAATTCACTCACCACACCTGC









CAGCCT







CD164
NM_006016
369
CAACCTGTGCGAA
370
ACACCCAAGACCAGGC
371
CCTCCAATGAAACT
372
CAACCTGTGCGAAAGTCTACCTTTGATGCAGCCAGTT









GGCTGC







CD1A
NM_001763
373
GGAGTGGAAGGAACT
374
TCATGGGCGTATCTAG
375
CGCACCATTCGGTC
376
GGAGTGGAAGGAACTGGAAACATTATTCCGTATACGCAC





GGAAA

AAT

ATTTGAGG

CATTCGGTCATTTGAGGGAATTCGTAGATACGCC


CD276
NM_001024736
377
CCAAAGGATGCGATA
378
GGATGACTTGGGAATC
379
CCACTGTGCAGCCT
380
CCAAAGGATGCGATACACAGACCACTGTGCAGCCTTATT





CACAG

ATGTC

TATTTCTCCAATG

TCTCCAATGGACATGATTCCCAAGTCATCC


CD44
NM_000610
381
GGCACCACTGCTT
382
GATGCTCATGGTGAA
383
ACTGGAACCCAGAA
384
GGCACCACTGCTTATGAAGGAAACTGGAACCCAGAA









GCACA







CD68
NM_001251
385
TGGTTCCCAGCCC
386
CTCCTCCACCCTGGGT
387
CTCCAAGCCCAGAT
388
TGGTTCCCAGCCCTGTGTCCACCTCCAAGCCCAGATT









TCAGAT







CD82
NM_002231
389
GTGCAGGCTCAGGTG
390
GACCTCAGGGCGATTC
391
TCAGCTTCTACAAC
392
GTGCAGGCTCAGGTGAAGTGCTGCGGCTGGGTCAGCTTC





AAGTG

ATGA

TGGACAGACAACGC

TACAACTGGACAGACAACGCTGAGCTCATGAAT









TG







CDC20
NM_001255
393
TGGATTGGAGTTC
394
GCTTGCACTCCACAG
395
ACTGGCCGTGGCAC
396
TGGATTGGAGTTCTGGGAATGTACTGGCCGTGGCAC









TGGACA







CDC25B
NM_021873
397
GCTGCAGGACCAG
398
TAGGGCAGCTGGCTT
399
CTGCTACCTCCCTT
400
GCTGCAGGACCAGTGAGGGGCCTGCGCCAGTCCTGC









GCCTTT







CDC6
NM_001254
401
GCAACACTCCCCA
402
TGAGGGGACCATTC
403
TTGTTCTCCACCAA
404
GCAACACTCCCCATTTACCTCCTTGTTCTCCACCAAA









AGCAAG







CDH1
NM_004360
405
TGAGTGTCCCCCGGT
406
CAGCCGCTTTCAGAT
407
TGCCAATCCCGATG
408
TGAGTGTCCCCCGGTATCTTCCCCGCCCTGCCAATCCCG





ATCTTC

TTTCAT

AAATTGGAAATTT

ATGAAATTGGAAATTTTATTGATGAAAATCTGAAA





CDH10
NM_006727
409
TGTGGTGCAAGTC
410
TGTAAATGACTCTGG
411
ATGCCGATGACCCT
412
TGTGGTGCAAGTCACAGCTACAGATGCCGATGACCC









TCATAT







CDH11
NM_001797
413
GTCGGCAGAAGCA
414
CTACTCATGGGCGGG
415
CCTTCTGCCCATAG
416
GTCGGCAGAAGCAGGACTTGTACCTTCTGCCCATAG









TGATCA







CDH19
NM_021153
417
AGTACCATAATGC
418
AGACTGCCTGTATAG
419
ACTCGGAAAACCAC
420
AGTACCATAATGCGGGAACGCAAGACTCGGAAAACC









AAGCG







CDH5
NM_001795
421
ACAGGAGACGTGT
422
CAGCAGTGAGGTGGT
423
TATTCTCCCGGTCC
424
ACAGGAGACGTGTTCGCCATTGAGAGGCTGGACCGG









AGCCTC







CDH7
NM_033646
425
GTTTGACATGGCT
426
AGTCACATCCCTCCG
427
ACCTCAACGTCATC
428
GTTTGACATGGCTGCACTGAGAAACCTCAACGTCATC









CGAGAC







CDK14
NM_012395
429
GCAAGGTAAATGG
430
GATAGCTGTGAAAGG
431
CTTCCTGCAGCCTG
432
GCAAGGTAAATGGGAAGTTGGTAGCTCTGAAGGTGA









ATCACC







CDK2
NM_001798
433
AATGCTGCACTACGA
434
TTGGTCACATCCTGG
435
CCTTGGCCGAAATC
436
AATGCTGCACTACGACCCTAACAAGCGGATTTCGGCCAA





CCCTA

AAGAA

CGCTTGT

GGCAGCCCTGGCTCACCTTTCTTCCAGGATGTG





CDK3
NM_001258
437
CCAGGAAGGGACT
438
GTTGCATGAGCAGGT
439
CTCTGGCTCCAGAT
440
CCAGGAAGGGACTGGAAGAGATTGTGCCCAATCTGG









TGGGCA







CDK7
NM_001799
441
GTCTCGGGCAAAG
442
CTCTGGCCTTGTAAA
443
CCTCCCCAAGGAAG
444
GTCTCGGGCAAAGCGTTATGAGAAGCTGGACTTCCT









TCCAGC







CDKN1A
NM_000389
445
TGGAGACTCTCAG
446
GGCGTTTGGAGTGGT
447
CGGCGGCAGACCAG
448
TGGAGACTCTCAGGGTCGAAAACGGCGGCAGACCAG









CATGA







CDKN1C
NM_000076
449
CGGCGATCAAGAA
450
CAGGCGCTGATCTCT
451
CGGGCCTCTGATCT
452
CGGCGATCAAGAAGCTGTCCGGGCCTCTGATCTCCG









CCGATT







CDKN2B
NM_004936
453
GACGCTGCAGAGC
454
GCGGGAATCTCTCCT
455
CACAGGATGCTGGC
456
GACGCTGCAGAGCACCTTTGCACAGGATGCTGGCCT









CTTTGC







CDKN2C
NM_001262
457
GAGCACTGGGCAA
458
CAAAGGCGAACGGGA
459
CCTGTAACTTGAGG
460
GAGCACTGGGCAATCGTTACGACCTGTAACTTGAGG









GCCACC







CDKN3
NM_005192
461
TGGATCTCTACC
462
ATGTCAGGAGTCCCT
463
ATCACCCATCATCA
464
TGGATCTCTACCAGCAATGTGGAATTATCACCCATCA









TCCAAT







CDS2
NM_003818
465
GGGCTTCTTTGCT
466
ACAGGGCAGACAAAG
467
CCCGGACATCACAT
468
GGGCTTCTTTGCTACTGTGGTGTTTGGCCTTCTGCTG









AGGACA







CENPF
NM_016343
469
CTCCCGTCAACAG
470
GGGTGAGTCTGGCCT
471
ACACTGGACCAGGA
472
CTCCCGTCAACAGCGTTCTTTCCAAACACTGGACCAG









GTGCAT







CHAF1A
NM_005483
473
GAACTCAGTGTAT
474
GCTCTGTAGCACCTG
475
TGCACGTACCAGCA
476
GAACTCAGTGTATGAGAAGCGGCCTGACTTCAGGAT









CATCCT







CHN1
NM_001822
477
TTACGACGCTCGT
478
TCTCCCTGATGCACAT
479
CCACCATTGGCCGC
480
TTACGACGCTCGTGAAAGCACATACCACTAAGCGGC









TTAGTG







CHRAC1
NM_017444
481
TCTCGCTGCCTCTA
482
CCTGGTTGATGCTGG
483
ATCCGGGTCATCAT
484
TCTCGCTGCCTCTATCCCGCATCCGGGTCATCATGAA









GAAGAG







CKS2
NM_001827
485
GGCTGGACGTGGT
486
CGCTGCAGAAAATGA
487
CTGCGCCCGCTCTT
488
GGCTGGACGTGGTTTTGTCTGCTGCGCCCGCTCTTCG









CGCG







CLDN3
NM_001306
489
ACCAACTGCGTGC
490
GGCGAGAAGGAACAG
491
CAAGGCCAAGATCA
492
ACCAACTGCGTGCAGGACGACACGGCCAAGGCCAAG









CCATCG







CLTC
NM_004859
493
ACCGTATGGACAG
494
TGACTACAGGATCAG
495
TCTCACATGCTGTA
496
ACCGTATGGACAGCCACAGCCTGGCTTTGGGTACAG









CCCAAA







COL11A
NM_001854
497
GCCCAAGAGGGGA
498
GGACCTGGGTCTCCA
499
CTGCTCGACCTTTG
500
GCCCAAGAGGGGAAGATGGCCCTGAAGGACCCAAAG









GGTCCT







COL1A1
NM_000088
501
GTGGCCATCCAGC
502
CAGTGGTAGGTGATG
503
TCCTGCGCCTGATG
504
GTGGCCATCCAGCTGACCTTCCTGCGCCTGATGTCCA









TCCACC







COL1A2
NM_000089
505
CAGCCAAGAACTGGT
506
AAACTGGCTGCCAGCA
507
TCTCCTAGCCAGAC
508
CAGCCAAGAACTGGTATAGGAGCTCCAAGGACAAGAAAC





ATAGGAGCT

TTG

GTGTTTCTTGTCCT

ACGTCTGGCTAGGAGAAACTATCAATGCTGGCA









TG







COL3A1
NM_000090
509
GGAGGTTCTGGAC
510
ACCAGGACTGCCACG
511
CTCCTGGTCCCCAA
512
GGAGGTTCTGGACCTGCTGGTCCTCCTGGTCCCCAAG









GGTGTC







COL4A1
NM_001845
513
ACAAAGGCCTCCC
514
GAGTCCCAGGAAGAC
515
CTCCTTTGACACCA
516
ACAAAGGCCTCCCAGGATTGGATGGCATCCCTGGTG









GGGATG







COL5A1
NM_000093
517
CTCCCTGGGAAAG
518
CTGGACCAGGAAGCC
519
CCAGGGAAACCACG
520
CTCCCTGGGAAAGATGGCCCTCCAGGATTACGTGGT









TAATCC







COL5A2
NM_000393
521
GGTCGAGGAACCC
522
GCCTGGAGGTCCAAC
523
CCAGGAAATCCTGT
524
GGTCGAGGAACCCAAGGTCCGCCTGGTGCTACAGGA









AGCACC







COL6A1
NM_001848
525
GGAGACCCTGGTG
526
TCTCCAGGGACACCA
527
CTTCTCTTCCCTGA
528
GGAGACCCTGGTGAAGCTGGCCCGCAGGGTGATCAG









TCACCC







COL6A3
NM_004369
529
GAGAGCAAGCGAG
530
AACAGGGAACTGGCC
531
CCTCTTTGACGGCT
532
GAGAGCAAGCGAGACATTCTGTTCCTCTTTGACGGCT









CAGCCA







COL8A1
NM_001850
533
TGGTGTTCCAGGG
534
CCCTGTAAACCCTGA
535
CCTAAGGGAGAGCC
536
TGGTGTTCCAGGGCTTCTCGGACCTAAGGGAGAGCC









AGGAA







COL9A2
NM_001852
537
GGGAACCATCCAG
538
ATTCCGGGTGGACAG
539
ACACAGGAAATCCG
540
GGGAACCATCCAGGGTCTGGAAGGCAGTGCGGATTT









CACTGC







CRISP3
NM_006061
541
TCCCTTATGAACA
542
AACCATTGGTGCATA
543
TGCCAGTTGCCCAG
544
TCCCTTATGAACAAGGAGCACCTTGTGCCAGTTGCCC









ATAACT







CSF1
NM_000757
545
TGCAGCGGCTGATTG
546
CAACTGTTCCTGGTC
547
TCAGATGGAGACCT
548
TGCAGCGGCTGATTGACAGTCGATGGAGACCTCGTGCCA





ACA

TACAAACTCA

CGTGCCAAATTACA

AATTACATTTGAGTTTGTAGACCAGGAACAGTT





CSK
NM_004383
549
CCTGAACATGAAG
550
CATCACGTCTCCGAA
551
TCCCGATGGTCTGC
552
CCTGAACATGAAGGAGCTGAAGCTGCTGCAGACCAT









AGCAGC







CSRP1
NM_004078
553
ACCCAAGACCCTG
554
GCAGGGGTGGAGTGA
555
CCACCCTTCTCCAG
556
ACCCAAGACCCTGCCTCTTCCACTCCACCCTTCTCCA









GGACCC







CTGF
NM_001901
557
GAGTTCAAGTGCCCT
558
AGTTGTAATGGCAGGC
559
AACATCATGTTCTT
560
GAGTTCAAGTGCCCTGACGGCGAGGTCATGAAGAAGAAC





GACG

ACAG

CTTCATGACCTCGC

ATGATGTTCATCAAGACCTGTGCCTGCCATTACA





CTHRC1
NM_138455
561
TGGCTCACTTCGG
562
TCAGCTCCATTGAAT
563
CAACGCTGACAGCA
564
TGGCTCACTTCGGCTAAAATGCAGAAATGCATGCTGT









TGCATT







CTNNA1
NM_001903
565
CGTTCCGATCCTCTA
566
AGGTCCCTGTTGGCCT
567
ATGCCTACAGCACC
568
CGTTCCGATCCTCTATACTGCATCCCAGGCATGCCTACA





TACTGCAT

TATAGG

CTGATGTCGCA

GCACCCTGATGTCGCAGCCTATAAGGCCAACAGG





CTNNB1
NM_001904
569
GGCTCTTGTGCGTAC
570
TCAGATGACGAAGAGC
571
AGGCTCAGTGATGT
572
GGCTCTTGTGCGTACTGTCCTTCGGGCTGGTGACAGGGA





TGTCCTT

ACAGATG

CTTCCCTGTCACCA

AGACATCACTGAGCCTGCCATCTGTGCTCTTCGTC









G







CTNND1
NM_001331
573
CGGAAACTTCGGG
574
CTGAATCCTTCTGCCC
575
TTGATGCCCTCATT
576
CGGAAACTTCGGGAATGTGATGGTTTAGTTGATGCC









TTCATT







CTNND2
NM_001332
577
GCCCGTCCCTACA
578
CTCACACCCAGGAGT
579
CTATGAAACGAGCC
580
GCCCGTCCCTACAGTGAACTGAACTATGAAACGAGC









ACTACC







CTSB
NM_001908
581
GGCCGAGATCTAC
582
GCAGGAAGTCCGAAT
583
CCCCGTGGAGGGAG
584
GGCCGAGATCTACAAAAACGGCCCCGTGGAGGGAGC









CTTTCT







CTSD
BN_001909
585
GTACATGATCCCCTG
586
GGGACAGCTTGTAGCC
587
ACCCTGCCCGCGAT
588
GTACATGATCCCCTGTGAGAAGGTGTCCACCCTGCCCGC





TGAGAAGGT

TTTGC

CACACTGA

GATCACACTGAAGCTGGGAGGCAAAGGCTACAAG





CTSK
NM_000396
589
AGGCTTCTCTTGG
590
CCACCTCTTCACTGGT
591
CCCCAGGTGGTTCA
592
AGGCTTCTCTTGGTGTCCATACATATGAACTGGCTAT









TAGCCA







CTSL2
NM_001333
593
TGTCTCACTGAGC
594
ACCATTGCAGCCCTG
595
CTTGAGGACGCGAA
596
TGTCTCACTGAGCGAGCAGAATCTGGTGGACTGTTC









CAGTCC







CTSS
NM_004079
597
TGACAACGGCTTT
598
TCCATGGCTTTGTAG
599
TGATAACAAGGGCA
600
TGACAACGGCTTTCCAGTACATCATTGATAACAAGG









TCGACT







CUL1
NM_003592
601
ATGCCCTGGTAAT
602
GCGACCACAAGCCTT
603
CAGCCACAAAGCCA
604
ATGCCCTGGTAATGTCTGCATTCAACAATGACGCTGG









GCGTCA







CXCL12
NM_000609
605
GAGCTACAGATGC
606
TTTGAGATGCTTGAC
607
TTCTTCGAAAGCCA
608
GAGCTACAGATGCCCATGCCGATTCTTCGAAAGCCA









TGTTGC







CXCR4
NM_003467
609
TGACCGCTTCTAC
610
AGGATAAGGCCAACC
611
CTGAAACTGGAACA
612
TGACCGCTTCTACCCCAATGACTTGTGGGTGGTTGTG









CAACCA







CXCR7
NM_020311
613
CGCCTCAGAACGATG
614
GTTGCATGGCCAGCTG
615
CTCAGAGCCAGGGA
616
CGCCTCAGAACGATGGATCTGCATCTTCGACTACTCAGA





GAT

AT

ACTTCTCGGA

GCCAGGGAACTTCTCGGACATCAGCTGGCCAT





CYP3A5
NM_000777
617
TCATTGCCCAGTA
618
GACAGGCTTGCCTTT
619
TCCCGCCTCAAGTT
620
TCATTGCCCAGTATGGAGATGTATTGGTGAGAAACTT









TCTCAC







CYR61
NM_001554
621
TGCTCATTCTTGAG
622
GTGGCTGCATTAGTG
623
CAGCACCCTTGGCA
624
TGCTCATTCTTGAGGAGCATTAAGGTATTTCGAAACT









GTTTCG







DAG1
NM_004393
625
GTGACTGGGCTCA
626
ATCCCACTTGTGCTCC
627
CAAGTCAGAGTTTC
628
GTGACTGGGCTCATGCCTCCAAGTCAGAGTTTCCCTG









CCTGGT







DAP
NM_004394
629
CCAGCCTTTCTGG
630
GACCAGGTCTGCCTC
631
CTCACCAGCTGGCA
632
CCAGCCTTTCTGGTGCTGTTCTCCAGTTCACGTCTGC









GACGTG







DAPK1
NM_004938
633
CGCTGACATCATG
634
TCTCTTTCAGCAACGA
635
TCATATCCAAACTC
636
CGCTGACATCATGAATGTTCCTCGACCGGCTGGAGG









GCCTCC







DARC
NM_002036
637
GCCCTCATTAGTC
638
CAGACAGAAGGGCTG
639
TCAGCGCCTGTGCT
640
GCCCTCATTAGTCCTTGGCTCTTATCTTGGAAGCACA









TCCAAG







DDIT4
NM_019058
641
CCTGGCGTCTGTC
642
CGAAGAGGAGGTGGA
643
CTAGCCTTTGGGAC
644
CCTGGCGTCTGTCCTCACCATGCCTAGCCTTTGGGAC









CGCTTC







DDR2
NM_001014796
645
CTATTACCGGATCCA
646
CCCAGCAAGATACTCT
647
AGTGCTCCCTATCC
648
CTATTACCGGATCCAGGGCCGGGCAGTGCTCCCTATCCG





GGGC

CCCA

GCTGGATGTC

CTGGATGTCTTGGGAGAGTATCTTGCTGGG





DES
NM_001927
649
ACTTCTCACTGGC
650
GCTCCACCTTCTCGTT
651
TGAACCAGGAGTTT
652
ACTTCTCACTGGCCGACGCGGTGAACCAGGAGTTTCT









CTGACC







DHRS9
NM_005771
653
GGAGAAAGGTCTC
654
CAGTCAGTGGGAGCC
655
ATCAATAATGCTGG
656
GGAGAAAGGTCTCTGGGGTCTGATCAATAATGCTGG









TGTTCC







DHX9
NM_001357
657
GTTCGAACCATCT
658
TCCAGTTGGATTGTG
659
CCAAGGAACCACAC
660
GTTCGAACCATCTCAGCGACAAAACCAAGTGGGTGT









CCACTT







DIAPH1
NM_005219
661
CAAGCAGTCAAGG
662
AGTTTTGCTCGCCTCA
663
TTCTTCTGTCTCCC
664
CAAGCAGTCAAGGAGAACCAGAAGCGGCGGGAGAC









GCCGCT







DICER1
NM_177438
665
TCCAATTCCAGCA
666
GGCAGTGAAGGCGAT
667
AGAAAAGCTGTTTG
668
TCCAATTCCAGCATCACTGTGGAGAAAAGCTGTTTGT









TCTCCC







DIO2
NM_013989
669
CTCCTTTCACGAG
670
AGGAAGTCAGCCACT
671
ACTCTTCCACCAGT
672
CTCCTTTCACGAGCCAGCTGCCAGCCTTCCGCAAACT









TTGCGG







DLC1
NM_006094
673
GATTCAGACGAGG
674
CACCTCTTGCTGTCCC
675
AAAGTCCATTTGCC
676
GATTCAGACGAGGATGAGCCTTGTGCCATCAGTGGC









ACTGAT







DLGAP1
NM_004746
677
CTGCTGAGCCCAG
678
AGCCTGGAAGGAGTT
679
CGCAGACCACCCAT
680
CTGCTGAGCCCAGTGGAGCACCACCCCGCAGACCAC









ACTACA







DLL4
NM_019074
681
CACGGAGGTATAA
682
AGAAGGAAGGTCCAG
683
CTACCTGGACATCC
684
CACGGAGGTATAAGGCAGGAGCCTACCTGGACATCC









CTGCTC







DNM3
NM_015569
685
CTTTCCCACCCGG
686
AAGGACCTTCTGCAG
687
CATATCGCTGACCG
688
CTTTCCCACCCGGCTTACAGACATATCGCTGACCGAA









AATGGG







DPP4
NM_001935
689
GTCCTGGGATCGG
690
GTACTCCCACCGGGA
691
CGGCTATTCCACAC
692
GTCCTGGGATCGGGAAGTGGCGTGTTCAAGTGTGGA









TTGAAC







DPT
NM_001937
693
CACCTAGAAGCCT
694
CAGTAGCTCCCCAGG
695
TTCCTAGGAAGGCT
696
CACCTAGAAGCCTGCCCACGATTCCTAGGAAGGCTG









GGCAGA







DUSP1
NM_004417
697
AGACATCAGCTCC
698
GACAAACACCCTTCC
699
CGAGGCCATTGACT
700
AGACATCAGCTCCTGGTTCAACGAGGCCATTGACTTC









TCATAG







DUSP6
NM_001946
701
CATGCAGGGACTG
702
TGCTCCTACCCTATCA
703
TCTACCCTATGCGC
704
CATGCAGGGACTGGGATTCGAGGACTTCCAGGCGCA









CTGGAA







DVL1
NM_004421
705
TCTGTCCCACCTG
706
TCAGACTGTTGCCGG
707
CTTGGAGCAGCCTG
708
TCTGTCCCACCTGCTGCTGCCCCTTGGAGCAGCCTGC









CACCTT







DYNLL1
NM_001037494
709
GCCGCCTACCTCACA
710
GCCTGACTCCAGCTCT
711
ACCCACGTCAGTGA
712
GCCGCCTACCTCACAGACTTGTGAGCACTCACTGACGTG





GAC

CCT

GTGCTCACAA

GGTAGCGCCCAGGGCCTGCGGGGCGCAGGAGAG





EBNA1BP2
NM_006824
713
TGCGGCGAGATGGAC
714
GTGACAAGGGATTCAT
715
CCCGCTCTCGGATT
716
TGCGGCGAGATGGACACTCCCCCGCTCTCGGATTCGGAG





ACT

CGGATT

CGGAGTCG

TCGGAATCCGATGAATCCCTTGTCAC





ECE1
NM_001397
717
ACCTTGGGATCTG
718
GGACCAGGACCTCCA
719
TCCACTCTCGATAC
720
ACCTTGGGATCTGCCTCCAAGCTGGTGCAGGGTATC









CCTGCA







EDN1
NM_001955
721
TGCCACCTGGACA
722
TGGACCTAGGGCTTC
723
CACTCCCGAGCACG
724
TGCCACCTGGACATCATTTGGGTCAACACTCCCGAGC









TTGTTC







EDNRA
NM_001957
725
TTTCCTCAAATTTG
726
TTACACATCCAACCA
727
CCTTTGCCTCAGGG
728
TTTCCTCAAATTTGCCTCAAGATGGAAACCCTTTGCC









CATCCT







EFNB2
NM_004093
729
TGACATTATCATCCC
730
GTAGTCCCCGCTGACC
731
CGGACAGCGTCTTC
732
TGACATTATCATCCCGCTAAGGACTGCGGACAGCGTCTT





GCTAAGGA

TTCTC

TGCCCTCACT

CTGCCCTCACTACGAGAAGGTCAGCGGGGACTA





EGF
NM_001963
733
CTTTGCCTTGCTCTG
734
AAATACCTGACACCCT
735
AGAGTTTAACAGCC
736
CTTTGCCTTGCTCTGTCACAGTGAAGTCAGCCAGAGCAG





TCACAGT

TATGACAAATT

CTGCTCTGGCTGAC

GGCTGTTAAACTCTGTGAAATTTGTCATAAGGGTG









TT







EGR1
NM_001964
737
GTCCCCGCTGCAGAT
738
CTCCAGCTTAGGGTAG
739
CGGATCCTTTCCTC
740
GTCCCCGCTGCAGATCTCTGACCCGTTCGGATCCTTTCC





CTCT

TTGTCCAT

ACTCGCCCA

TACTCGCCCACCATGGACAACTACCCTAAGCTGG





EGR3
NM_004430
741
CCATGTGGATGAATG
742
TGCCTGAGAAGAGGTG
743
ACCCAGTCTCACCT
744
CCATGTGGATGAATGAGGTGTCTCCTTTCCATACCCAGT





AGGTG

AGGT

TCTCCCCACC

CTCACCTTCTCCCCACCCTACCTCACCTCTTCTCA





EIF2C2
NM_012154
745
GCACTGTGGGCAG
746
ATGTTTGGTGACTGG
747
CGGGTCACATTGCA
748
GCACTGTGGGCAGATGAAGAGGAAGTACCGCGTCTG









GACACG







EIF2S3
NM_001415
749
CTGCCTCCCTGATT
750
GGTGGCAAGTGCCTG
751
TCTCGTGCTTCAGC
752
CTGCCTCCCTGATTCAAGTGATTCTCGTGCTTCAGCC









CTCCCA







EIF3H
NM_003756
753
CTCATTGCAGGCCAG
754
GCCATGAAGAGCTTGC
755
CAGAACATCAAGGA
756
CTCATTGCAGGCCAGATAAACACTTACTGCCAGAACATC





ATAAA

CTA

GTTCACTGCCCA

AAGGAGTTCACTGCCCAAAACTTAGGCAAGCTC





EIF4E
NM_001968
757
GATCTAAGATGGCGA
758
TTAGATTCCGTTTTCT
759
ACCACCCCTACTCC
760
GATCTAAGATGGCGACTGTCGAACCGGAAACCACCCCTA





CTGTCGAA

CCTCTTCTG

TAATCCCCCGACT

CTCCTAATCCCCCGACTACAGAAGAGGAGAAAA





EIF5
NM_001969
761
GAATTGGTCTCCA
762
TCCAGGTATATGGCT
763
CCACTTGCACCCGA
764
GAATTGGTCTCCAGCTGCCTTTGATCAAGATTCGGGT









ATCTTG







ELK4
NM_001973
765
GATGTGGAGAATG
766
AGTCATTGCGGCTAG
767
ATAAACCACCTCAG
768
GATGTGGAGAATGGAGGGAAAGATAAACCACCTCAG









CCTGGT







ENPP2
NM_006209
769
CTCCTGCGCACTA
770
TCCCTGGATAATTGG
771
TAACTTCCTCTGGC
772
CTCCTGCGCACTAATACCTTCAGGCCAACCATGCCAG









ATGGTT







ENY2
NM_020189
773
CCTCAAAGAGTTG
774
CCTCTTTACAGTGTGC
775
CTGATCCTTCCAGC
776
CCTCAAAGAGTTGCTGAGAGCTAAATTAATTGAATGT









CACATT







EPHA2
NM_004431
777
CGCCTGTTCACCA
778
GTGGCGTGCCTCGAA
779
TGCGCCCGATGAGA
780
CGCCTGTTCACCAAGATTGACACCATTGCGCCCGATG









TCACCG







EPHA3
NM_005233
781
CAGTAGCCTCAAG
782
TTCGTCCCATATCCAG
783
TATTCCAAATCCGA
784
CAGTAGCCTCAAGCCTGACACTATATACGTATTCCAA









GCCCGA







EPHB2
NM_004442
785
CAACCAGGCAGCT
786
GTAATGCTGTCCACG
787
CACCTGATGCATGA
788
CAACCAGGCAGCTCCATCGGCAGTGTCCATCATGCA









TGGACA







EPHB4
NM_004444
789
TGAACGGGGTATCCT
790
AGGTACCTCTCGGTCA
791
CGTCCCATTTGAGC
792
TGAACGGGGTATCCTCCTTAGCCAGGGGCCCGTCCCATT





CCTTA

GTGG

CTGTCAATGT

TGAGCCTGTCAATGTCACCACTGACCGAGAGGT





ERBB2
NM_004448
793
CGGTGTGAGAAGT
794
CCTCTCGCAAGTGCT
795
CCAGACCATAGCAC
796
CGGTGTGAGAAGTGCAGCAAGCCCTGTGCCCGAGTG









ACTCGG







ERBB3
NM_001982
797
CGGTTATGTCATGCC
798
GAACTGAGACCCACTG
799
CCTCAAAGGTACTC
800
CGGTTATGTCATGCCAGATACACACCTCAAAGGTACTCC





AGATACAC

AAGAAAGG

CCTCCTCCCGG

CTCCTCCCGGGAAGGCACCCTTTCTTCAGTGGGTC





ERBB4
NM_005235
801
TGGCTCTTAATCAGT
802
CAAGGCATATCGATCC
803
TGTCCCACGAATAA
804
TGGCTCTTAATCAGTTTCGTTACCTGCCTCTGGAGAATT





TTCGTTACCT

TCATAAAGT

TGCGTAAATTCTCC

TACGCATTATTCGTGGGACAAAACTTTATGAGGAT









AG







ERCC1
NM_001983
805
GTCCAGGTGGATG
806
CGGCCAGGATACACA
807
CAGCAGGCCCTCAA
808
GTCCAGGTGGATGTGAAAGATCCCCAGCAGGCCCTC









GGAGCT







EREG
NM_001432
809
TGCTAGGGTAAAC
810
TGGAGACAAGTCCTG
811
TAAGCCATGGCTGA
812
TGCTAGGGTAAACGAAGGCATAATAAGCCATGGCTG









CCTCTG







ERG
NM_004449
813
CCAACACTAGGCT
814
CCTCCGCCAGGTCTTT
815
AGCCATATGCCTTC
816
CCAACACTAGGCTCCCCACCAGCCATATGCCTTCTCA









TCATCT







ESR1
NM_000125
817
CGTGGTGCCCCTC
818
GGCTAGTGGGCGCAT
819
CTGGAGATGCTGGA
820
CGTGGTGCCCCTCTATGACCTGCTGCTGGAGATGCTG









CGCCC







ESR2
NM_001437
821
TGGTCCATCGCCAGT
822
TGTTCTAGCGATCTTG
823
ATCTGTATGCGGAA
824
TGGTCCATCGCCAGTTATCACATCTGTATGCGGAACCTC





TATCA

CTTCACA

CCTCAAAAGAGTCC

AAAAGAGTCCCTGGTGTGAAGCAAGATCGCTAGA









CT







ETV1
NM_004956
825
TCAAACAAGAGCC
826
AACTGCCAGAGCTGA
827
ATCGGGAAGGACCC
828
TCAAACAAGAGCCAGGAATGTATCGGGAAGGACCCA









ACATAC







ETV4
NM_001986
829
TCCAGTGCCTATG
830
ACTGTCCAAGGGCAC
831
CAGACAAATCGCCA
832
TCCAGTGCCTATGACCCCCCCAGACAAATCGCCATCA









TCAAGT







EZH2
NM_004456
833
TGGAAACAGCGAAGG
834
CACCGAACACTCCCTA
835
TCCTGACTTCTGTG
836
TGGAAACAGCGAAGGATACAGCCTGTGCACATCCTGACT





ATACA

GTCC

AGCTCATTGCG

TCTGTGAGCTCATTGCGCGGGACTAGGGAGTGTT





F2R
NM_001992
837
AAGGAGCAAACCA
838
GCAGGGTTTCATTGA
839
CCCGGGCTCAACAT
840
AAGGAGCAAACCATCCAGGTGCCCGGGCTCAACATC









CACTAC







FAAH
NM_001441
841
GACAGCGTAGTGGTG
842
AGCTGAACATGGACTG
843
TGCCCTTCGTGCAC
844
GACAGCGTGGTGGTGCATGTGCTGAAGCTGCAGGGTGCC





CATGT

TGGA

ACCAATG

GTGCCCTTCGTGCACACCAATGTTCCACAGTCCA





FABP5
NM_001444
845
GCTGATGGCGAGAAA
846
CTTTCCTTCCCATCCC
847
CCTGATGCTGAACC
848
GCTGATGGCAGAAAAACTCAGACTGTCTGCAACTTTACA





AACTCA

ACT

AATGCACCAT

GATGGTGCATTGGTTCAGCATCAGGAGTGGGAT





FADD
NM_003824
849
GTTTTCGCGAGAT
850
CTCCGGTGCCTGATTC
851
AACGCGCTCTTGTC
852
GTTTTCGCGAGATAACGGTCGAAAACGCGCTCTTGTC









GATTTC







FAM107
NM_007177
853
AAGTCAGGGAAAA
854
GCTGGCCCTACAGCT
855
AATTGCCACACTGA
856
AAGTCAGGGAAAACCTGCGGAGAATTGCCACACTGA









CCAGCG







FAM13C
NM_198215
857
ATCTTCAAAGCGG
858
GCTGGATACCACATG
859
TCCTGACTTTCTCC
860
ATCTTCAAAGCGGAGAGCGGGAGGAGCCACGGAGAA









GTGGCT







FAM171B
NM_177454
861
CCAGGAAGGAAAAGC
862
GTGGTCTGCCCCTTCT
863
TGAAGATTTTGAAG
864
CCAGGAAGGAAAAGCACTGTTGAAGATTTTGAAGCTAAT





ACTGT

TTTA

CTAATACATCCCCC

ACATCCCCCACTAAAAGAAGGGGCAGACCAC









AC







FAM49B
NM_016623
865
AGATGCAGAAGGC
866
GCTGGATTGCCTCTC
867
TGGCCAGCTCCTCT
868
AGATGCAGAAGGCATCTTGGAGGACTTGCAGTCATA









GTATGA







FAM73A
NM_198549
869
TGAGAAGGTGCGCTA
870
GGCCATTAAAAGCTCA
871
AAGACCTCATGCAG
872
TGAGAAGGTGCGCTATTCAAGTACAGAGACTTTAGCTGA





TTCAA

GTGC

TTACTCATTCGCC

AGACCTCATGCAGTTACTCATTCGCCGCACTGAG





FAP
NM_004460
873
GTTGGCTCACGTG
874
GACAGGACCGAAACA
875
AGCCACTGCAAACA
876
GTTGGCTCACGTGGGTTACTGATGAACGAGTATGTTT









TACTCG







FAS
NM_000043
877
GGATTGCTCAACAAC
878
GGCATTAACACTTTTG
879
TCTGGACCCTCCTA
880
GGATTGCTCAACAACCATGCTGGGCATCTGGACCCTCCT





CATGCT

GACGATAA

CCTCTGGTTCTTAC

ACCTCTGGTTCTTACGTCTGTTGCTAGATTATCG









GT







FASLG
NM_000639
881
GCACTTTGGGATTCT
882
GCATGTAAGAAGACCC
883
ACAACATTCTCGGT
884
GCACTTTGGGATTCTTTCCATTATGATTCTTTGTTACAG





TTCCATTAT

TCACTGAA

GCCTGTAACAAAGA

GCACCGAGAATGTTGTATTCAGTGAGGGTCTTCTT









A







FASN
NM_004104
885
GCCTCTTCCTGTTC
886
GCTTTGCCCGGTAGC
887
TCGCCCACCTACGT
888
GCCTCTTCCTGTTCGACGGCTCGCCCACCTACGTACT









ACTGGC







FCGR3A
NM_000569
889
GTCTCCAGTGGAA
890
AGGAATGCAGCTACT
891
CCCATGATCTTCAA
892
GTCTCCAGTGGAAGGGAAAAGCCCATGATCTTCAAG









GCAGGG







FGF10
NM_004465
893
TCTTCCGTCCCTGT
894
AGAGTTGGTGGCCTC
895
ACACCATGTCCTGA
896
TCTTCCGTCCCTGTCACCTGCCAAGCCCTTGGTCAGG









CCAAGG







FGF17
NM_003867
897
GGTGGCTGTCCTC
898
TCTAGCCAGGAGGAG
899
TTCTCGGATCTCCC
900
GGTGGCTGTCCTCAAAATCTGCTTCTCGGATCTCCCT









TCAGTC







FGF5
NM_004464
901
GCATCGGTTTCCA
902
AACATATTGGCTTCGT
903
CCATTGACTTTGCC
904
GCATCGGTTTCCATCTGCAGATCTACCCGGATGGCAA









ATCCGG







FGF6
NM_020996
905
GGGCCATTAATTCTG
906
CCCGGGACATAGTGAT
907
CATCCACCTTGCCT
908
GGGCCATTAATTCTGACCACGTGCCTGAGAGGCAAGGTG





ACCAC

GAA

CTCAGGCAC

GATGGCCCTGGGACAGAAACTGTTCATCATCTAT





FGF7
NM_002009
909
CCAGAGCAAATGGCT
910
TCCCCTCCTTCCATGT
911
CAGCCCTGAGCGAC
912
CCAGAGCAAATGGCTACAAATGTGAACTGTTCCAGCCCT





ACAAA

AATC

ACACAAGAAG

GAGCGACACACAAGAAGTTATGATTACATGGAA





FGFR2
NM_000141
913
GAGGGACTGTTGGCA
914
GAGTGAGAATTCGATC
915
TCCCAGAGACCAAC
916
GAGGGACTGTTGGCATGCAGTGCCCTCCCAGAGACCAAC





TGCA

CAAGTCTTC

GTTCAAGCAGTTG

GTTCAAGCAGTTGGTAGAAGACTTGGATCGAAT





FGFR4
NM_002011
917
CTGGCTTAAGGATGG
918
ACGAGACTCCAGTGCT
919
CCTTTCATGGGGAG
920
CTGGCTTAAGGATGGACAGGCCTTTCATGGGGAGAACCG





ACAGG

GATG

AACCGCATT

CATTGGAGGCATTCGGCTGCGCCATCAGCACTG





FKBP5
NM_004117
921
CCCACAGTAGAGG
922
GGTTCTGGCTTTCACG
923
TCTCCCCAGTTCCA
924
CCCACAGTAGAGGGGTCTCATGTCTCCCCAGTTCCAC









CAGCAG







FLNA
NM_001456
925
GAACCTGCGGTGG
926
GAAGACACCCTGGCC
927
TACCAGGCCCATAG
928
GAACCTGCGGTGGACACTTCCGGTGTCCAGTGCTAT









CACTGG







FLNC
NM_001458
929
CAGGACAATGGTG
930
TGATGGTGTACTCGC
931
ATGTGCTGTCAGCT
932
CAGGACAATGGTGATGGCTCATGTGCTGTCAGCTAC









ACCTGC







FLT1
NM_002019
933
GGCTCCTGAATCT
934
TCCCACAGCAATACT
935
CTACAGCACCAAGA
936
GGCTCCTGAATCTATCTTTGACAAAATCTACAGCACC









GCGAC







FLT4
NM_002020
937
ACCAAGAAGCTGA
938
CCTGGAAGCTGTAGC
939
AGCCCGCTGACCAT
940
ACCAAGAAGCTGAGGACCTGTGGCTGAGCCCGCTGA









GGAAGA







FN1
NM_002026
941
GGAAGTGACAGAC
942
ACACGGTAGCCGGTC
943
ACTCTCAGGCGGTG
944
GGAAGTGACAGACGTGAAGGTCACCATCATGTGGAC









TCCACA







FOS
NM_005252
945
CGAGCCCTTTGATGA
946
GGAGCGGGCTGTCTCA
947
TCCCAGCATCATCC
948
CGAGCCCTTTGATGACTTCCTGTTCCCAGCATCATCCAG





CTTCCT

GA

AGGCCCAG

GCCCAGTGGCTCTGAGACAGCCCGCTCC





FOXO1
NM_002015
949
GTAAGCACCATGC
950
GGGGCAGAGGCACTT
951
TATGAACCGCCTGA
952
GTAAGCACCATGCCCCACACCTCGGGTATGAACCGC









CCCAAG







FOXP3
NM_014009
953
CTGTTTGCTGTCCG
954
GTGGAGGAACTCTGG
955
TGTTTCCATGGCTA
956
CTGTTTGCTGTCCGGAGGCACCTGTGGGGTAGCCAT









CCCCAC







FOXQ1
NM_033260
957
TGTTTTTGTCGCAA
958
TGGAAAGGTTCCCTG
959
TGATTTATGTCCCT
960
TGTTTTTGTCGCAACTTCCATTGATTTATGTCCCTTCC









TCCCTC







FSD1
NM_024333
961
AGGCCTCCTGTCC
962
TGTGTGAACCTGGTC
963
CGCACCAAACAAGT
964
AGGCCTCCTGTCCTTCTACAATGCCCGCACCAAACAA









GCTGCA







FYN
NM_002037
965
GAAGCGCAGATCA
966
CTCCTCAGACACCAC
967
CTGAAGCACGACAA
968
GAAGCGCAGATCATGAAGAAGCTGAAGCACGACAAG









GCTGGT







G6PD
NM_000402
969
AATCTGCCTGTGG
970
CGAGATGTTGCTGGT
971
CCAGCCTCAGTGCC
972
AATCTGCCTGTGGCCTTGCCCGCCAGCCTCAGTGCCA









ACTTGA







GABRG2
NM_198904
973
CCACTGTCCTGACAA
974
GAGATCCATCGCTGTG
975
CTCAGCACCATTGC
976
CCACTGTCCTGACAATGACCACCCTCAGCACCATTGCCC





TGACC

ACAT

CCGGAAAT

GGAAATCGCTCCCCAAGGTCTCCTATGTCAGAGC





GADD45
NM_001924
977
GTGCTGGTGACGA
978
CCCGGCAAAAACAAA
979
TTCATCTCAATGGA
980
GTGCTGGTGACGAATCCACATTCATCTCAATGGAAG









AGGATC







GADD45
NM_015675
981
ACCCTCGACAAGA
982
TGGGAGTTCATGGGT
983
TGGGAGTTCATGGG
984
ACCCTCGACAAGACCACACTTTGGGACTTGGGAGCT









TACAGA







GDF15
NM_004864
985
CGCTCCAGACCTA
986
ACAGTGGAAGGACCA
987
TGTTAGCCAAAGAC
988
CGCTCCAGACCTATGATGACTTGTTAGCCAAAGACTG









TGCCAC







GHR
NM_000163
989
CCACCTCCCACAG
990
GGTGCGTGCCTGTAG
991
CGTGCCTCAGCCTC
992
CCACCTCCCACAGGTTCAGGCGATTCCCGTGCCTCAG









CTGAGT







GNPTAB
NM_024312
993
GGATTCACATCGC
994
GTTCTTGCATAACAAT
995
CCCTGCTCACATGC
996
GGATTCACATCGCGGAAAGTCCCTGCTCACATGCCTC









CTCACA







GNRH1
NM_000825
997
AAGGGCTAAATCCAG
998
CTGGATCTCTGTGGCT
999
TCCTGTCCTTCACT
1000
AAGGGCTAAATCCAGGTGTGACGGTATCTAATGATGTCC





GTGTG

GGT

GTCCTTGCCA

TGTCCTTCACTGTCCTTGCCATCACCAGCCACAG





GPM6B
NM_001001094
1001
ATGTGCTTGGAGTGG
1002
TGTAGAACATAAACAC
1003
CGCTGAGAAACCAA
1004
ATGTGCTTGGAGTGGCCTGGCTGGGTGTGTTTGGTTTCT





CCT

GGGCA

ACACACCCAG

CAGCGGTGCCCGTGTTTATGTTCTACA





GPNMB
NM_001005340
1005
CAGCCTCGCCTTTAA
1006
TGACAAATATGGCCAA
1007
CAAACAGTGCCCTG
1008
CAGCCTCGCCTTTAAGGATGGCAAACAGTGCCCTGATCT





GGAT

GCAG

ATCTCCGTTG

CCGTTGGCTGCTTGGCCATATTTGTCA





GPR68
NM_003485
1009
CAAGGACCAGATC
1010
GGTAGGGCAGGAAGC
1011
CTCAGCACCGTGGT
1012
CAAGGACCAGATCCAGCGGCTGGTGCTCAGCACCGT









CATCTT







GPS1
NM_004127
1013
AGTACAAGCAGGC
1014
GCAGCTCAGGGAAGT
1015
CCTCCTGCTGGCTT
1016
AGTACAAGCAGGCTGCCAAGTGCCTCCTGCTGGCTT









CCTTTG







GRB7
NM_005310
1017
CCATCTGCATCCA
1018
GGCCACCAGGGTATT
1019
CTCCCCACCCTTGA
1020
CCATCTGCATCCATCTTGTTTGGGTCCCCACCCTTG









GAAGTG







GREM1
NM_013372
1021
GTGTGGGCAAGGA
1022
GACCTGATTTGGCCT
1023
TCCACCCTCCCTTT
1024
GTGTGGGCAAGGACAAGCAGGATAGTGGAGTGAGAA









CTCACT







GSK3B
NM_002093
1025
GACAAGGACGGCA
1026
TTGTGGCCTGTCTGG
1027
CCAGGAGTTGCCAC
1028
GACAAGGACGGCAGCAAGGTGACAACAGTGGTGGCA









CACTGT







GSN
NM_000177
1029
CTTCTGCTAAGCGGT
1030
GGCTCAAAGCCTTGCT
1031
ACCCAGCCAATCGG
1032
CTTCTGCTAAGCGGTACATCGAGACGGACCCAGCCAATC





ACATCGA

TCAC

GATCGGC

GGGATCGGCGGACGCCCATACCGTGGTGAAGC





GSTM1
NM_000561
1033
AAGCTATGAGGAAAA
1034
GGCCCAGCTTGAATTT
1035
TCAGCCACTGGCTT
1036
AAGCTATGAGGAAAAGAAGTACACGATGGGGGACGCTCC





GAAGTACACGA

TTCA

CTGTCATAATCAGG

TGATTATGACAGAAGCCAGTGGCTGAATGAAAA









AG







GSTM2
NM_000848
1037
CTGCAGGCACTCC
1038
CCAAGAAACCATGGC
1039
CTGAAGCTCTACTC
1040
CTGCAGGCACTCCCTGAAATGCTGAAGCTCTACTCAC









ACAGTT







HDAC1
NM_004964
1041
CAAGTACCACAGCGA
1042
GCTTGCTGTACTCCG
1043
TTCTTGCGCTCCAT
1044
CAAGTACCACAGCGATGACTACATTAAATTCTTGCGCTC





TGACTACATTA

ACATGTT

CCGTCCAGA

CATCCGTCCAGATAACATGTCGGAGTACAGCAAG





HDAC9
NM_178423
1045
AACCAGGCAGTCACC
1046
CTCTGTCTTCCTGCA
1047
CCCCCTGAAGCTCT
1048
AACCAGGCAGTCACCTTGAGGAAGCAGAGGAAGAGCTTC





TTGAG

TCGC

TCCTCTGCTT

AGGGGGACCAGGCGATGCAGGAAGACAGAG





HGD
NM_000187
1049
CTCAGGTCTGCCC
1050
TTATTGGTGCTCCGT
1051
CTGAGCAGCTCTCA
1052
CTCAGGTCTGCCCCTACAATCTCTATGCTGAGCAGCT







G

GGATCG







HIP1
NM_005338
1053
CTCAGAGCCCCAC
1054
GGGTTTCCCTGCCAT
1055
CGACTCACTGACCG
1056
CTCAGAGCCCCACCTGAGCCTGCCGACTCACTGACC









AGGCCT







HIRIP3
NM_003609
1057
GGATGAGGAAAAG
1058
TCCCTAGCTGACTTTC
1059
CCATTGCTCCTGGT
1060
GGATGAGGAAAAGGGGGATTGGAAACCCAGAACCAG









TCTGGG







HK1
NM_000188
1061
TACGCACAGAGGC
1062
GAGAGAAGTGCTGGA
1063
TAAGAGTCCGGGAT
1064
TACGCACAGAGGCAAGCAGCTAAGAGTCCGGGATCC









CCCCAG







HLA-G
NM_002127
1065
CCATCCCCATCAT
1066
CCGCAGCTCCAGTGA
1067
CTGCAAGGACAACC
1068
CCTGCGCGGCTACTACAACCAGAGCGAGGCCAGTTC









AGGCC







HLF
NM_002126
1069
CACCCTGCAGGTG
1070
GGTACCTAGGAGCAG
1071
TAAGTGATCTGCCC
1072
CACCCTGCAGGTGTCTGAGACTAAGTGATCTGCCCTC









TCCAGG







HNF1B
NM_000458
1073
TCCCAGCATCTCA
1074
CGTACCAGGTGTACA
1075
CCCCTATGAAGACC
1076
TCCCAGCATCTCAACAAGGGCACCCCTATGAAGACC









CAGAAG







HPS1
NM_000195
1077
GCGGAAGCTGTAT
1078
TTCGGATAAGATGAC
1079
CAGTCACCAGCCCA
1080
GCGGAAGCTGTATGTGCTCAAGTACCTGTTTGAAGT









AAGTGC







HRAS
NM_005343
1081
GGACGAATACGAC
1082
GCACGTCTCCCCATC
1083
ACCACCTGCTTCCG
1084
GGACGAATACGACCCCACTATAGAGGATTCCTACCG









GTAGGA







HSD17B10
NM_004493
1085
CCAGCGAGTTCTTGA
1086
ATCTCACCAGCCACCA
1087
TCATGGGCACCTTC
1088
CCACCAGACAAGACCGATTCGCTGGCCTCCATTTCTTCA





TGTGA

GG

AATGTGATCC

ACCCAGTGCCTGTCATGAAACTTGTGG





HSD17B2
NM_002153
1089
GCTTTCCAAGTGG
1090
TGCCTGCGATATTTGT
1091
AGTTGCTTCCATCC
1092
GCTTTCCAAGTGGGGAATTAAAGTTGCTTCCATCCAA









AACCTG







HSD17B3
NM_000197
1093
GGGACGTCCTGGAAC
1094
TGGAGAATCTCACGCA
1095
CTTCATCCTCACAG
1096
GGGACGTCCTGGAACAGTTCTTCATCCTCACAGGGCTGC





AGT

CTTC

GGCTGCTGGT

TGGTGTGCCTGGCCTGCCTGGCGAAGTGCGTGAG





HSD17B4
NM_000414
1097
CGGGAAGCTTCAG
1098
ACCTCAGGCCCAATA
1099
AGGCGGCGTCCTAT
1100
CGGGAAGCTTCAGAGTACCTTTGTATTTGAGGAAAT









TTCCTC







HSD3B2
NM_000198
1101
GCCTTCCTTTAACC
1102
GGAGTAAATTGGGCT
1103
ACTTCCAGCAGGAA
1104
GCCTTCCTTTAACCCTGATGTACTGGATTGGCTTCCT









GCCAAT







HSP90AB1
NM_007355
1105
GCATTGTGACCAGCA
1106
GAAGTGCCTGGGCTTT
1107
ATCCGCTCCATATT
1108
GCATTGTGACCAGCACCTACGGCTGGACAGCCAATATGG





CCTAC

CAT

GGCTGTCCAG

AGCGGATCATGAAAGCCCAGGCACTTC





HSPA5
NM_005347
1109
GGCTAGTAGAACTGG
1110
GGTCTGCCCAAATGCT
1111
TAATTAGACCTAGG
1112
GGCTAGTAGAACTGGATCCCAACACCAAACTCTTAATTA





ATCCCAACA

TTTC

CCTCAGCTGCACTG

GACCTAGGCCTCAGCTGCACTGCCCGAAAAGCA









C







HSPA8
NM_006597
1113
CCTCCCTCTGGTGGT
1114
GCTACATCTACACTTG
1115
CTCAGGGCCCACCA
1116
CCTCCCTCTGGTGGTGCTTCCTCAGGGCCCACCATTGAA





GCTT

GTTGGCTTAA

TTGAAGAGGTTG

GAGGTTGATTAAGCCAACCAAGTGTAGATGTAGC





HSPB1
NM_001540
1117
CCGACTGGAGGAGCA
1118
ATGCTGGCTGACTCTG
1119
CGCACTTTTCTGAG
1120
CCGACTGGAGGAGCATAAAAGCGCAGCCGAGCCCAGCGC





TAAA

CTC

CAGACGTCCA

CCCGCACTTTTCTGAGCAGACGTCCAGAGCAGA





HSPB2
NM_001541
1121
CACCACTCCAGAG
1122
TGGGACCAAACCATA
1123
CACCTTTCCCTTCC
1124
CACCACTCCAGAGGTAGCAGCATCCTTGGGGGAAGG









CCCAAG







HSPE1
NM_002157
1125
GCAAGCAACAGTAGT
1126
CCAACTTTCACGCTAA
1127
TCTCCACCCTTTCC
1128
GCAAGCAACAGTAGTCGCTGTTGGATCGGGTTCTAAAGG





CGCTG

CTGGT

TTTAGAACCCG

AAAGGGTGGAGAGATTCAACCAGTTAGCGTGAA





HSPG2
NM_005529
1129
GAGTACGTGTGCC
1130
CTCAATGGTGACCAG
1131
CAGCTCCGTGCCTC
1132
GAGTACGTGTGCCGAGTGTTGGGCAGCTCCGTGCCT









TAGAGG







ICAM1
NM_000201
1133
GCAGACAGTGACCAT
1134
CTTCTGAGACCTCTGG
1135
CCGGCGCCCAACGT
1136
GCAGACAGTGACCATCTACAGCTTTCCGGCGCCCAACGT





CTACAGCTT

CTTCGT

GATTCT

GATTCTGACGAAGCCAGAGGTCTCAGAAG





IER3
NM_003897
1137
GTACCTGGTGCGCGA
1138
GCGTCTCCGCTGTAGT
1139
TCAAGTTGCCTCGG
1140
GTACCTGGTGCGCGAGAGCGTATCCCCAACTGGGACTTC





GAG

GTT

AAGTCCCAGT

CGAGGCAACTTGAACTCAGAACACTACAGCGGA





IFI30
NM_006332
1141
ATCCCATGAAGCC
1142
GCACCATTCTTAGTG
1143
AAAATTCCACCCCA
1144
ATCCCATGAAGCCCAGATACACAAAATTCCACCCCA









TGATCA







IFIT1
NM_001548
1145
TGACAACCAAGCA
1146
CAGTCTGCCCATGTG
1147
AAGTTGCCCCAGGT
1148
TGACAACCAAGCAAATGTGAGGAGTCTGGTGACCTG









CACCAG







IFNG
NM_000619
1149
GCTAAAACAGGGAAG
1150
CAACCATTACTGGGAT
1151
TCGACCTCGAAACA
1152
GCTAAAACAGGGAAGCGAAAAAGGAGTCAGATGCTGTTT





CGAAA

GCTC

GCATCTGACTCC

CGAGGTCGAAGAGCATCCCAGTAATGGTTG





IGF1
NM_000618
1153
TCCGGAGCTGTGA
1154
CGGACAGAGCGAGCT
1155
TGTATTGCGCACCC
1156
TCCGGAGCTGTGATCTAAGGAGGCTGGAGATGTATT









CTCAAG







IGF1R
NM_000875
1157
GCATGGTAGCCGAAG
1158
TTTCCGGTAATAGTCT
1159
CGCGTCATACCAAA
1160
GCATGGTAGCCGAAGATTTCACAGTCAAAATCGGAGATT





ATTTCA

GTCTCATAGATATC

ATCTCCGATTTTGA

TTGGTATGACGCGAGATATCTATGAGACAGACTA





IGF2
NM_000612
1161
CCGTGCTTCCGGA
1162
TGGACTGCTTCCAGG
1163
TACCCCGTGGGCAA
1164
CCGTGCTTCCGGACAACTTCCCCAGATACCCCGTGGG









GTTCTT







IGFBP2
NM_000597
1165
GTGGACAGCACCA
1166
CCTTCATACCCGACTT
1167
CTTCCGGCCAGCAC
1168
GTGGACAGCACCATGAACATGTTGGGCGGGGGAGGC









TGCCTC







IGFBP3
NM_000598
1169
ACATCCCAACGCA
1170
CCACGCCCTTGTTTCA
1171
ACACCACAGAAGGC
1172
ACATCCCAACGCATGCTCCTGGAGCTCACAGCCTTCT









TGTGA







IGFBP5
NM_000599
1173
TGGACAAGTACGG
1174
CGAAGGTGTGGCACT
1175
CCCGTCAACGTACT
1176
TGGACAAGTACGGGATGAAGCTGCCAGGCATGGAGT









CCATGC







IGFBP6
NM_002178
1177
TGAACCGCAGAGACC
1178
GTCTTGGACACCCGCA
1179
ATCCAGGCACCTCT
1180
TGAACCGCAGAGACCAACAGAGGAATCCAGGCACCTCTA





AACAG

GAAT

ACCACGCCCTC

CCACGCCCTCCCAGCCCAATTCTGCGGGTGTCCA





IL10
NM_000572
1181
CTGACCACGCTTT
1182
CCAAGCCCAGAGACA
1183
TTGAGCTGTTTTCC
1184
CTGACCACGCTTTCTAGCTGTTGAGCTGTTTTCCCTG









CTGACC







IL11
NM_000641
1185
TGGAAGGTTCCAC
1186
TCTTGACCTTGCAGCT
1187
CCTGTGATCAACAG
1188
TGGAAGGTTCCACAAGTCACCCTGTGATCAACAGTA









TACCCG







IL17A
NM_002190
1189
TCAAGCAACACTC
1190
CAGCTCCTTTCTGGGT
1191
TGGCTTCTGTCTGA
1192
TCAAGCAACACTCCTAGGGCCTGGCTTCTGTCTGATC









TCAAGG







IL1A
NM_000575
1193
GGTCCTTGGTAGA
1194
GGATGGAGCTTCAGG
1195
TCTCCACCCTGGCC
1196
GGTCCTTGGTAGAGGGCTACTTTACTGTAACAGGGC









CTGTTA







IL1B
NM_000576
1197
AGCTGAGGAAGAT
1198
GGAAAGAAGGTGCTC
1199
TGCCCACAGACCTT
1200
AGCTGAGGAAGATGCTGGTTCCCTGCCCACAGACCT









CCAGGA







IL2
NM_000586
1201
ACCTCAACTCCTGCC
1202
CACTGTTTGTGACAAG
1203
TGCAACTCCTGTCT
1204
ACCTCAACTCCTGCCACAATGTACAGGATGCAACTCCTG





ACAAT

TGCAAG

TGCATTGCAC

TCTTGCATTGCACTAAGTCTTGCACTTGTCACAAA





IL6
NM_000600
1205
CCTGAACCTTCCA
1206
ACCAGGCAAGTCTCC
1207
CCAGATTGGAAGCA
1208
CCTGAACCTTCCAAAGATGGCTGAAAAAGATGGATG









TCCATC







IL6R
NM_000565
1209
CCAGCTTATCTCA
1210
CTGGCGTAGAACCTT
1211
CCTTTGGCTTCACG
1212
CCAGCTTATCTCAGGGGTGTGCGGCCTTTGGCTTCAC









GAAGAG







IL6ST
NM_002184
1213
GGCCTAATGTTCC
1214
AAAATTGTGCCTTGG
1215
CATATTGCCCAGTG
1216
GGCCTAATGTTCCAGATCCTTCAAAGAGTCATATTGC









GTCACC







IL8
NM_000584
1217
AAGGAACCATCTCAC
1218
ATCAGGAAGGCTGCCA
1219
TGACTTCCAAGCTG
1220
AAGGAACCATCTCACTGTGTGTAAACATGACTTCCAAGC





TGTGTGTAAAC

AGAG

GCCGTGGC

TGGCCGTGGCTCTCTTGGCAGCCTTCCTGAT





ILF3
NM_004516
1221
GACACGCCAAGTG
1222
CTCAAGACCCGGATC
1223
ACACAAGACTTCAG
1224
GACACGCCAAGTGGTTCCAGGCCAGAGCCAACGGGC









CCCGTT







ILK
NM_001014794
1225
CTCAGGATTTTCTCG
1226
AGGAGCAGGTGGAGAC
1227
ATGTGCTCCCAGTG
1228
CTCAGGATTTTCTCGCATCCAAATGTGCTCCCAGTGCTA





CATCC

TGG

CTAGGTGCCT

GGTGCCTGCCAGTCTCCACCTGCTCCT





IMMT
NM_006839
1229
CTGCCTATGCCAG
1230
GCTTTTCTGGCTTCCT
1231
CAACTGCATGGCTC
1232
CTGCCTATGCCAGACTCAGAGGAATCGAACAGGCTG









TGAACA







ING5
NM_032329
1233
CCTACAGCAAGTG
1234
CATCTCGTAGGTCTG
1235
CCAGCTGCACTTTG
1236
CCTACAGCAAGTGCAAGGAATACAGTGACGACAAAG









TCGTCA







INHBA
NM_002192
1237
GTGCCCGAGCCAT
1238
CGGTAGTGGTTGATG
1239
ACGTCCGGGTCCTC
1240
GTGCCCGAGCCATATAGCAGGCACGTCCGGGTCCTC









ACTGTC







INSL4
NM_002195
1241
CTGTCATATTGCCC
1242
CAGATTCCAGCAGCC
1243
TGAGAAGACATTCA
1244
CTGTCATATTGCCCCATGCCTGAGAAGACATTCACCA









CCACCA







ITGA1
NM_181501
1245
GCTTCTTCTGGAG
1246
CCTGTAGATAATGAC
1247
TTGCTGGACAGCCT
1248
GCTTCTTCTGGAGATGTGCTCTATATTGCTGGACAGC









CGGTAC







ITGA3
NM_002204
1249
CCATGATCCTCAC
1250
GAAGCTTTGTAGCCG
1251
CACTCCAGACCTCG
1252
CCATGATCCTCACTCTGCTGGTGGACTATACACACTCCA









CTTAGC







ITGA4
NM_000885
1253
CAACGCTTCAGTG
1254
GTCTGGCCGGGATTC
1255
CGATCCTGCATCTG
1256
CAACGCTTCAGTGATCAATCCCGGGGCGATTTACAG









TAAATC







ITGA5
NM_002205
1257
AGGCCAGCCCTAC
1258
GTCTTCTCCACAGTCC
1259
TCTGAGCCTTGTCC
1260
AGGCCAGCCCTACATTATCAGAGCAAGAGCCGGATA









TCTATC







ITGA6
NM_000210
1261
CAGTGACAAACAG
1262
GTTTAGCCTCATGGG
1263
TCGCCATCTTTTGT
1264
CAGTGACAAACAGCCCTTCCAACCCAAGGAATCCCA









GGGATT







ITGA7
NM_002206
1265
GATATGATTGGTCGC
1266
AGAACTTCCATTCCCC
1267
CAGCCAGGACCTGG
1268
GATATGATTGGTCGCTGCTTTGTGCTCAGCCAGGACCTG





TGCTTTG

ACCAT

CCATCCG

GCCATCCGGGATGAGTTGGATGGTGGGGAATGGA





ITGAD
NM_005353
1269
GAGCCTGGTGGAT
1270
ACTGTCAGGATGCCC
1271
CAACTGAAAGGCCT
1272
GAGCCTGGTGGATCCCATCGTCCAACTGAAAGGCCT









GACGTT







ITGB3
NM_000212
1273
ACCGGGAGCCCTACA
1274
CCTTAAGCTCTTTCAC
1275
AAATACCTGCAACC
1276
ACCGGGGAGCCCTACATGACGAAAATACCTGCAACCGTT





TGAC

TGACTCAATCT

GTTACTGCCGTGAC

ACTGCCGTGACGAGATTGAGTCAGTGAAAGAGC





ITGB4
NM_000213
1277
CAAGGTGCCCTCA
1278
GCGCACACCTTCATC
1279
CACCAACCTGTACC
1280
CAAGGTGCCCTCAGTGGAGCTCACCAACCTGTACCC









CGTATT







ITGB5
NM_002213
1281
TCGTGAAAGATGA
1282
GGTGAACATCATGAC
1283
TGCTATGTTTCTAC
1284
TCGTGAAAGATGACCAGGAGGCTGTGCTATGTTTCTA









AAAACC







ITPR1
NM_002222
1285
GAGGAGGTGTGGG
1286
GTAATCCCATGTCCG
1287
CCATCCTAACGGAA
1288
GAGGAGGTGTGGGTGTTCCGCTTCCATCCTAACGGA









CGAGCT







ITPR3
NM_002224
1289
TTGCCATCGTGTC
1290
ATGGAGCTGGCGTCA
1291
TCCAGGTCTCGGAT
1292
TTGCCATCGTGTCAGTGCCCGTGTCTGAGATCCGAGA









CTCAGA







ITSN1
NM_003024
1293
TAACTGGGATGCA
1294
CTCTGCCTTAACTGGC
1295
AGCCCTCTCTCACC
1296
TAACTGGGATGCATGGGCAGCCCAGCCCTCTCTCAC









GTTCCA







JAG1
NM_000214
1297
TGGCTTACACTGG
1298
GCATAGCTGTGAGAT
1299
ACTCGATTTCCCAG
1300
TGGCTTACACTGGCAATGGTAGTTTCTGTGGTTGGCT









CCAACC







JUN
NM_002228
1301
GACTGCAAAGATGGA
1302
TAGCCATAAGGTCCGC
1303
CTATGACGATGCCC
1304
GACTGCAAAGATGGAAACGACCTTCTATGACGATGCCCT





AACGA

TCTC

TCAACGCCTC

CAACGCCTCGTTCCTCCCGTCCGAGAGCGGACCT





JUNB
NM_002229
1305
CTGTCAGCTGCTG
1306
AGGGGGTGTCCGTAA
1307
CAAGGGACACGCCT
1308
CTGTCAGCTGCTGCTTGGGGTCAAGGGACACGCCTT









TCTGAA







KCNN2
NM_021614
1309
TGTGCTATTCATCC
1310
GGGCATAGGAGAAGG
1311
TTATACATTCACAT
1312
TGTGCTATTCATCCCATACCTGGGAATTATACATTCA









GGACGG







KCTD12
NM_138444
1313
AGCAGTTACTGGC
1314
TGGAGACCTGAGCAG
1315
ACTCTTAGGCGGCA
1316
AGCAGTTACTGGCAAGAGGGAGAAAGGACGCTGCCG









GCGTCC







KHDRBS
NM_006558
1317
CGGGCAAGAAGAG
1318
CTGTAGACGCCCTTT
1319
CAAGACACAAGGCA
1320
CGGGCAAGAAGAGTGGACTAACTCAAGACACAAGGC









CCTTCA







KIAA019
NM_014846
1321
CAGACACCAGCTC
1322
AACATTGTGAGGCGG
1323
TCCCCAGTGTCCAG
1324
CAGACACCAGCTCTGAGGCCAGTTAATCATCCCCAG









GCACAG







KIAA024
NM_014734
1325
CCGTGGGACATGG
1326
GAAGCAAGTCCGTCT
1327
TCCGCTAGTGATCC
1328
CCGTGGGACATGGAGTGTTCCTTCCGCTAGTGATCCT









TTTGCA







KIF4A
NM_012310
1329
AGAGCTGTCTCC
1330
GCTGGTCTTGCTCTGT
1331
CAGGTCAGCAAACT
1332
AGAGCTGGTCTCCTCCAAAATACAGGTCAGCAAACT









TGAAAG







KIT
NM_000222
1333
GAGGCAACTGCTTAT
1334
GGCACTCGGCTTGAGC
1335
TTACAGCGACAGTC
1336
GAGGCAACTGCTTATGGCTTAATTAAGTCAGATGCGGCC





GGCTTAATTA

AT

ATGGCCGCAT

ATGACTGTCGCTGTAAAGATGCTCAAGCCGAGT





KLC1
NM_182923
1337
AGTGGCTACGGGA
1338
TGAGCCACAGACTGC
1339
CAACACGCAGCAGA
1340
AGTGGCTACGGGATGAACTGGCCAACACGCAGCAGA









AACTG







KLF6
NM_001300
1341
CACGAGACCGGCT
1342
GCTCTAGGCAGGTCT
1343
AGTACTCCTCCAGA
1344
CACGAGACCGGCTACTTCTCGGCGCTGCCGTCTCTGG









GACGGC







KLK1
NM_002257
1345
AACACAGCCCAGTTT
1346
CCAGGAGGCTCATGTT
1347
TCAGTGAGAGCTTC
1348
AACACAGCCCAGTTTGTTCATGTCAGTGAGAGCTTCCCA





GTTCA

GAAG

CCACACCCTG

CACCCTGGCTTCAACATGAGCCTCCTGG





KLK10
NM_002776
1349
GCCCAGAGGCTCC
1350
CAGAGGTTTGAACAG
1351
CCTCTTCCTCCCCA
1352
GCCCAGAGGCTCCATCGTCCATCCTCTTCCTCCCCAG









GTCGGC







KLK11
NM_006853
1353
CACCCCGGCTTCA
1354
CATCTTCACCAGCAT
1355
CCTCCCCAACAAAG
1356
CACCCCGGCTTCAACAACAGCCTCCCCAACAAAGAC









ACCACC







KLK14
NM_022046
1357
CCCCTAAAATGTT
1358
CTCATCCTCTTGGCTC
1359
CAGCACTTCAAGTC
1360
CCCCTAAAATGTTCCTCCTGCTGACAGCACTTCAAGT









CTGGCT







KLK2
NM_005551
1361
AGTCTCGGATTGT
1362
TGTACACAGCCACCT
1363
TTGGGAATGCTTCT
1364
AGTCTCGGATTGTGGGAGGCTGGGAGTGTGAGAAGC









CACACT







KLK3
NM_001648
1365
CCAAGCTTACCAC
1366
AGGGTGAGGAAGACA
1367
ACCCACATGGTGAC
1368
CCAAGCTTACCACCTGCACCCGGAGAGCTGTGTCAC









ACAGCT







KLRK1
NM_007360
1369
TGAGAGCCAGGCT
1370
ATCCTGGTCCTCTTTG
1371
TGTCTCAAAATGCC
1372
TGAGAGCCAGGCTTCTTGTATGTCTCAAAATGCCAGC









AGCCTT







KPNA2
NM_002266
1373
TGATGGTCCAAAT
1374
AAGCTTCACAAGTTG
1375
ACTCCTGTTTTCAC
1376
TGATGGTCCAAATGAACGAATTGGCATGGTGGTGAA









CACCAT







KRT1
NM_006121
1377
TGGACAACAACCG
1378
TATCCTCGTACTGGG
1379
CCTCAGCAATGATG
1380
TGGACAACAACCGCAGTCTCGACCTGGACAGCATCA









CTGTCC







KRT15
NM_002275
1381
GCCTGGTTCTTCA
1382
CTTGCTGGTCTGGATC
1383
TGAACAAAGAGGTG
1384
GCCTGGTTCTTCAGCAAGACTGAGGAGCTGAACAAA









GCCTCC







KRT18
NM_000224
1385
AGAGATCGAGGCT
1386
GGCCTTTTACTTCCTC
1387
TGGTTCTTCTTCAT
1388
AGAGATCGAGGCTCTCAAGGAGGAGCTGCTCTTCAT









GAAGAG







KRT2
NM_000423
1389
CCAGTGACGCCTC
1390
GGGCATGGCTAGAAG
1391
ACCTAGACAGCACA
1392
CCAGTGACGCCTCTGTGTTCTGGGGCGGAATCTGTGC









GATTCC







KRT5
NM_000424
1393
TCAGTGGAGAAGG
1394
TGCCATATCCAGAGG
1395
CCAGTCAACATCTC
1396
TCAGTGGAGAAGGAGTTGGACCAGTCAACATCTCTG









TGTTGT







KRT75
NM_004693
1397
TCAAAGTCAGGTACG
1398
ACGCTCCTTTTTCAGG
1399
TTCATTCTCAGCAG
1400
TCAAAGTCAGGTACGAAGATGAAATTAACAAGCGCACAG





AAGATGAAATT

GCTACAA

CTGTGCGCTTGT

CTGCTGAGAATGAATTTGTAGCCCTGAAAAAGG





KRT76
NM_015848
1401
ATCTCCAGACTGCTG
1402
TCAGGGAATTAGGGGA
1403
TCTGGGCTTCAGAT
1404
ATCTCCAGACTGCTGGTTCCCAGGGAACCCTCCCTACAT





GTTCC

CAGA

CCTGACTCCC

CTGGGCTTCAGATCCTGACTCCCTTCTGTCCCCTA





KRT8
NM_002273
1405
GGATGAAGCTTACAT
1406
CATATAGCTGCCTGAG
1407
CGTCGGTCAGCCCT
1408
GGATGAAGCTTACATGAACAAGGTAGAGCTGGAGTCTCG





GAACAAGGTAG

GAAGTTGAT

TCCAGGC

CCTGGAAGGGCTGACCGACGAGATCAACTTCCT





L1CAM
NM_000425
1409
CTTGCTGGCCAAT
1410
TGATTGTCCGCAGTC
1411
ATCTACGTTGTCCA
1412
CTTGCTGGCCAATGCCTACATCTACGTTGTCCAGCTG









GCTGCC







LAG3
NM_002286
1413
GCCTTAGAGCAAG
1414
CGGTTCTTGCTCCAGC
1415
TCTATCTTGCTCTG
1416
GCCTTAGAGCAAGGGATTCACCCTCCGCAGGCTCAG









AGCCTG







LAMA3
NM_000227
1417
CCTGTCACTGAAG
1418
TGGGTTACTGGTCAG
1419
ATTCAGACTGACAG
1420
CCTGTCACTGAAGCCTTGGAAGTCCAGGGGCCTGTC









GCCCCT







LAMA4
NM_002290
1421
GATGCACTGCGGT
1422
CAGAGGATACGCTCA
1423
CTCTCCATCGAGGA
1424
GATGCACTGCGGTTAGCAGCGCTCTCCATCGAGGAA









AGGCAA







LAMA5
NM_005560
1425
CTCCTGGCCAACA
1426
ACACAAGGCCCAGCC
1427
CTGTTCCTGGAGCA
1428
CTCCTGGCCAACAGCACTGCACTAGAAGAGGCCATG









TGGCCT







LAMB1
NM_002291
1429
CAAGGAGACTGGG
1430
CGGCAGAACTGACAG
1431
CAAGTGCCTGTACC
1432
CAAGGAGACTGGGAGGTGTCTCAAGTGCCTGTACCA









ACACGG







LABM3
NM_000228
1433
ACTGACCAAGCCT
1434
GTCACACTTGCAGCA
1435
CCACTCGCCATACT
1436
ACTGACCAAGCCTGAGACCTACTGCACCCAGTATGG









GGGTGC







LAMC1
NM_002293
1437
GCCGTGATCTCAG
1438
ACCTGCTTGCCCAAG
1439
CCTCGGTACTTCAT
1440
GCCGTGATCTCAGACAGCTACTTTCCTCGGTACTTCA









TGCTCC







LAMC2
NM_005562
1441
ACTCAAGCGGAAATT
1442
ACTCCCTGAAGCCGAG
1443
AGGTCTTATCAGCA
1444
ACTCAAGCGGAAATTGAAGCAGATAGGTCTTATCAGCAC





GAAGCA

ACACT

CAGTCTCCGCCTCC

AGTCTCCGCCTCCTGGATTCAGTGTCTCGGCTTC





LAPTM5
NM_006762
1445
TGCTGGACTTCTG
1446
TGAGATAGGTGGGCA
1447
TCCTGACCCTCTGC
1448
TGCTGGACTTCTGCCTGAGCATCCTGACCCTCTGCAG









AGCTCC







LGALS3
NM_002306
1449
AGCGGAAAATGGC
1450
CTTGAGGGTTTGGGT
1451
ACCCAGATAACGCA
1452
AGCGGAAAATGGCAGACAATTTTTCGCTCCATGATG









TCATGG







LIG3
NM_002311
1453
GGAGGTGGAGAAG
1454
ACAGGTGTCATAGC
1455
CTGGACGCTCAGAG
1456
GGAGGTGGAGAAGGAGCCGGGCCAGAGACGAGCTCT









CTCGTC







LIMS1
NM_004987
1457
TGAACAGTAATGG
1458
TTCTGGGAACTGCTG
1459
ACTGAGCGCACACG
1460
TGAACAGTAATGGGGAGCTGTACCATGAGCAGTGTT









AAACA







LOX
NM_002317
1461
CCAATGGGAGAAC
1462
CGCTGAGGCTGGTAC
1463
CAGGCTCAGCAAGC
1464
CCAATGGGAGAACAACGGGCAGGTGTTCAGCTTGCT









TGAACA







LRP1
NM_002332
1465
TTTGGCCCAATGGGC
1466
GTCTCGATGCGGTCGT
1467
TCCCGGCTGGGCGC
1468
TTTGGCCCAATGGGCTAAGCCTGGACATCCCGGCTGGGC





TAAG

AGAAG

CTCTACT

GCCTCTACTGGGTGGATGCCTTCTACGACCGCAT





LTBP2
NM_000428
1469
GCACACCCATCCT
1470
GATGGCTGGCCACGT
1471
CTTTGCAGCCCTCA
1472
GCACACCCATCCTTGAGTCTCCTTTGCAGCCCTCAGA









GAACTC







LUM
NM_002345
1473
GGCTCTTTTGAAGGA
1474
AAAAGCAGCTGAAACA
1475
CCTGACCTTCATCC
1476
GGCTCTTTTGAAGGATTGGTAAACCTGACCTTCATCCAT





TTGGTAA

GCATC

ATCTCCAGCA

CTCCAGCACAATCGGCTGAAAGAGGATGCTGTTT





MAGEA4
NM_002362
1477
GCATCTAACAGCC
1478
CAGAGTGAAGAATGG
1479
CAGCTTCCCTTGCC
1480
GCATCTAACAGCCCTGTGCAGCAGCTTCCCTTGCCTC









TCGTGT







MANF
NM_006010
1481
CAGATGTGAAGCC
1482
AAGGGAATCCCCTCA
1483
TTCCTGATGATGCT
1484
CAGATGTGAAGCCTGGAGCTTTCCTGATGATGCTGG









GGCCCT







MAOA
NM_000240
1485
GTGTCAGCCAAAG
1486
CGACTACGTCGAACA
1487
CCGCGATACTCGCC
1488
GTGTCAGCCAAAGCATGGAGAATCAAGAGAAGGCGA









TTCTCT







MAP3K5
NM_005923
1489
AGGACCAAGAGGC
1490
CCTGTGGCCATTTCA
1491
CAGCCCAGAGACCA
1492
AGGACCAAGAGGCTACGGAAAAGCAGCAGACATCTG









GATGTC







MAP3K7
NM_145333
1493
CAGGCAAGAACTAGT
1494
CCTGTACCAGGCGAGA
1495
TGCTGGTCCTTTTC
1496
CAGGCAAGAACTAGTTGCAGAACTGGACCAGGATGAAAA





TGCAGAA

TGTAT

ATCCTGGTCC

GGACCAGCAAAATACATCTCGCCTGGTACAGG





MAP4K4
NM_004834
1497
TCGCCGAGATTTC
1498
CTGTTGTCTCCGAAG
1499
AACGTTCCTTGTTC
1500
TCGCCGAGATTTCCTGAGACTGCAGCAGGAGAACAA









TCCTGC







MAP7
NM_003980
1501
GAGGAACAGAGGT
1502
CTGCCAACTGGCTTTC
1503
CATGTACAACAAAC
1504
GAGGAACAGAGGTGTCTGCACTTCCATGTACAACAA









GCTCCG







MAPKAPK3
NM_004635
1505
AAGCTGCAGAGATAA
1506
GTGGGCAATGTTATGG
1507
ATTGGCACTGCCAT
1508
AAGCTGCAGAGATAATGCGGGATATTGGCACTGCCATCC





TGCGG

CTG

CCAGTTTCTG

AGTTTCTGCACAGCCATAACATTGCCCAC





MCM2
NM_004526
1509
GACTTTTGCCCGCTA
1510
GCCACTAACTGCTTCA
1511
ACAGCTCATTGTTG
1512
GACTTTTGCCCGCTACCTTTCATTCCGCGTGACAACAAT





CCTTTC

GTATGAAGAG

TCACGCCGGA

GAGCTGTTGCTCTTCATACTGAAGCAGTTAGTGG





MCM3
NM_002388
1513
GGAGAACAATCCC
1514
ATCTCCTGGATGGTG
1515
TGGCCTTTCTGTCT
1516
GGAGAACAATCCCCTTGAGACAGAATATGGCCTTTC









ACAAGG







MCM6
NM_005915
1517
TGATGGTCCTATGTG
1518
TGGGACAGGAAACACA
1519
CAGGTTTCATACCA
1520
TGATGGTCCTATGTGTCACATTCATCACAGGTTTCATAC





TCACATTCA

CCAA

ACACAGGCTTCAGC

CAACACAGGCTTCAGCACTTCCTTTGGTGTGTTTC





MDK
NM_002391
1521
GGAGCCGACGTGCA
1522
GACTTTGGTGCCTGT
1523
ATCACACGCACCCC
1524
GGAGCCGACTGCAAGTACAAGTTTGAGAACTGGGGT









AGTTCT







MDM2
NM_002392
1525
CTACAGGGACGCC
1526
ATCCAACCAATCACC
1527
CTTACACCAGCATC
1528
CTACAGGGACGCCATCGAATCCGGATCTTGATGCTG









AAGATC







MELK
NM_014791
1529
AGGATCGCCTGTC
1530
TGCACATAAGCAACA
1531
CCCGGGTTGTCTTC
1532
AGGATCGCCTGTCAGAAGAGGAGACCCGGGTTGTCT









CGTCAG







MET
NM_000245
1533
GACATTTCCAGTCCT
1534
CTCCGATCGCACACAT
1535
TGCCTCTCTGCCCC
1536
GACATTTCCAGTCCTGCAGTCAATGCCTCTCTGCCCCAC





GCAGTCA

TTGT

ACCCTTTGT

CCTTTGTTCAGTGTGGCTGGTGCCACGACAAATGT





MGMT
NM_002412
1537
GTGAAATGAAACG
1538
GACCCTGCTCACAAC
1539
CAGCCCTTTGGGGA
1540
GTGAAATGAAACGCACCACACTGGACAGCCCTTTGG









AGCTGG







MGST1
NM_020300
1541
ACGGATCTACCACAC
1542
TCCATATCCAACAAAA
1543
TTTGACACCCCTTC
1544
ACGGATCTACCACACCATTGCATATTTGACACCCCTTCC





CATTGC

AAACTCAAAG

CCCAGCCA

CCAGCCAAATAGAGCTTTGAGTTTTTTTGTTGGAT





MICA
NM_000247
1545
ATGGTGAATGTCA
1546
AAGCCAGAAGCCCTG
1547
CGAGGCCTCAGAGG
1548
ATGGTGAATGTCACCCGCAGCGAGGCCTCAGAGGGC









GCAAC







MKI67
NM_002417
1549
GATTGCACCAGGG
1550
TCCAAAGTGCCTCTG
1551
CCACTCTTCCTTGA
1552
GATTGCACCAGGGCAGAACAGGGGAGGGTGTTCAAG









ACACCC







MLXIP
NM_014938
1553
TGCTTAGCTGGCA
1554
CAGCCTACTCTCCAT
1555
CATGAGATGCCAGG
1556
TGCTTAGCTGGCATGTGGCCGCATGAGATGCCAGGA









AGACCC







MMP11
NM_005940
1557
CCTGGAGGCTGCAAC
1558
TACAATGGCTTTGGAG
1559
ATCCTCCTGAAGCC
1560
CCTGGAGGCTGCAACATACCTCAATCCTGTCCCAGGCCG





ATACC

GATAGCA

CTTTTCGCAGC

GATCCTCCTGAAGCCCTTTTCGCAGCACTGCTAT





MMP2
NM_004530
1561
CAGCCAGAAGCGG
1562
AGACACCATCACCTG
1563
AAGTCCGAATCTCT
1564
CAGCCAGAAGCGGAAACCTTAAAAAGTCCGATCTCT









GCTCCC







MMP7
NM_002423
1565
GGATGGTAGCAGTCT
1566
GGAATGTCCCATACCC
1567
CCTGTATGCTGCAA
1568
GGATGGTAGCAGTCTAGGGATTAACTTCCTGTATGCTGC





AGGGATTAACT

AAAGAA

CTCATGAACTTGGC

AACTCATGAACTTGGCCATTCTTTGGGTATGGGAC





MMP9
NM_004994
1569
GAGAACCAATCTC
1570
CACCCGAGTGTAACC
1571
ACAGGTATTCCTCT
1572
GAGAACCAATCTCACCGACAGGCAGCTGGCAGAGGA









GCCAGC







MPPED2
NM_001584
1573
CCGACCAACCCTC
1574
AGGGCATTTAGAGCT
1575
ATTTGACCTTCCAA
1576
CCGACCAACCCTCCAATTATATTTGACCTTCCAAACC









ACCCAC







MRC1
NM_002438
1577
CTTGACCTCAGGA
1578
GGACTGCGGTCACTC
1579
CCAACCGCTGTTGA
1580
CTTGACCTCAGGACTCTGGATTGGACTTAACAGTCTG









AGCTCA







MRPL13
NM_014078
1581
TCCGGTTCCCTTCG
1582
GTGGAAAAACTGCGG
1583
CGGCTGGAAATTAT
1584
TCCGGTTCCCTTCGTTTAGGTCGGCTGGAAATTATGT









GTCCTC







MSH2
NM_000251
1585
GATGCAGAATTGA
1586
TCTTGGCAAGTCGGT
1587
CAAGAAGATTTACT
1588
GATGCAGAATTGAGGCAGACTTTACAAGAAGATTTA









TCGTCG







MSH3
NM_002439
1589
TGATTACCATCATGG
1590
CTTGTGAAAATGCCAT
1591
TCCCAATTGTCGCT
1592
TGATTACCATCATGGCTCAGATTGGCTCCTATGTTCCTG





CTCAGA

CCAC

TCTTCTGCAG

CAGAAGAAGCGACAATTGGGATTGTGGATGGCAT





MSH6
NM_000179
1593
TCTATTGGGGGAT
1594
CAAATTGCGAGTGGT
1595
CCGTTACCAGCTGG
1596
TCTATTGGGGGATTGGTAGGAACCGTTACCAGCTGG









AAATTC







MTA1
NM_004689
1597
CCGCCCTCACCTGAA
1598
GGAATAAGTTAGCCGC
1599
CCCAGTGTCCGCCA
1600
CCGCCCTCACCTGCAGAGAAACGCGCTCCTTGGCGGACA





GAGA

GCTTCT

AGGAGCG

CTGGGGGAGGAGAGGAAGAAGCGCGGCTAACTT





MTPN
NM_145808
1601
GGTGGAAGGAAAC
1602
CAGCAGCAGAAATTC
1603
AAGCTGCCCACAAT
1604
GGTGGAAGGAAACCTCTTCATTATGCAGCAGATTGT









CTGCTG







MTSS1
NM_014751
1605
TTCGACAAGTCCT
1606
CTTGGAACATCCGTC
1607
CCAAGAAACAGCGA
1608
TTCGACAAGTCCTCCACCATTCCAAGAAACAGCGAC









CATCA







MUC1
NM_002456
1609
GGCCAGGATCTGTGG
1610
CTCCACGTCGTGGACA
1611
CTCTGGCCTTCCGA
1612
GGCCAGGATCTGTGGTGGTACAATTGACTCTGGCCTTCC





TGGTA

TTGA

GAAGGTACC

GAGAAGGTACCATCAATGTCCACGACGTGGAG





MVP
NM_017458
1613
ACGAGAACGAGGGCA
1614
GCATGTAGGTGCTTCC
1615
CGCACCTTTCCGGT
1616
ACGAGAACGAGGGCATCTATGTGCAGGATGTCAAGACCG





TCTATGT

AATCAC

CTTGACATCCT

GAAAGGTGCGCGCTGTGATTGGAAGCACCTACA





MYBL2
NM_002466
1617
GCCGAGATCGCCAAG
1618
CTTTTGATGGTAGAGT
1619
CAGCATTGTCTGTC
1620
GCCGAGATCGCCAAGATGTTGCCAGGGAGGACAGACAAT





ATG

TCCAGTGATTC

CTCCCTGGCA

GCTGTGAAGAATCACTGGAACTCTACCATCAAA





MYBPC1
NM_002465
1621
CAGCAACCAGGGA
1622
CAGCAGTAAGTGCCT
1623
AAATTCGCAAGCCC
1624
CAGCAACCAGGGAGTCTGTACCCTGGAAATTCGCAA









AGCCCC







MYC
NM_002467
1625
TCCCTCCACTCGGAA
1626
CGGTTGTTGCTGATCT
1627
TCTGACACTGTCCA
1628
TCCCTCCACTCGGAAGGACTATCCTGCTGCCAAGAGGGT





GGACTA

GTCTCA

ACTTGACCCTCTT

CAAGTTGGACAGTGTCAGAGTCCTGAGACAGAT





MYLK3
NM_182493
1629
CACCTGACTGAGCTG
1630
GATGTAGTGCTGGTGC
1631
CACACCCTCACAGA
1632
CACCTGACTGAGCTGGATGTGGTCCTGTTCACCAGGCAG





GATGT

AGGT

TCTGCCTGGT

ATCTGTGAGGGTGTGCATTACCTGCACCAGCACT





MYO6
NM_004999
1633
AAGCAGTTCTGGA
1634
GATGAGCTCGGCTTC
1635
CAATCCTCAGGGCC
1636
AAGCAGTTCTGGAGCAGGAGCGCAGGGACCGGGAGC









AGCTCC







NCAM1
NM_000615
1637
TAGTTCCCAGCTG
1638
CAGCCTTGTTCTCAGC
1639
CTCAGCCTCGTCGT
1640
TAGTTCCCAGCTGACCATCAAAAAGGTGGATAAGAA









TCTTAT







NCAPD3
NM_015261
1641
TCGTTGCTTAGAC
1642
CTCCAGACAGTGTGC
1643
CTACTGTCCGCAGC
1644
TCGTTGCTTAGACAAGGCGCCTACTGTCCGCAGCAA









AAGGCA







NCOR1
NM_006311
1645
AACCGTTACAGCC
1646
TCTGGAGAGACCCTT
1647
CCAGGCTCAGTCTG
1648
AACCGTTACAGCCCAGAATCCCAGGCTCAGTCTGTCC









TCCATC







NCOR2
NM_006312
1649
CGTCATCTACGAA
1650
GAGCACTGGGTCACA
1651
CCTCATAGGACAAG
1652
CGTCATCTACGAAGGCAAGAAGGGCCACGTCTTGTC









ACGTGG







NDRG1
NM_006096
1653
AGGGCAACATTCC
1654
CAGTGCTCCTACTCC
1655
CTGCAAGGACACTC
1656
AGGGCAACATTCCACAGCTGCCCTGGCTGTGATGAG









ATCACA







NDUFS5
NM_004552
1657
AGAAGAGTCAAGG
1658
AGGCCGAACCTTTTC
1659
TGTCCAAGAAAGGC
1660
AGAAGAGTCAAGGGCACGAGCATCGGGTAGCCATGC









ATGGCT







NEK2
NM_002497
1661
GTGAGGCAGCGCGAC
1662
TGCCAATGGTGTACAA
1663
TGCCTTCCCGGGCT
1664
GTGAGGCAGCGCGACTCTGGCGACTGGCCGGCCATGCCT





TCT

CACTTCA

GAGGACT

TCCCGGGCTGAGGACTATGAAGTGTTGTACACC





NETO2
NM_018092
1665
CCAGGGCACCATA
1666
AACGGTAAATCAAGG
1667
AGCCAACCCTTTTC
1668
CCAGGGCACCATACTGTTTCCAGCAGCCAACCCTTTT









TCCCAT







NEXN
NM_144573
1669
AGGAGGAGGAAGA
1670
GAGCTCCTGATCTGG
1671
TCATCTTCAGCAGT
1672
AGGAGGAGGAAGAAGGTAGCATCATGAATGGCTCCA









GGAGCC







NFAT5
NM_006599
1673
CTGAACCCCTCTC
1674
AGGAAACGATGGCGA
1675
CGAGAATCAGTCCC
1676
CTGAACCCCTCTCCTGGTCACCGAGAATCAGTCCCCG









CGTGGA







NFATC2
NM_173091
1677
CAGTCAAGGTCAG
1678
CTTTGGCTCGTGGCAT
1679
CGGGTTCCTACCCC
1680
CAGTCAAGGTCAGAGGCTGAGCCCGGGTTCCTACCC









ACAGTC







NFKB1
NM_003998
1681
CAGACCAAGGAGA
1682
AGCTGCCAGTGCTAT
1683
AAGCTGTAAACATG
1684
CAGACCAAGGAGATGGACCTCAGCGTGGTGCGGCTC









AGCCGC







NFKBIA
NM_020529
1685
C TACTGGACGACC
1686
CCTTGACCATCTGCTC
1687
CTCGTCTTTCATGG
1688
CTACTGGACGACCGCCACGACAGCGGCCTGGACTCC









AGTCCA







NME1
NM_000269
1689
CCAACCCTGCAGACT
1690
ATGTATAATGTTCCTG
1691
CCTGGGACCATCCG
1692
CCAACCCTGCAGACTCCAAGCCTGGGACCATCCGTGGAG





CCAA

CCAACTTGTATG

TGGAGACTTCT

ACTTCTGCATACAAGTTGGCAGGAACATTATAC





NNMT
NM_006169
1693
CCTAGGGCAGGGA
1694
CTAGTCCAGCCAAAC
1695
CCCTCTCCTCATGC
1696
CCTAGGGCAGGGATGGAGAGAGAGTCTGGGCATGAG









CCAGAC







NOS3
NM_000603
1697
ATCTCCGCCTCGC
1698
TCGGAGCCATACAGG
1699
TTCACTCGCTTCGC
1700
ATCTCCGCCTCGCTCATGGGCACGGTGATGGCGAAG









CATCAC







NOX4
NM_016931
1701
CCTCAACTGCAGCCT
1702
TGCTTGGAACCTTCTG
1703
CCGAACACTCTTGG
1704
CCTCAACTGCAGCCTTATCCTTTTACCCATGTGCCGAAC





TATCC

TGAT

CTTACCTCCG

ACTCTTGGCTTACCTCCGAGGATCACAGAAGGTTC





NPBWR1
NM_005285
1705
TCACCAACCTGTT
1706
GATGTTGATGGGCAG
1707
ATCGCCGACGAGCT
1708
TCACCAACCTGTTCATCCTCAACCTGGCCATCGCCGA









CTTCAC







NPM1
NM_002520
1709
AATGTTGTCCAGGTT
1710
CAAGCAAAGGGTGGAG
1711
AACAGGCATTTTGG
1712
AATGTTGTCCAGGTTCTATTGCCAAGAATGTGTTGTCCA





CTATTGC

TTC

ACAACACATTCTTG

AAATGCCTGTTTAGTTTTTAAAGATGGAACTCCAC





NRG1
NM_013957
1713
CGAGACTCTCCTCAT











AGTGAAAGGTA
1714
CTTGGCGTGTGGAAAT
1715
ATGACCACCCCGGC
1716
CGAGACTCTCCTCATAGTGAAAGGTATGTGTCAGCCATG







CTACAG

TCGTATGTCA

ACCACCCCGGCTCGTATGTCACCTGTAGATTTCC





NRIP3
NM_020645
1717
CCCACAAGCATGA
1718
TGCTCAATCTGGCCC
1719
AGCTTTCTCTACCC
1720
CCCACAAGCATGAAGGAGAAAAGCTTTCTCTACCCC









CGGCAT







NRP1
NM_003873
1721
CAGCTCTCTCCACGC
1722
CCCAGCAGCTCCATTC
1723
CAGGATCTACCCCG
1724
CAGCTCTCTCCACGCGATTCATCAGGATCTACCCCGAGA





GATTC

TGA

AGAGAGCCACTCAT

GAGCCACTCATGGCGGACTGGGGCTCAGAATGGA





NUP62
NM_153719
1725
AGCCTCTTTGCGTCA
1726
CTGTGGTCACAGGGGT
1727
TCATCTGCCACCAC
1728
AGCCTCTTTGCGTCAATAGCAACTGCTCCAACCTCATCT





ATAGC

ACAG

TGGACTCTCC

GCCACCACTGGACTCTCCCTCTGTACCCCTGTGAC





OAZ1
NM_004152
1729
AGCAAGGACAGCT
1730
GAAGACATGGTCGGC
1731
CTGCTCCTCAGCGA
1732
AGCAAGGACAGCTTTGCAGTTCTCCTGGAGTTCGCTG









ACTCCA







OCLN
NM_002538
1733
CCCTCCCATCCGA
1734
GACGCGGGAGTGTAG
1735
CTCCTCCCTCGGTG
1736
CCCTCCCATCCGAGTTTCAGGTGAATTGGTCACCGAG









ACCAAT







ODC1
NM_002539
1737
AGAGATCACCGGCGT
1738
CGGGCTCAGCTATGAT
1739
CCAGCGTTGGACAA
1740
AGAGATCACCGGCGTAATCAACCCAGCGTTGGACAAATA





AATCAA

TCTCA

ATACTTTCCGTCA

CTTTCCGTCAGACTCTGGAGTGAGAATCATAGCT





OLFML2
NM_015441
1741
CATGTTGGAAGGA
1742
CACCAGTTTGGTGGT
1743
TGGCCTGGATCTCC
1744
CATGTTGGAAGGAGCGTTCTATGGCCTGGATCTCCTG









TGAAGC







OLFML3
NM_020190
1745
TCAGAACTGAGGC
1746
CCAGATAGTCTACCT
1747
CAGACGATCCACTC
1748
TCAGAACTGAGGCCGACACCATCTCCGGGAGAGTGG









TCCCGG







OMD
NM_005014
1749
CGCAAACTCAAGACT
1750
CAGTCACAGCCTCAAT
1751
TCCGATGCACATTC
1752
CGCAAACTCAAGACTATCCCAAATATTCCGATGCACATT





ATCCCA

TTCATT

AGCAACTCTACC

CAGCAACTCTACCTTCAGTTCAATGAAATTGAGG





OR51E1
NM_152430
1753
GCATGCTTTCAGG
1754
AGAAGATGGCCAGCA
1755
TCCTCATCTCCACC
1756
GCATGCTTTCAGGCATTGACATCCTCATCTCCACCTC









TCATCC







OR51E2
NM_030774
1757
TATGGTGCCAAAA
1758
GTCCTTGTCACAGCT
1759
ACATAGCCAGCACC
1760
TATGGTGCCAAAACCAAACAGATCAGAACACGGGTG









CGTGTT







OSM
NM_020530
1761
GTTTCTGAAGGGG
1762
AGGTGTCTGGTTTGG
1763
CTGAGCTGGCCTCC
1764
GTTTCTGAAGGGGAGGTCACAGCCTGAGCTGGCCTC









TATGCC







PAGE1
NM_003785
1765
CAACCTGACGAAGTG
1766
CAGATGCTCCCTCATC
1767
CCAACTCAAAGTCA
1768
CAACCTGACGAAGTGGAATCACCAACTCAAAGTCAGGAT





GAATC

CTCT

GGATTCTACACCTG

TCTACACCTGCTGAAGAGAGAGAGGATGAGGGA









C







PAGE4
NM_007003
1769
GAATCTCAGCAAGAG
1770
GTTCTTCGATCGGAGG
1771
CCAACTGACAATCA
1772
GAATCTCAGCAAGAGGAACCACCAACTGACAATCAGGAT





GAACCA

TGTT

GGATATTGAACCTG

ATTGAACCTGGACAAGAGAGAGAAGGAACACCT









G







PAK6
NM_020168
1773
CCTCCAGGTCACC
1774
GTCCCTTCAGGCCAG
1775
AGTTTCAGGAAGGC
1776
CCTCCAGGTCACCCACAGCCAGTTTCAGGAAGGCTG









TGCCCC







PATE1
NM_138294
1777
TGGTAATCCCTGG
1778
TCCACCTTATGCCTTT
1779
CAGCACAGTTCTTT
1780
TGGTAATCCCTGGTTAACCTTCATGGGCTGCCTAAAG









AGGCAG







PAC3
NM_015342
1781
CGTGATTGTCAGG
1782
AGAAAGGGGAGATGC
1783
CTGAGATGCTCCCT
1784
CGTGATTGTCAGGAGCAAGACCTGAGATGCTCCCTG









GCCTTC







PCDHGB
NM_018927
1785
CCCAGCGTTGAAG
1786
GAAACGCCAGTCCGT
1787
ATTCTTAAACAGCA
1788
CCCAGCGTTGAAGCAGATAAGAAGATTCTTAAACAG









AGCCCC







PCNA
NM_002592
1789
GAAGGTGTTGGAG
1790
GGTTTACACCGCTGG
1791
ATCCCAGCAGGCCT
1792
GAAGGTGTTGGAGGCACTCAAGGACCTCATCAACGA









CGTTGA







PDE9A
NM_001001570
1793
TTCCACAACTTCCGG
1794
AGACTGCAGAGCCAGA
1795
TACATCATCTGGGC
1796
TTCCACAACTTCCGGCACTGCTTCTGCGTGGCCCAGATG





CAC

CCA

CACGCAGAAG

ATGTACAGCATGGTCTGGCTCTGCAGTCT





PDGFRB
NM_002609
1797
CCAGCTCTCCTTCC
1798
GGGTGGCTCTCACTT
1799
ATCAATGTCCCTGT
1800
CCAGCTCTCCTTCCAGCTACAGATCAATGTCCCTGTC









CCGAGT







PECAM1
NM_000442
1801
TGTATTTCAAGACCT
1802
TTAGCCTGAGGAATTG
1803
TTTATGAACCTGCC
1804
TGTATTTCAAGACCTCTGTGCACTTATTTATGAACCTGC





CTGTGCACTT

CTGTGTT

CTGCTCCCACA

CCTGCTCCCACAGAACACAGCAATTCCTCAGGCT





PEX10
NM_153818
1805
GGAGAAGTTCCCTCC
1806
ATCTGTGTCCAGGCCC
1807
CTACCTTCGGCACT
1808
GGAGAAGTTCCCTCCCCAGAAGCTCATCTACCTTCGGCA





CCAG

AC

ACCGCTGAGC

CTACCGCTGAGCCGGCGCCCGGGTGGGCCTGGAC





PGD
NM_002631
1809
ATTCCCATGCCCT
1810
CTGGCTGGAAGCATC
1811
ACTGCCCTCTCCTT
1812
ATTCCCATGCCCTGTTTTACCACTGCCCTCTCCTTCT









CTATGA







PGF
NM_002632
1813
GTGGTTTTCCCTCG
1814
AGCAAGGGAACAGCC
1815
ATCTTCTCAGACGT
1816
GTGGTTTTCCCTCGGAGCCCCCTGGCTCGGGACGTCT









CCCGAG







PGK1
NM_000291
1817
AGAGCCAGTTGCTGT
1818
CTGGGCCTACACAGTC
1819
TCTCTGCTGGGCAA
1820
AGAGCCAGTTGCTGTAGAACTCAAATCTCTGCTGGGCAA





AGAACTCAA

CTTCA

GGATGTTCTGTTC

GGATGTTCTGTTCTTGAAGGACTGTGTAGGCCCA





PGR
NM_000926
1821
GATAAAGGAGCCG
1822
TCACAAGTCCGGCAC
1823
TAAATTGCCGTCGC
1824
GATAAAGGAGCCGCGTGTCACTAAATTGCCGTCGCA









AGCCGC







PHTF2
NM_020432
1825
GATATGGCTGATG
1826
GGTTTGGGTGTTCTTG
1827
ACAATCTGGCAATG
1828
GATATGGCTGATGCTGCTCCTGGGAACTGTGCATTGC









CACAGT







PIK3C2A
NM_002645
1829
ATACCAATCACCGCA
1830
CACACTAGCATTTCTC
1831
TGTGCTGTGACTGG
1832
ATACCAATCACCGCACAAACCCAGGCTATTTGTTAAGTC





CAAACC

CGCATA

ACTTAACAAATAGC

CAGTCACAGCACAAAGAAACATATGCGGAGAAAA









CT







PIK3CA
NM_006218
1833
GTGATTGAAGAGC
1834
GTCCTGCGTGGGAAT
1835
TCCTGCTTCTCGGG
1836
GTGATTGAAGAGCATGCCAATTGGTCTGTATCCCGA









ATACAG







PIK3CG
NM_002649
1837
GGAGAACTCAATG
1838
TGATGCTTAGGCAGG
1839
TTCTGGACAATTAC
1840
GGAGAACTCAATGTCCATCTCCATTCTTCTGGACAAT









TGCCAC







PIM1
NM_002648
1841
CTGCTCAAGGACA
1842
GGATCCACTCTGGAG
1843
TACACTCGGGTCCC
1844
CTGCTCAAGGACACCGTCTACACGGACTTCGATGGG









ATCGAA







PLA2G7
NM_005084
1845
CCTGGCTGTGGTT
1846
TGACCCATGCTGATG
1847
TGGCAATACATAAA
1848
CCTGGCTGTGGTTTATCCTTTTGACTGGCAATACATA









TCCTGT







PLAU
NM_002658
1849
GTGGATGTGCCCT
1850
CTGCGGATCCAGGGT
1851
AAGCCAGGCGTCTA
1852
GTGGATGTGCCCTGAAGGACAAGCCAGGCGTCTACA









CACGAG







PLAUR
NM_002659
1853
CCCATGGATGCTC
1854
CCGGTGGCTACCAGA
1855
CATTGACTGCCGAG
1856
CCCATGGATGCTCCTCTGAAGAGACTTTCCTCATTGA









GCCCCA







PLG
NM_000301
1857
GGCAAAATTTCCA
1858
ATGTATCCATGAGCG
1859
TGCCAGGCCTGGGA
1860
GGCAAAATTTCCAAGACCATGTCTGGACTGGAATGC









CTCTCA







PLK1
NM_005030
1861
AATGAATACAGTATT
1862
TGTCTGAAGCATCTTC
1863
AACCCCGTGGCCGC
1864
AATGAATACAGTATTCCCAAGCACATCAACCCCGTGGCC





CCCAAGCACAT

TGGATGA

CTCC

GCCTCCCTCATCCAGAAGATGCTTCAGACA





PLOD2
NM_000935
1865
CAGGGAGGTGGTTGC
1866
TCTCCCAGGATGCATG
1867
TCCAGCCTTTTCGT
1868
CAGGGAGGTGGTTGCAAATTTCTAAGGTACAATTGCTCT





AAAT

AAG

GGTGACTCAA

ATTGAGTCACCACGAAAAGGCTGGAGCTTCATG





PLP2
NM_002668
1869
CCTGATCTGCTTCA
1870
GCAGCAAGGATCATC
1871
ACACCAGGCTACTC
1872
CCTGATCTGCTTCAGTGCCTCCACACCAGGCTACTCC









CTCCCT







PNLIPRP
NM_005396
1873
TGGAGAAGGTGAA
1874
CACGGCTTGGGTGTA
1875
ACCCGTGCCTCCAG
1876
TGGAGAAGGTGAACTGCATCTGTGTGGACTGGAGGC









TCCACA







POSTN
NM_006475
1877
GTGGCCCAATTAG
1878
TCACAGGTGCCAGCA
1879
TTCTCCATCTGGCC
1880
GTGGCCCAATTAGGCTTGGCATCTGCTCTGAGGCCA









TCAGAG







PPAP2B
NM_003713
1881
ACAAGCACCATCC
1882
CACGAAGAAAACTAT
1883
ACCAGGGCTCCTTG
1884
ACAAGCACCATCCCAGTGATGTTCTGGCAGGATTTGC









AGCAAA







PPFIA3
NM_003660
1885
CCTGGAGCTCCGT
1886
AGCCACATAGGGATC
1887
CACCCACTTTACCT
1888
CCTGGAGCTCCGTTACTCTCAGGCACCCACTTTACCT









TCTGGT







PP1R12A
NM_002480
1889
CGGCAAGGGGTTGAT
1890
TGCCTGGCATCTCTAA
1891
CCGTTCTTCTTCCT
1892
CGGCAAGGGGTTGATATAGAAGCAGCTCGAAAGGAAGAA





ATAGA

GCA

TTCGAGCTGC

GAACGGATCATGCTTAGAGATGCCAGGCA





PPP3CA
NM_000944
1893
ATACTCCGAGCCC
1894
GGAAGCCTGTTGTTT
1895
TACATGCGGTACCC
1896
ATACTCCGAGCCCACGAAGCCCAAGATGCAGGGTAC









TGCATC







PRIMA1
NM_178013
1897
ATCCTCTTCCCTGA
1898
CCCAGCTGAGAGGGA
1899
TGACGCATCCAGGG
1900
ATCCTCTTCCCTGAGCCGCTGACGCATCCAGGGCTCT









CTCTAG







PRKAR1
NM_002735
1901
ACAAAACCATGAC
1902
TGTCATCCAGGTGAG
1903
AAGGCCATCTCCAA
1904
ACAAAACCATGACTGCGCTGGCCAAGGCCATCTCCA









GAACGT







PRKAR2B
NM_002736
1905
TGATAATCGTGGGAG
1906
GCACCAGGAGAGGTAG
1907
CGAACTGGCCTTAA
1908
TGATAATCGTGGGAGTTTCGGCGAACTGGCCTTAATGTA





TTTCG

CAGT

TGTACAATACACCC

CAATACACCCAGAGCAGCTACAATCACTGCTAC









A







PRKCA
NM_002737
1909
CAAGCAATGCGTC
1910
GTAAATCCGCCCCCT
1911
CAGCCTCTGCGGAA
1912
CAAGCAATGCGTCATCAATGTCCCCAGCCTCTGCGG









TGGATC







PRKCB
NM_002738
1913
GACCCAGCTCCAC
1914
CCCATTCACGTACTCC
1915
CCAGACCATGGGAC
1916
GACCCAGCTCCACTCCTGCTTCCAGACCATGGACCGC









CGCCTGT







PROM1
NM_006017
1917
CTATGACAGGCAT
1918
CTCCAACCATGAGGA
1919
ACCCGAGGCTGTGT
1920
CTATGACAGGCATGCCACCCCGACCACCCGAGGCTG









CTCCAA







PROS1
NM_000313
1921
GCAGCACAGGAAT
1922
CCCACCTATCCAACCT
1923
CTCATCCTGACAGA
1924
GCAGCACAGGAATCTTCTTCTTGGCAGCTGCAGTCTG









CTGCAG







PSCA
NM_005672
1925
ACCGTCATCAGCAAA
1926
CGTGATGTTCTTCTTG
1927
CCTGTGAGTCATCC
1928
ACCGTCATCAGCAAAGGCTGCAGCTTGAACTGCGTGGAT





GGCT

CCC

ACGCAGTTCA

GACTCACAGGACTACTACGTGGGCAAGAAGAAC





PSMD13
NM_002817
1929
GGAGGAGCTCTACAC
1930
CGGATCCTGCACAAAA
1931
CCTGAAGTGTCAGC
1932
GGAGGAGCTCTACACGAAGAAGTTGTGGCATCAGCTGAC





GAAGAAG

TCA

TGATGCCACA

ACTTCAGGTGCTTGATTTTGTGCAGGATCCG





PTCH1
NM_000264
1933
CCACGACAAAGCC
1934
TACTCGATGGGCTCT
1935
CCTGAAACAAGGCT
1936
CCACGACAAAGCCGACTACATGCCTGAAACAAGGCT









GAGAAT







PTEN
NM_000314
1937
TGGCTAAGTGAAGAT
1938
TGCACATATCATTAC
1939
CCTTTCCAGCTTTA
1940
TGGCTAAGTGAAGATGACAATCATGTTGCAGCAATTCAC





GACAATCATG

ACCAGTTCGT

CAGTGAATTGCTGC

TGTAAAGCTGGAAAGGGACGAACTGGTGTAATG









A







PTGER3
NM_000957
1941
TAACTGGGGCAAC
1942
TTGCAGGAAAAGGTG
1943
CCTTTGCCTTCCTG
1944
TAACTGGGGCAACTTTTCTTCGCCTCTGCCTTTGCC









GGGCTC







PTGS2
NM_000963
1945
GAATCATTCACCAGG
1946
CTGTACTGCGGGTGGA
1947
CCTACCACCAGCAA
1948
GAATCATTCACCAGGCAAATTGCTGGCAGGGTTGCTGGT





CAAATTG

ACAT

CCCTGCCA

GGTAGGAATGTTCCACCCGCAGTACAG





PTH1R
NM_000316
1949
CGAGGTACAAGCTGA
1950
GCGTGCCTTTCGCTTG
1951
CCAGTGCCAGTGTC
1952
CGAGGTACAAGCTGAGATCAAGAAATCTTGGAGCCGCTG





GATCAAGAA

AA

CAGCGGCT

GACACTGGCACTGGACTTCAAGCGAAAGGCACG





PTHLH
NM_002820
1953
AGTGACTGGGAGTGG
1954
AAGCCTGTTACCGTGA
1955
TGACACCTCCACAA
1956
AGTGACTGGGAGTGGGCTAGAAGGGGACCACCTGTCTGA





GCTAGAA

ATCGA

CGTCGCTGGA

CACCTCCACAACGTCGCTGGAGCTCGATTCACG





PTK2
NM_005607
1957
GACCGGTCGAATG
1958
CTGGACATCTCGATG
1959
ACCAGGCCCGTCAC
1960
GACCGGTCGAATGATAAGGTGTACGAGAATGTGACG









ATTCTC







PTK2B
NM_004103
1961
CAAGCCCAGCCGA
1962
GAACCTGGAACTGCA
1963
CTCCGCAAACCAAC
1964
CAAGCCCAGCCGACCTAAGTACAGACCCCCTCCGCA









CTCCTG







PTK6
NM_005975
1965
GTGCAGGAAAGGTTC
1966
GCACACACGATGGAGT
1967
AGTGTCTGCGTCCA
1968
GTGCAGGAAAGGTTCACAAATGTGGAGTGTCTGCGTCCA





ACAAA

AAGG

ATACACGCGT

ATACACGCGTGTGCTCCTCTCCTTACTCCATCGT





PTK7
NM_002821
1969
TCAGAGGACTCAC
1970
CATACACCTCCACGC
1971
CGCAAGGTCCCATT
1972
TCAGAGGACTCACGGTTCGAGGTCTTCAAGAATGGG









CTTGAA







PTPN1
NM_002827
1973
AATGAGGAAGTTT
1974
CTTCGATCACAGCCA
1975
CTGATCCAGACAGC
1976
AATGAGGAAGTTTCGGATGGGGCTGATCCAGACAGC









CGACCA







PTPRK
NM_002844
1977
TCAAACCCTCCCA
1978
AGCAGCCAGTTCGTC
1979
CCCCATCGTTGTAC
1980
TCAAACCCTCCCAGTGCTGGCCCCATCGTTGTACATT









ATTGCA







PTTG1
NM_004219
1981
GGCTACTCTGATCTA
1982
GCTTCAGCCCATCCTT
1983
CACACGGGTGCCTG
1984
GGCTACTCTGATCTATGTTGATAAGGAAAATGGAGAACC





TGTTGATAAGG

AGCA

GTTCTCCA

AGGCACCCGTGTGGTTGCTAAGGATGGGCTGAA





PYCARD
NM_013258
1985
CTTTATAGACCAG
1986
AGCATCCAGCAGCCA
1987
ACGTTTGTGACCCT
1988
CTTTATAGACCAGCACCGGGCTGCGCTTATCGGCGAG









CGCGAT







RAB27A
NM_004580
1989
TGAGAGATTAATG
1990
CCGGATGCTTTATTCG
1991
ACAAATTGCTTCTC
1992
TGAGAGATTAATGGGCATTGTGTACAAATTGCTTCTC









ACCATC







RAB30
NM_014488
1993
TAAAGGCTGAGGC
1994
CTCCCCAGCATCTCAT
1995
CCATCAGGGCAGTT
1996
TAAAGGCTGAGGCACGGAGAAGAAAAGGAATCAGCA









GCTGAT







RAB31
NM_006868
1997
CTGAAGGACCCTA
1998
ATGCAAAGCCAGTGT
1999
CTTCTCAAAGTGAG
2000
CTGAAGGACCCTACGCTCGGTGGCCTGGCACCTCAC









GTGCCA







RAD21
NM_006265
2001
TAGGGATGGTATCTG
2002
TCGCGTACACCTCTGC
2003
CACTTAAAACGAAT
2004
TAGGGATGGTATCTGAAACAACAATGGTCACCCTCTTGA





AAACAACA

TC

CTCAAGAGGGTGAC

GATTCGTTTTAAGTGTAATTCCATAATGAGCAGAG









CA







RAD51
NM_002875
2005
AGACTACTCGGGT
2006
AGCATCCGCAGAAAC
2007
CTTTCAGCCAGGCA
2008
AGACTACTCGGGTCGAGGTGAGCTTTCAGCCAGGCA









GATGCA







RAD9A
NM_004584
2009
GCCATCTTCACCA
2010
CGGTGTCTGAGAGTG
2011
CTTTGCTGGACGGC
2012
GCCATCTTCACCATCAAGGACTCTTTGCTGGACGGCC









CACTTT







RAF1
NM_002880
2013
CGTCGTATGCGAG
2014
TGAAGGCGTGAGGTG
2015
TCCAGGATGCCTGT
2016
CGTCGTATGCGAGAGTCTGTTTCCAGGATGCCTGTTA









TAGTTC







RAGE
NM_014226
2017
ATTAGGGGGACTTT
2018
GGGTGGAGATGTATT
2019
CCGGAGTGTCTATT
2020
ATTAGGGGACTTTGGCTCCTGCCGGAGTGTCTATTCC









CCAAGC







RALA
NM_005402
2021
TGGTCCTGAATGT
2022
CCCCATTTCACCTCTT
2023
TTGTGTTTCTTGGG
2024
TGGTCCTGAATGTAGCGTGTAAGCTTGTGTTTCTTGG









CAGTCT







RALBP1
NM_006788
2025
GGTGTCAGATATAAA
2026
TTCGATATTGCCAGCA
2027
TGCTGTCCTGTCGG
2028
GGTGTCAGATATAAATGTGCAAATGCCTTCTTGCTGTCC





TGTGCAAATGC

GCTATAAA

TCTCAGTACGTTCA

TGTCGGTCTCAGTACGTTCACTTTATAGCTGCTGG





RAP1B
NM_001010942
2029
TGACAGCGTGAGAGG
2030
CTGAGCCAAGAACGAC
2031
CACGCATGATGCAA
2032
TGACAGCGTGAGAGGTACTAGGTTTTGACAAGCTTGCAT





TACTAGG

TAGCTT

GCTTGTCAAA

CATGCGTGAGTATAAGCTAGTCGTTCTTGGCTCA





RARB
NM_000965
2033
ATGAACCCTTGACCC
2034
GAGCTGGGTGAGATGC
2035
TGTGCTCTGCTGTG
2036
ATGAACCCTTGACCCCAAGTTCAAGTGGGAACACAGCAG





CAAGT

TAGG

TTCCCACTTG

AGCACAGTCCTAGCATCTCACCCAGCTC





RASSF1
NM_007182
2037
AGGGCACGTGAAGTC
2038
AAAGAGTGCAAACTTG
2039
CACCACCAAGAACT
2040
AGGGCACGTGAAGTCATTGAGGCCCTGCTGCGAAAGTTC





ATTG

CGG

TTCGCAGCAG

TTGGTGGTGGATGACCCCCGCAAGTTTGCACTCT





RB1
NM_000321
2041
CGAAGCCCTTACA
2042
GGACTCTTCAGGGGT
2043
CCCTTACGGATTCC
2044
CGAAGCCCTTACAAGTTTCCTAGTTCACCCTTACGGA









TGGAGG







RECK
NM_021111
2045
GTCGCCGAGTGTG
2046
GTGGGATGATGGGTT
2047
TCAAGTGTCCTTCG
2048
GTCGCCGAGTGTGCTTCTGTCAAGTGTCCTTCGCTCT









CTCTTG







REG4
NM_032044
2049
TGCTAACTCCTGCAC
2050
TGCTAGGTTTCCCCTC
2051
TCCTCTTCCTTTCT
2052
TGCTAACTCCTGCACAGCCCCGTCCTCTTCCTTTCTGCT





AGCC

TGAA

GCTAGCCTGGC

AGCCTGGCTAAATCTGCTCATTATTTCAGAGGGGA





RELA
NM_021975
2053
CTGCCGGGATGGC
2054
CCAGGTTCTGGAAAC
2055
CTGAGCTCTGCCCG
2056
CTGCCGGGATGGCTTCTATGAGGCTGAGCTCTGCCC









GACCGC







RFX1
NM_002918
2057
TCCTCTCCAAGTTC
2058
CAGGCCCTGGTACAG
2059
TCCAATGGACCAAG
2060
TCCTCTCCAAGTTCGAGCCCGTGCTCCAATGGACCAA









CACTGT







RGS10
NM_001005339
2061
AGACATCCACGACAG
2062
CCATTTGGCTGTGCTC
2063
AGTTCCAGCAGCAG
2064
AGACATCCACGACAGCGATGGCAGTTCCAGCAGCAGCCA





CGAT

TTG

CCACCAGAG

CCAGAGCCTCAAGAGCACAGCCAAATGG





RGS7
NM_002924
2065
CAGGCTGCAGAGAGC
2066
TTTGCTTGTGCTTCTG
2067
TGAAAATGAACTCC
2068
CAGGCTGCAGAGAGCATTTGCCCGGAAGTGGGAGTTCAT





ATTT

CTTG

CACTTCCGGG

TTTCATGCAAGCAGAAGCACAAGCAAA





RHOA
NM_001664
2069
TGGCATAGCTCTG
2070
TGCCACAGCTGCATG
2071
AAATGGGCTCAACC
2072
TGGCATAGCTCTGGGGTGGGCAGTTTTTTGAAAATG









AGAAA







RHOB
NM_004040
2073
AAGCATGAACAGG
2074
CCTCCCCAAGTCAGT
2075
CTTTCCAACCCCTG
2076
AAGCATGAACAGGACTTGACCATCTTTCCAACCCCTG









GGGAAG







RHOC
NM_175744
2077
CCCGTTCGGTCTG
2078
GAGCACTCAAGGTAG
2079
TCCGGTTCGCCATG
2080
CCCGTTCGGTCTGAGGAAGGCCGGGACATGGCGAAC









TCCCG







RLN1
NM_006911
2081
AGCTGAAGGCAGCCC
2082
TTGGAATCCTTTAATG
2083
TGAGAGGCAACCAT
2084
AGCTGAAGGCAGCCCTATCTGAGAGGCAACCATCATTAC





TATC

CAGGT

CATTACCAGAGC

CAGAGCTACAGCAGTATGTACCTGCATTAAAGG





RND3
NM_005168
2085
TCGGAATTGGACT
2086
CTGGTTACTCCCCTCC
2087
TTTTAAGCCTGACT
2088
TCGGAATTGGACTTGGGAGGCGCGGTGAGGAGTCAG









CCTCAC







RNF114
NM_018683
2089
TGACAGGGGAAGT
2090
GGAAGACAGCTTTGG
2091
CCAGGTCAGCCCTT
2092
TGACAGGGGAAGTGGGTCCCCAGGTCAGCCCCTTCTC









CTCTTC







ROBO2
NM_002942
2093
CTACAAGGCCCAG
2094
CACCAGTGGCTTTAC
2095
CTGTACCATCCACT
2096
CTACAAGGCCCAGCCAACCAAACGCTGGCAGTGGAT









GCCAGC







RRM1
NM_001033
2097
GGGCTACTGGCAG
2098
CTCTCAGCATCGGTA
2099
CATTGGAATTGCCA
2100
GGGCTACTGGCAGCTACATTGCTGGGACTAATGGCA









TTAGTC







RRM2
NM_001034
2101
CAGCGGGATTAAA
2102
ATCTGCGTTGAAGCA
2103
CCAGCACAGCCAGT
2104
CAGCGGGATTAAACAGTCCTTTAACCAGCACAGCCA









TAAAAG







S100P
NM_005980
2105
AGACAAGGATGCC
2106
GAAGTCCACCTGGGC
2107
TTGCTCAAGGACCT
2108
AGACAAGGATGCCGTGGATAAATTGCTCAAGGACCT









GGACGC







SAT1
NM_002970
2109
CCTTTTACCACTGC
2110
ACAATGCTGTGTCCTT
2111
TCCAGTGCTCTTTC
2112
CCTTTTACCACTGCCTGGTTGCGAAGTGCCGAAAGA









GGCACT







SCUBE2
NM_020974
2113
TGACAATCAGCACAC
2114
TGTGACTACAGCCGTG
2115
CAGGCCCTCTTCCG
2116
TGACAATCAGCACACCTGCATTCACCGCTCGGAAGAGGG





CTGCAT

ATCCTTA

AGCGGT

CCTGAGCTGCATGAATAAGGATCACGGCTGTAG





SDC1
NM_002997
2117
GAAATTGACGAGG
2118
AGGAGCTAACGGAGA
2119
CTCTGAGCGCCTCC
2120
GAAATTGACGAGGGGTGTCTTGGGCAGAGCTGGCTC









ATCCAA







SDC2
NM_002998
2121
GGATTGAAGTGGC
2122
ACCAGCCACAGTACC
2123
AACTCCATCTCCTT
2124
GGATTGAAGTGGCTGGAAAGAGTGATGCCTGGGGAA









CCCCAG







SDHC
NM_003001
2125
CTTCCCTCGGGTCT
2126
TTCCCTCCTGGTAAA
2127
TTACATCCTCCCTC
2128
CTTCCCTCGGGTCTCAGGCATTTACATCCTCCCTCTC









TCCCCG







SEC14L1
NM_001039573
2129
AGGGTTCCCATGTGA
2130
GCAGGCATGCTGTGGA
2131
CGGGCTTCTACATC
2132
AGGGTTCCCATGTGACCAGGTGGCCGGGCTTCTACATCC





CCAG

AT

CTGCAGTGG

TGCAGTGGAAATTCCACAGCATGCCTGC





SEC23A
NM_006364
2133
CGTGTGCATTAGA
2134
CCCATTACCATGTATC
2135
TCCTGGAGATGAAA
2136
CGTGTGCATTAGATCAGACAGGTCTCCTGGAGATGA









TGCTGT







SEMA3A
NM_006080
2137
TTGGAATGCAGTC
2138
CTCTTCATTTCGCCTC
2139
TTGCCAATAGACCA
2140
TTGGAATGCAGTCCGAAGTCGCAGAGAGCGCTGGTC









GCGCTC







SEPT9
NM_006640
2141
CAGTGACCACGAG
2142
CTTCGATGGTACCCC
2143
TTGCCAATAGACCA
2144
CAGTGACCACGAGTACCAGGTCAACGGCAAGAGGAT









GCGCTC







SERPINA3
NM_001085
2145
GTGTGGCCCTGTCTG
2146
CCCTGTGCATGTGAGA
2147
AGGGAATCGCTGTC
2148
GTGTGGCCCTGTCTGCTTATCCTTGGAAGGTGACAGCGA





CTTA

GCTAC

ACCTTCCAAG

TTCCCTGTGTAGCTCTCACATGCACAGGG





SERPINB5
NM_002639
2149
CAGATGGCCACTTTG
2150
GGCAGCATTAACCACA
2151
AGCTGACAACAGTG
2152
CAGATGGCCACTTTGAGAACATTTTAGCTGACAACAGTG





AGAACATT

AGGATT

TGAACGACCAGACC

TGAACGACCAGACCAAAATCCTTGTGGTTAATG





SESN3
NM_144665
2153
GACCCTGGTTTTG
2154
GAGCTCGGAATGTTG
2155
TGCTCTTCTCCTCG
2156
GACCCTGGTTTTGGGTATGAAGACTTTGCCAGACGA









TCTGGC







SFRP4
NM_003014
2157
TACAGGATGAGGC
2158
GTTGTTAGGGCAAGG
2159
CCTGGGACAGCCTA
2160
TACAGGATGAGGCTGGGCATTGCCTGGGACAGCCTA









TGTAAG







SH3RF2
NM_152550
2161
CCATCACAACAGCCT
2162
CACTGGGGTGCTGATC
2163
AACCGGATGGTCCA
2164
CCATACAACAGCCTTGAACACTCTCAACCGGATGGTCCA





TGAAC

TCTA

TTCTCCTTCA

TTCTCCTTCAGGGCGCCATATGGTAGAGATCAG





SH3YL1
NM_015677
2165
CCTCCAAAGCCAT
2166
CTTTGAGAGCCAGAG
2167
CACAGCAGTCATCT
2168
CCTCCAAAGCCATTGTCAAGACCACAGCAGTCATCT









GCACCA







SHH
NM_000193
2169
GTCCAAGGCACAT
2170
GAAGCAGCCTCCCGA
2171
CACCGAGTTCTCTG
2172
GTCCAAGGCACATATCCACTGCTCGGTGAAAGCAGA









CTTTCA







SHMT2
NM_005412
2173
AGCGGGTGCTAGA
2174
ATGGCACTTCGGTCT
2175
CCATCACTGCCAAC
2176
AGCGGGTGCTAGAGCTTGTATCCATCACTGCCAACA









AAGAAC







SIM2
NM_005069
2177
GATGGTAGGAAGG
2178
CACAAGGAGCTGTGA
2179
CGCCTCTCCACGCA
2180
GATGGTAGGAAGGGATGTGCCCGCCTCTCCACGCAC









CTCAGC







SIPA1L1
NM_015556
2181
CTAGGACAGCTTG
2182
CATAACCGTAGGGCT
2183
CGCCACAATGCCCT
2184
CTAGGACAGCTTGGCTTCCATGTCAACTATGAGGGC









CATAGT







SKIL
NM_005414
2185
AGAGGCTGAATAT
2186
CTATCGGCCTCAGCA
2187
CCAATCTCTGCCTC
2188
AGAGGCTGAATATGCAGGACAGTTGGCAGAACTGAG









AGTTCT







SLC22A3
NM_021977
2189
ATCGTCAGCGAGT
2190
CAGGATGGCTTGGGT
2191
CAGCATCCACGCAT
2192
ATCGTCAGCGAGTTTGACCTTGTCTGTGTCAATGCGT









TGACAC







SLC25A21
NM_030631
2193
AAGTGTTTTTCCCCC
2194
GGCCGATCGATAGTCT
2195
TCATGGTGCTGCAT
2196
AAGTGTTTTTCCCCCTTGAGATAATGGATATTTGCTATG





TTGAGAT

CTCTT

AGCAAATATCCA

CAGCACCATGAAGAAGAGAGACTATCGATCGGCC





SLC44A1
NM_080546
2197
AGGACCGTAGCTG
2198
ATCCCATCCCAATGC
2199
TACCATGGCTGCTG
2200
AGGACCGTAGCTGCACAGACATACCATGGCTGCTGC









CTCTTC







SMAD4
NM_005359
2201
GGACATTACTGGC
2202
ACCAATACTCAGGAG
2203
TGCATTCCAGCCTC
2204
GGACATTACTGGCCTGTTCACAATGAGCTTGCATTCC









CCATTT







SMARCC2
NM_003075
2205
TACCGACTGAACCCC
2206
GACATCACCCGCTAGG
2207
TATCTTACCTCTAC
2208
TACCGACTGAACCCCCAAGAAGTATCTTACCTCTACCGC





CAA

TTTC

CGCCTGCCGC

CTGCCGCCGAAACCTAGCGGGTGATGTC





SMARCD1
NM_003076
2209
CCGAGTTAGCATATC
2210
CCTTTGTGCCCAGCTG
2211
CCCACCCTTGCTGT
2212
CCGAGTTAGACATATCCCAGGCTCGCAGACTCAACACAG





CCAGG

TC

GTTGAGTCTG

CAAGGGTGGGAGACAGCTGGGCACAAAGG





SMO
NM_005631
2213
GGCATCCAGTGCC
2214
CGCGATGTAGCTGTG
2215
CTTCACAGAGGCTG
2216
GGCATCCAGTGCCAGAACCCGCTCTTCACAGAGGCT









AGCACC







SNA11
NM_005985
2217
CCCAATCGGAAGC
2218
GTAGGGCTGCTGGAA
2219
TCTGGATTAGAGTC
2220
CCCAATCGGAAGCCTAACTACAGCGAGCTGCAGGAC









CTGCAG







SNRPB2
NM_003092
2221
CGTTTCCTGCTTTT
2222
AGGTAGAAGGCGCAC
2223
CCCACCTAAGGCCT
2224
CGTTTCCTGCTTTTGGTTCTTACAGTAGTCGGCGTAG









ACGCCG







SOD1
NM_000454
2225
TGAAGAGAGGCAT
2226
AATAGACACATCGGC
2227
TTTGTCAGCAGTCA
2228
TGAAGAGAGGCATGTTGGAGACTTGGGCAATGTGAC









CATTGC







SORBS1
NM_015385
2229
GCAGATGAGTGGA
2230
AGCGAGTGAAGAGGG
2231
ATTTCCATTGGCAT
2232
GCAGATGAGTGGAGGCTTTCTTCCAGTGCTGATGCC









CAGCAC







SOX4
NM_003107
2233
AGATGATCTCGGG
2234
GCGCCCTTCAGTAGG
2235
CGAGTCCAGCATCT
2236
AGATGATCTCGGGAGACTGGCTCGAGTCCAGCATCT









CCAACC







SPARC
NM_003118
2237
TCTTCCCTGTACACT
2238
AGCTCGGTGTGGGAGA
2239
TGGACCAGCACCCC
2240
TCTTCCCTGTACACTGGCAGTTCGGCCAGCTGGACCAGC





GGCAGTTC

GGTA

ATTGACGG

ACCCCATTGACGGGTACCTCTCCCACACCGAGCT





SPARCL
NM_004684
2241
GGCACAGTGCAAG
2242
GATTGAGCTCTCTCG
2243
ACTTCATCCCAAGC
2244
GGCACAGTGCAAGTGATGACTACTTCATCCCAAGCC









CAGGCC







SPDEF
NM_012391
2245
CCATCCGCCAGTATT
2246
GGGTGCACGAACTGGT
2247
ATCATCCGGAAGCC
2248
CCATCCGCCAGTATTACAAGAAGGGCATCATCCGGAAGC





ACAAG

AGA

AGACATCTCC

CAGACATCTCCCAGCGCCTCGTCTACCAGTTCGT





SPINK1
NM_003122
2249
CTGCCATATGACC
2250
GTTGAAAACTGCACC
2251
ACCACGTCTCTTCA
2252
CTGCCATATGACCCTTCCAGTCCCAGGCTTCTGAAGA









GAAGCC







SPINT1
NM_003710
2253
ATTCCCAGCACAG
2254
AGATGGCTACCACCA
2255
CTGTCGCAGTGTTC
2256
ATTCCCAGCACAGGCTCTGTGGAGATGGCTGTCGCA









CTGGTC







SPP1
NM_001040058
2257
TCACACATGGAAAGC
2258
GTTCAGGTCCTGGGCA
2259
TGAATGGTGCATAC
2260
TCACACATGGAAAGCGAGGAGTTGAATGGTGCATACAAG





GAGG

AC

AAGGCCATCC

GCCATCCCCGTTGCCCAGGACCTGAAC





SQLE
NM_003219
2261
ATTTTCGAGGCCAAA
2262
CCTGAGCAAGGATATT
2263
TGGGCAAGAAAAAC
2264
ATTTTCGAGGCCAAAAAATCATTTACTGGGCAAGAAAAA





AAATC

CACG

ATCTCATTCCTTTG

CATCTCATTCCTTTGTCGTGAATATCCTTGCTC





SRC
NM_005417
2265
TGAGGAGTGGTATTT
2266
CTCTCGGGTTCTCTGC
2267
AACCGCTCTGACTC
2268
TGAGGAGTGGTATTTTGGCAAGATCACCAGACGGGAGTC





TGGCAAGA

ATTGA

CCGTCTGGTG

AGAGCGGTTACTGCTCAATGCAGAGAACCCGAG





SRD5A1
NM_001047
2269
GGGCTGGAATCTG
2270
CCATGACTGCACAAT
2771
CCTCTCTCGGAGGC
2272
GGGCTGGAATCTGTCTAGGAGCCCTCTCTCGGAGGC









CACAGA







SRD5A2
NM_000348
2273
GTAGGTCTCCTGGCG
2274
TCCCTGGAAGGGTAGG
2275
AGACACCACTCAGA
2276
GTAGGTCTCCTGGCGTTCTGCCAGCTGGCCTGGGGATTC





TTCTG

AGTAA

ATCCCCAGGC

TGAGTGGTGTCTGCTTAGAGTTTACTCCTACCCTT





ST5
NM_005418
2277
CCTGTCCTGCCAG
2278
CAGCTGCACAAAACT
2279
AGTCACGAGCACCC
2280
CCTGTCCTGCCAGAGCATGGATGAAGTTTCGCTGGGT









AGCGA







STAT1
NM_007315
2281
GGGCTCAGCTTTCAG
2282
ACATGTTCAGCTGGTC
2283
TGGCAGTTTTCTTC
2284
GGGCTCAGCTTTCAGAAGTGCTGAGTTGGCAGTTTTCTT





AAGTG

CACA

TGTCACCAAAA

CTGTCACCAAAAGAGGTCTCAATGTGGACCAGCT





STAT3
NM_003150
2285
TCACATGCCACTTT
2286
CTTGCAGGAAGCGGC
2287
TCCTGGGAGAGATT
2288
TCACATGCCACTTTGGTGTTTCATAATCTCCTGGGAG









GACCAG







STAT5A
NM_003152
2289
GAGGCGCTCAACATG
2290
GCCAGGAACACGAGGT
2291
CGGTTGCTCTGCAC
2292
GAGGCGCTCAACATGAAATTCAAGGCCGAAGTGCAGAGC





AAATTC

TCTC

TTCGGCCT

AACCGGGGCCTGACCAAGGAGAACCTCGTGTTC





STAT5B
NM_012448
2293
CCAGTGGTGGTGA
2294
GCAAAAGCATTGTCC
2295
CAGCCAGGACAACA
2296
CCAGTGGTGGTGATCGTTCATGGCAGCCAGGACAAC









ATGCG







STMN1
NM_005563
2297
AATACCCAACGCA
2298
GGAGACAATGCAAAC
2299
CACGTTCTCTGCCC
2300
AATACCCAACGCACAAATGACCGCACGTTCTCTGCC









CGTTTC







STS
NM_000351
2301
GAAGATCCCTTTCCT
2302
GGATGATGTTCGGCCT
2303
CTGCGTGGCTCTCG
2304
GAAGATCCCTTTCCTCCTACTGTTCTTTCTGTGGGAAGC





CCTACTGTTC

TGAT

GCTTCCCA

CGAGAGCCACGCAGCATCAAGGCCGAACATCATC





SULF1
NM_015170
2305
TGCAGTTGTAGGGAG
2306
TCTCAAGAATTGCCGT
2307
TACCGTGCCAGCAG
2308
TGCAGTTGTAGGGAGTCTGGTTACCGTGCCAGCAGAAGC





TCTGG

TGAC

AAGCCAAAG

CAAAGAAAGAGTCAACGGCAATTCTTGAGA





SUMO1
NM_003352
2309
GTGAAGCCACCGT
2310
CCTTCCTTCTTATCCC
2311
CTGACCAGGAGGCA
2312
GTGAAGCCACCGTCATCATGTCTGACCAGGAGGCAA









AAACCT







SVIL
NM_003174
2313
ACTTGCCCAGCAC
2314
GACACCATCCGTGTC
2315
ACCCCAGGACTGAT
2316
ACTTGCCCAGCACAAGGAAGACCCCAGGACTGATGT









GTCAAG







TAF2
NM_003184
2317
GCGCTCCACTCTCAG
2318
CTTGTGCTCATGGTGA
2319
AGCCTCCAAACACA
2320
GCGCTCCACTCTCAGTCTTTACTAAGGAATCTACAGCCT





TCTTT

TGGT

GTGACCACCA

CCAAACACAGTGACCACCATCACCACCATCACCAT





TARP
NM_001003799
2321
GAGCAACACGATTCT
2322
GGCACCGTTAACCAGC
2323
TCTTCATGGTGTTC
2324
GAGCAACACGATTCTGGGATCCCAGGAGGGGAACACCAT





GGGA

TAAAT

CCCTCCTGG

GAAGACTAACGACACATACATGAAATTTAGCTG





TBP
NM_003194
2325
GCCCGAAACGCCG
2326
CGTGGCTCTCTTATCC
2327
TACCGCAGCAAACC
2328
GCCCGAAACGCCGAATATAATCCCAAGCGGTTTGCT









GCTTGG







TFDP1
NM_007111
2329
TGCGAAGTGCTTTTG
2330
GCCTTCCAGACAGTCT
2331
CGCACCAGCATGGC
2332
TGCGAAGTGCTTTTGTTTGTTTGTTTTCGTTTGGTTAAA





TTTGT

CCAT

AATAAGCTTT

GCTTATTGCCATGCTGGTGCGGCTATGGAGACTGTC





TFF1
NM_003225
2333
GCCCTCCCAGTGTGC
2334
CGTCGATGGTATTAGG
2335
TGCTGTTTCGACGA
2336
GCCCTCCCAGTGTGCAAATAAGGGCTGCTGTTTCGACGA





AAAT

ATAGAAGCA

CACCGTTCG

CACCGTTCGTGGGGTCCCCTGGTGCTTCTATCCTA





TFF3
NM_003226
2337
AGGCACTGTTCATCT
2338
CATCAGGCTCCAGATA
2339
CAGAAGCGCTTGCC
2340
AGGCACTGTTCATCTCAGCTTTTCTGTCCCTTTGCTCCC





CAGTTTTTCT

TGAACTTTC

GGGAGCAAAGG

GGCAAGCGCTTCTGCTGAAAGTTCATATCTGGAG





TGFA
NM_003236
2341
GGTGTGCCACAGACC
2342
ACGGAGTTCTTGACAG
2343
TTGGCCTGTAATCA
2344
GGTGTGCCACAGACCTTCCTACTTGGCCTGTAATCACCT





TTCCT

AGTTTTGA

CCTGTGCAGCCTT

GTGCAGCCTTTTGTGGGCCTTCAAAACTCTGTCAA





TGFB1II
NM_001042454
2345
GCTACTTTGAGCGCT
2346
GGTCACCATCTTGTGT
2347
CAAGATGTGGCTTC
2348
GCTACTTTGAGCGCTTCTCGCCAAGATGTGGCTTCTGCA





TCTCG

CGG

TGCAACCAGC

ACCAGCCCATCCGACACAAGATGGTGACC





TGFB2
NM_003238
2349
ACCAGTCCCCCAG
2350
CCTGGTGCTGTTGTA
2351
TCCTGAGCCCGAGG
2352
ACCAGTCCCCCAGAAGACTATCCTGAGCCCGAGGAA









AAGTCC







TGFB3
NM_003239
2353
GGATCGAGCTCTT
2354
GCCACCGATATAGCG
2355
CGGCCAGATGAGCA
2356
GGATCGAGCTCTTCCAGATCCTTCGGCCAGATGAGC









CATTGC







TGFBR2
NM_003242
2357
AACACCAATGGGT
2358
CCTCTTCATCAGGCC
2359
TTCTGGGCTCCTGA
2360
AACACCAATGGGTTCCATCTTTCTGGGCTCCTGATTG









TTGCTC







THBS2
NM_003247
2361
CAAGACTGGCTACAT
2362
CAGCGTAGGTTTGGTC
2363
TGAGTCTGCCATGA
2364
CAAGACTGGCTACATCAGAGTCTTAGTGCATGAAGGAAA





CAGAGTCTTAG

ATAGATAGG

CCTGTTTTCCTTCA

ACAGGTCATGGCAGACTCAGGACCTATCTATGA









T







THY1
NM_006288
2365
GGACAAGACCCTC
2366
TTGGAGGCTGTGGGT
2367
CAAGCTCCCAAGAG
2368
GGACAAGACCCTCTCAGGCTGTCCCAAGCTCCCAAG









CTTCCA







TIAM1
NM_003253
2369
GTCCCTGGCTGAA
2370
GGGCTCCCGAAGTCT
2371
TGGAGCCCTTCTCC
2372
GTCCCTGGCTGAAAATGGCCTGGAGCCCTTCTCCCAA









CAAGAT







TIMP2
NM_003255
2373
TCACCCTCTGTGA
2374
TGTGGTTCAGGCTCTT
2375
CCCTGGGACACCCT
2376
TCACCCTCTGTGACTTCATCGTGCCCTGGGACACCCT









GAGCAC







TIMP3
NM_000362
2377
CTACCTGCCTTGCT
2378
ACCGAAATTGGAGAG
2379
CCAAGAACGAGTGT
2380
CTACCTGCCTTGCTTTGTGACTTCCAAGAACGAGTGT









CTCTGG







TK1
NM_003258
2381
GCCGGGAAGACCGTA
2382
CAGCGGCACCAGGTTC
2383
CAAATGGCTTCCTC
2384
GCCGGGAAGACCGTAATTGTGGCTGCACTGGATGGGACC





ATTGT

AG

TGGAAGGTCCCA

TTCCAGAGGAAGCCATTTGGGGCCATCCTGAAC





TMPRSS
NM_005656
2385
GGACAGTGTGCAC
2386
CTCCCACGAGGAAGG
2387
AAGCACTGTGCATC
2388
GGACAGTGTGCACCTCAAAGACTAAGAAAGCACTGT









ACCTTG







TMPRSS
DQ204772
2389
GAGGCGGAGGGCGAG
2390
ACTGGTCCTCACTCAC
2391
TAAGGCTTCCTGCC
2392
GAGGCGGAGGCGGAGGGCGAGGGGCGGGGAGCGCCGCCT


2ERGA




AACT

GCGCTCCA

GGAGCGCGGCAGGAAGCCTTATCAGTTGTGAG





TMPRSS
DQ204773
2393
GAGGCGGAGGGCGAG
2394
TTCCTCGGGTCTCCAA
2395
CCTGGAATAACCTG
2396
GAGGCGGAGGGCGAGGGGCGGGGAGCGCCGCCTGGAGCG


2ERGB




AGAT

CCGCGC

CGGCAGGTTATTCCAGGATCTTTGGAGACCCG





TNF
NM_000594
2397
GGAGAAGGGTGAC
2398
TGCCCAGACTCGGCA
2399
CGCTGAGATCAATC
2400
GGAGAAGGGTGACCGACTCAGCGCTGAGATCAATCG









GGCCCG







TNFRSF1
NM_003844
2401
TGCACAGAGGGTGTG
2402
TCTTCATCTGATTTAC
2403
CAATGCTTCCAACA
2404
TGCACAGAGGGTGTGGGTTACACCAATGCTTCCAACAAT


0A


GGTTAC

AAGCTGTACATG

ATTTGTTTGCTTGC

TTGTTTGCTTGCCTCCCATGTACAGCTTGTAAAT









C







TNFRSF1
NM_003842
2405
CTCTGAGACAGTGCT
2406
CCATGAGGCCCAACTT
2407
CAGACTTGGTGCCC
2408
CTCTGAGACAGTGCTTCGATGACTTTGCAGACTTGGTTG


0B


TCGATGACT

CCT

TTTGACTCC

CCCTTTGACTCCTGGGAGCCGCTCATGAGGAAGTT





TNFRSF1
NM_148901
2409
CAGAAGCTGCCAGTT
2410
CACCCACAGGTCTCCC
2411
CCTTCTCCTCTGCC
2412
CAGAAGCTGCCAGTTCCCCGAGGAAGAGCGGGGCGAGCG


8


CCC

AG

GATCGCTC

ATCGGCAGAGGAGAAGGGGCGGCTGGGAGACCT





TNFSF10
NM_003810
2413
CTTCACAGTGCTC
2414
CATCTGCTTCAGCTCG
2415
AAGTACACGTAAGT
2416
CTTCACAGTGCTCCTGCAGTCTCTCTGTGTGGCTGTA









TACAGC







TNFSF11
NM_003701
2417
AACTGCATGTGGG
2418
TGACACCCTCTCCACT
2419
ACATGACCAGGGAC
2420
AACTGCATGTGGGCTATGGGAGGGGTTGGTCCCTGG









CAACCC







TOP2A
NM_001067
2421
AATCCAAGGGGGA
2422
GTACAGATTTTGCCC
2423
CATATGGACTTTG
2424
AATCCAAGGGGGAGAGTGATGACTTCCATATGGACT









ACTCAGC







TP53
NM_000546
2425
CTTTGAACCCTTGC
2426
CCCGGGACAAAGCAA
2427
AAGTCCTGGGTGC
2428
CTTTGAACCCTTGCTTGCAATAGGTGTGCGTCAGAAG









TTCTGAC







TP63
NM_003722
2429
CCCCAAGCAGTGC
2430
GAATCGCACAGCATC
2431
CCCGGGTCTCACT
2432
CCCCAAGCAGTGCCTCTACAGTCAGTGTGGGCTCCA









GGAGCCC







TPD52
NM_005079
2433
GCCTGTGAGATTC
2434
ATGTGCTTGGACCTC
2435
TCTGCTACCCACT
2436
GCCTGTGAGATTCCTACCTTTGTTCTGCTACCCACTG









GCCAGAT







TPM1
NM_001018005
2437
TCTCTGAGCTCTGCA
2438
GGCTCTAAGGCAGGAT
2439
TTCTCCAGCTGAC
2440
TCTCTGAGCTCTGCATTTGTCTATTCTCCAGCTGACCCT





TTTGTC

GCTA

CCTGGTTCTCTC

GGTTCTCTCTCTTAGCATCCTGCTTAGAGCC





TPM2
NM_213674
2441
AGGAGATGCAGCT
2442
CCACCTCTTCATATTT
2443
CCAAGCACATCGC
2444
AGGAGATGCAGCTGAAGGAGGCCAAGCACATCGCTG









TGAGGAT







TPP2
NM_003291
2445
TAACCGTGGCATC
2446
ATGCCAACGCCATGA
2447
ATCCTGTTCAGGT
2448
TAACCGTGGCATCTACCTCCGAGATCCTGTTCAGGTG









GGCTGCA







TPX2
NM_012112
2449
TCAGCTGTGAGCTGC
2450
ACGGTCCTAGGTTTGA
2451
CAGGTCCCATTGC
2452
TCAGCTGTGAGCTGCGGATACCGCCCGGCAATGGGACCT





GGATA

GGTTAAGA

CGGGCG

GCTCTTAACCTCAAACCTAGGACCGT





TRA2A
NM_013293
2453
GCAAATCCAGATC
2454
CTTCACGAAGATCCC
2455
AACTGAGGCCAAA
2456
GCAAATCCAGATCCCAACACTTGCCTTGGAGTGTTTG









CACTCCA







TRAF31P
NM_147200
2457
CCTCACAGGAACC
2458
CTGGGGCTGGGAATC
2459
TGGATCTGCCAAC
2460
CCTCACAGGAACCGAGCAGGCCTGGATCTGCCAACC









CATAGAC







TRAM1
NM_014294
2461
CAAGAAAAGCACC
2462
ATGTCCGCGTGATTCT
2463
AGTGCTGAGCCAC
2464
CAAGAAAAGCACCAAGAGCCCCCCAGTGCTGAGCCA









GAATTCG







TRAP1
NM_016292
2465
TTACCAGTGGCTTT
2466
TGTCCCGGTTCTAACT
2467
TTCGGCGATTTCA
2468
TTACCAGTGGCTTTCAGATGGTTCTGGAGTGTTTGAA









AACACTC







TRIM14
NM_033220
2469
CATTCGCCTTAAG
2470
CAAGGTACCTGGCTT
2471
AACTGCCAGCTCT
2472
CATTCGCCTTAAGGAAAGCATAAACTGCCAGCTCTCA









CAGACCC







TRO
NM_177556
2473
GCAACTGCCACCC
2474
TGGTGTGGATACTGG
2475
CCACCCAAGGCCAA
2476
GCAACTGCCACCCATACAGCTACCACCCAAGGCCAA









ATTACC







TRPC6
NM_004621
2477
CGAGAGCCAGGACTA
2478
TAGCCGTAGCAAGGCA
2479
CTTCTCCCAGCTCC
2480
CGAGAGCCAGGACTATCTGCTCATGGACTCGGAGCTGGG





TCTGC

GC

GAGTCCATG

AGAAGACGGCTGCCCGCAAGCCCCGCTGCCTTG





TRPV6
NM_018646
2481
CCGTAGTCCCTGCAA
2482
TCCTCACTGTTCACAC
2483
ACTTTGGGGAGCAC
2484
CCGTAGTCCCTGCAACCTCATCTACTTTGGGGAGCACCC





CCTC

AGGC

CCTTTGTCCT

TTTGTCCTTTGCTGCCTGTGTGAACAGTGAGGA





TSTA3
NM_003313
2485
CAATTTGGACTTCT
2486
CACCTCAAAGGCCGA
2487
AACGTGCACATGAA
2488
CAATTTGGACTTCTGGAGGAAAAACGTGCACATGAA









CGACAA







TUBB2A
NM_001069
2489
CGAGGACGAGGCT
2490
ACCATGCTTGAGGAC
2491
TCTCAGATCAATCG
2492
CGAGGACGAGGCTTAAAAACTTCTCAGATCAATCGT









TGCATC







TYMP
NM_001953
2493
CTATATGCAGCCAGA
2494
CCACGAGTTTCTTACT
2495
ACAGCCTGCCACTC
2496
CTATATGCAGCCAGAGATGTGACAGCCACCGTGGACAGC





GATGTGACA

GAGAATGG

ATCACAGCC

CTGCCACTCATCACAGCCTCCATTCTCAGTAAGA





TYMS
NM_001071
2497
GCCTCGGTGTGCC
2498
CGTGATGTGCGCAAT
2499
CATCGCCAGCTACG
2500
GCCTCGGTGTGCCTTTCAACATCGCCAGCTACGCCCT









CCCTGC







UAP1
NM_003115
2501
CTGGAGACGGTCGTA
2502
GCCAAGCTTTGTAGAA
2503
TACCTGTAAACCTT
2504
CTGGAGACGGTCGTAGCTGCGGTCGCGCCGAGAAAGGTT





GCTG

ATAGGG

TCTCGGCGCG

TACAGGTACATACATTACACCCCTATTTCTACAA





UBE2C
NM_007019
2505
TGTCTGGCGATAA
2506
ATGGTCCCTACCCATT
2507
TCTGCCTTCCCTGA
2508
TGTCTGGCGATAAAGGGATTTCTGCCTTCCCTGAATC









ATCAGA







UBE2G1
NM_003342
2509
TGACACTGAACGA
2510
AAGCAGAGAGGAATC
2511
TTGTCCCACCAGTG
2512
TGACACTGAACGAGGTGGCTTTTGTCCCACCAGTGCC









CCTCAT







UBE2T
NM_014176
2513
TGTTCTCAAATTGC
2514
AGAGGTCAACAAGT
2515
AGGTGCTTGGAGAC
2516
TGTTCTCAAATTGCCACCAAAAGGTGCTTGGAGACC









CATCCC







UGDH
NM_003359
2617
GAAACTCCAGAGG
2518
CTCTGGGAACCCAGT
2519
TATACAGCACACAG
2520
GAAACTCCAGAGGGCCAGAGAGCTGTGCAGGCCCTG









GGCCTG







UGT2B1
NM_001076
2521
AAGCCTGAAGTGG
2522
CCTCCATTTAAAACCC
2523
AAAGATGGGACTCC
2524
AAGCCTGAAGTGGAATGACTGAAAGATGGGACTCCT









TCCTTT







UGT2B1
NM_001077
2525
TTGAGTTTGTCATG
2526
TCCAGGTGAGGTTGT
2527
ACCCGAAGGTGCTT
2528
TTGAGTTTGTCATGCGCCATAAAGGAGCCAAGCACC









GGCTCC







UHRF1
NM_013282
2529
CTACAGGGGCAAA
2530
GGTGTCATTCAGGCG
2531
CGGCCATACCCTCT
2532
CTACAGGGGCAAACAGATGGAGGACGGCCATACCCT









TCGACT







UTP23
NM_032334
2533
GATTGCACAAAAA
2534
GGAAAGCAGACATTC
2535
TCGAAATTGTCCTC
2536
GATTGCACAAAAATGCCAAGTTCGAAATTGTCCTCAT









ATTTCA







VCAM1
NM_001078
2537
TGGCTTCAGGAGCTG
2538
TGCTGTCGTGATGAGA
2539
CAGGCACACACAGG
2540
TGGCTTCAGGAGCTGAATACCCTCCCAGGCACACACAGG





AATACC

AAATAGTG

TGGGACACAAAT

TGGGACACAAATAAGGGTTTTGGAACCACTATT





VCL
NM_003373
2541
GATACCACAACTCCC
2542
TCCCTGTTAGGCGCAT
2543
AGTGGCAGCCACGG
2544
GATACCACAACTCCCATCAAGCTGTTGGCAGTGGCAGCC





ATCAAGCT

CAG

CGCC

ACGGCGCCTCCTGATGCGCCTAACAGGGA





VCPIP1
NM_025054
2545
TTTCTCCCAGTACC
2546
TGAATAGGGAGCCTT
2547
TGGTCCATCCTCTG
2548
TTTCTCCCAGTACCATTCGTGATGGTCCATCCTCTGC









CACCTG







VDR
NM_000376
2549
CCTCTCCTTCCAGC
2550
TCATTGCCAAACACTT
2551
CAGCATGAAGCTAA
2552
CCTCTCCTTCCAGCCTGAGTGCAGCATGAAGCTAACG









CGCCCC







VEGFA
NM_003376
2553
CTGCTGTCTTGGG
2554
GCAGCCTGGGACCAC
2555
TTGCCTTGCTGCTC
2556
CTGCTGTCTTGGGTGCATTGGAGCCTTGCCTTGCTGC









TACCTC







VEGFB
NM_003377
2557
TGACGATGGCCTG
2558
GGTACCGGATCATGA
2559
CTGGGCAGCACCAA
2560
TGACGATGGCCTGGAGTGTGTGCCCACTGGGCAGCA









GTCCGG







VEGFC
NM_005429
2561
CCTCAGCAAGACGTT
2562
AAGTGTGATTGGCAAA
2563
CCTCTCTCTCAAGG
2564
CCTCAGCAAGACGTTATTTGAAATTACAGTGCCTCTCTC





ATTTGAAATT

ACTGATTG

CCCCAAACCAGT

TCAAGGCCCCAAACCAGTAACAATCAGTTTTGCCA





VIM
NM_003380
2565
TGCCCTTAAAGGA
2566
GCTTCAACGGCAAAG
2567
ATTTCACGCATCTG
2568
TGCCCTTAAAGGAACCAATGAGTCCCTGGAACGCCA









GCGTTC







VTI1B
NM_006370
2569
ACGTTATGCACCCCT
2570
CCGATGGAGTTTAGCA
2571
CGAAACCCCATGAT
2572
ACGTTATGCACCCCTGTCTTTCCGAAACCCCATGATGTC





GTCTT

AGGT

GTCTAAGCTTCG

TAAGCTTCGAAACTACCGGAAGGACCTTGCTAAA





WDR19
NM_025132
2573
GAGTGGCCCAGAT
2574
GATGCTTGAGGGCTT
2575
CCCCTCGACGTATG
2576
GAGTGGCCCAGATGTCCATAAGAATGGGAGACATAC









TCTCCC







WFDC1
NM_021197
2577
ACCCCTGCTCTGT
2578
ATACCTTCGGCCACG
2579
CTATGAGTGCCACA
2580
ACCCCTGCTCTGTCCCTCGGGCTATGAGTGCCACATC









TCCTGA







WISP1
NM_003882
2581
AGAGGCATCCATGAA
2582
CAAACTCCACAGTACT
2583
CGGGCTGCATCAGC
2584
AGAGGCATCCATGAACTTCACACTTGCGGGCTGCATCAG





CTTCACA

TGGGTTGA

ACACGC

GCACACGCTCCTATCAACCCAAGTACTGTGGAGTT





WNT5A
NM_003392
2585
GTATCAGGACCACAT
2586
TGTCGGAATTGATACT
2587
TTGATGCCTGTCTT
2588
GTATCAGGACCACATGCAGTACATCGGAGAAGGCGCGAA





GCAGTACATC

GGCATT

CGCGCCTTCT

GACAGGCATCAAAGAATGCCAGTATCAATTCCG





WWOX
NM_016373
2589
ATCGCAGCTGGTG
2590
AGCTCCCTGTTGCAT
2591
CTGCTGTTTACCTT
2592
ATCGCAGCTGGTGGGTGTACACACTGCTGTTTACCTT









GGCGAG







XIAP
NM_001167
2593
GCAGTTGGAAGACAC
2594
TGCGTGGCACTATTTT
2595
TCCCCAAATTGCAG
2596
GCAGTTGGAAGACACAGGAAAGTATCCCCAAATTGCAGA





AGGAAAGT

CAAGA

ATTTATCAACGGC

TTTATCAACGGCTTTTATCTTGAAAATAGTGCCA





XRCC5
NM_021141
2597
AGCCCACTTCAGC
2598
AGCAGGATTCACACT
2599
TCTGGCTGAAGGCA
2600
AGCCCACTTCAGCGTCTCCAGTCTGGCTGAAGGCAG









GTGTCA







YY1
NM_003403
2601
ACCCGGGCAACAA
2602
GACCGAGAACTCGCC
2603
TTGATCTGCACCTG
2604
ACCCGGGCAACAAGAAGTGGGAGCAGAAGCAGGTGC









CTTCTG







ZFHX3
NM_006885
2605
CTGTGGAGCCTCT
2606
GGAGCAGGGTTGGAT
2607
ACCTGGCCCAACTC
2608
CTGTGGAGCCTCTGCCTGCGGACCTGGCCCAACTCTA









TACCAG







ZFP36
NM_003407
2609
CATTAACCCACTC
2610
CCCCCACCATCATGA
2611
CAGGTCCCCAAGTG
2612
CATTAACCCACTCCCCTGACCTCACGCTGGGGCAGGT









TGCAAG







ZMYND8
NM_183047
2613
GGTCTGGGCCAAA
2614
TGCCCGTCTTTATCCC
2615
CTTTTGCAGGCCAG
2616
GGTCTGGGCCAAACTGAAGGGGTTTCCATTCTGGCCT









AATGGA







ZNF3
NM_017715
2617
CGAAGGGACTCTG
2618
GCAGGAGGTCCTCAG
2619
AGGAGGTTCCACAC
2620
CGAAGGGACTCTGCTCCAGTGAACTGGCGAGTGTGG









TCGCCA







ZNF827
NM_178835
2621
TGCCTGAGGACCC
2622
GAGGTGGCGGAGTGA
2623
CCCGCCTTCAGAGA
2624
TGCCTGAGGACCCTCTACCGCCCCCGCCTTCAGAGA









AGAAAC







ZWINT
NM_007057
2625
TAGAGGCCATCAA
2626
TCCGTTTCCTCTGGGC
2627
ACCAAGGCCCTGAC
2628
TAGAGGCCATCAAAATTGGCCTCACCAAGGCCCTGA









TCAGAT




















TABLE B







SEQ




ID


microRNA
Sequence
NO







hsa-miR-1
UGGAAUGUAAAGAAGUAUGUAU
2629





hsa-miR-103
GCAGCAUUGUACAGGGCUAUGA
2630





hsa-miR-106b
UAAAGUGCUGACAGUGCAGAU
2631





hsa-miR-10a
UACCCUGUAGAUCCGAAUUUGUG
2632





hsa-miR-133a
UUUGGUCCCCUUCAACCAGCUG
2633





hsa-miR-141
UAACACUGUCUGGUAAAGAUGG
2634





hsa-miR-145
GUCCAGUUUUCCCAGGAAUCCCU
2635





hsa-miR-146b-5p
UGAGAACUGAAUUCCAUAGGCU
2636





hsa-miR-150
UCUCCCAACCCUUGUACCAGUG
2637





hsa-miR-152
UCAGUGCAUGACAGAACUUGG
2638





hsa-miR-155
UUAAUGCUAAUCGUGAUAGGGGU
2639





hsa-miR-182
UUUGGCAAUGGUAGAACUCACACU
2640





hsa-miR-191
CAACGGAAUCCCAAAAGCAGCUG
2641





hsa-miR-19b
UG UAAACAUCCUCGACUGGAAG
2642





hsa-miR-200c
UAAUACUGCCGGGUAAUGAUGGA
2643





hsa-miR-205
UCCUUCAUUCCACCGGAGUCUG
2644





hsa-miR-206
UGGAAUGUAAGGAAGUGUGUGG
2645





hsa-miR-21
UAGCUUAUCAGACUGAUGUUGA
2646





hsa-miR-210
CUGUGCGUGUGACAGCGGCUGA
2647





hsa-miR-22
AAGCUGCCAGUUGAAGAACUGU
2648





hsa-miR-222
AGCUACAUCUGGCUACUGGGU
2649





hsa-miR-26a
UUCAAGUAAUCCAGGAUAGGCU
2650





hsa-miR-27a
UUCACAGUGGCUAAGUUCCGC
2651





hsa-miR-27b
UUCACAGUGGCUAAGUUCUGC
2652





hsa-miR-29b
UAGCACCAUUUGAAAUCAGUGUU
2653





hsa-miR-30a
CUUUCAGUCGGAUGUUUGCAGC
2654





hsa-miR-30e-5p
CUUUCAGUCGGAUGUUUACAGC
2655





hsa-miR-31
AGGCAAGAUGCUGGCAUAGCU
2656





hsa-miR-331
GCCCCUGGGCCUAUCCUAGAA
2657





hsa-miR-425
AAUGACACGAUCACUCCCGUUGA
2658





hsa-miR-449a
UGGCAGUGUAUUGUUAGCUGGU
2659





hsa-miR-486-5p
UCCUGUACUGAGCUGCCCCGAG
2660





hsa-miR-92a
UAUUGCACUUGUCCCGGCCUGU
2661





hsa-miR-93
CAAAGUGCUGUUCGUGCAGGUAG
2662





hsa-miR-99a
AACCCGUAGAUCCGAUCUUGUG
2663








Claims
  • 1. A method for determining a likelihood of cancer recurrence in a patient with prostate cancer, comprising: measuring an expression level of at least one gene in a biological sample comprising prostate tissue obtained from the patient, wherein the at least one gene comprises a gene from Tables 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 7A, 7B, 8A, 8B, 10A, or 10B, or genes that co-express with the at least one gene;predicting a likelihood of cancer recurrence for the patient; wherein an expression level of any gene in Tables 3A, 4A, 5A, 6A, 7A, 8A, and 10A is positively associated with an increased risk of recurrence, andwherein an expression level of any gene in Tables 3B, 4B, 5B, 6B, 7B 8B, and 10B is negatively associated with a increased risk of recurrence.
  • 2. The method of claim 1, wherein said expression level is measured using an RNA transcript of the at least one gene.
  • 3. The method of claim 1, wherein said expression is measured using an oligonucleotide associated with the at least one gene.
  • 4. The method of claim 1, further comprising normalizing said expression level to obtain a normalized expression level.
  • 5. The method of claim 1, further comprising generating a report based on the Recurrence Score (RS).
  • 6. The method of claim 5, wherein the report comprises an estimate of recurrence risk based on clinical recurrence-free interval (cRFI).
  • 7. The method of claim 5, wherein the RS is based on a biochemical recurrence-free interval (bRFI).
  • 8. The method of claim 1, wherein the biological sample has a positive TMPRSS2 fusion status.
  • 9. The method of claim 1, wherein the biological sample has a negative TMPRSS2 fusion status.
  • 10. The method of claim 1, wherein the patient has early-stage prostate cancer.
  • 11. The method of claim 1, wherein the biological sample comprises prostate tumor tissue with the primary Gleason pattern for said prostate tumor.
  • 12. The method of claim 1, wherein the biological samples comprises prostate tumor tissue with the highest Gleason pattern for said prostate tumor.
  • 13. The method of claim 1, wherein the biological sample is prostate tumor tissue.
  • 14. The method of claim 1, wherein the biological sample is non-tumor prostate tissue.
  • 15. The method of claim 1, further comprising classifying the patient as TMPRSS2 fusion positive or negative, wherein an expression level of any gene in Table 9A is associated with a positive TMPRSS2 fusion status, andwherein an expression level of any gene in Table 9B is associated with a negative TMPRSS2 fusion status.
  • 16. The method of claim 1, wherein the biological sample comprises non-tumor prostate tissue, and wherein the at least one gene comprises a gene from Tables 10A or 10B.
  • 17. A method for determining a likelihood of upgrading or upstaging in a patient with prostate cancer, comprising: measuring an expression level of at least one gene in a biological sample comprising prostate tissue obtained from the patient, wherein the at least one gene comprises a gene from Table 13A or 13B, or genes that co-express with the at least one gene;wherein an expression level of any gene in Tables 13A is positively associated with an increased risk of upgrading/upstaging, andwherein an expression level of any gene in Table 13B is negatively associated with a increased risk of upgrading/upstaging.
  • 18. A method for determining a likelihood of cancer recurrence in a patient with prostate cancer, comprising: measuring an expression level of at least one microRNA in a biological sample comprising prostate tissue obtained from the patient, wherein the at least one microRNA is a microRNA selected from hsa-miR-93; hsa-miR-106b; hsa-miR-21; hsa-miR-449a; hsa-miR-182; hsa-miR-27a; hsa-miR-103; hsa-miR-141; hsa-miR-92a; hsa-miR-22; hsa-miR-29b; hsa-miR-210; hsa-miR-331; hsa-miR-191; hsa-miR-425; hsa-miR-200c; hsa-miR-30e-5p; hsa-miR-133a; hsa-miR-30a; hsa-miR-222; hsa-miR-1; hsa-miR-145; hsa-miR-486-5p; hsa-miR-19b; hsa-miR-205; hsa-miR-31; hsa-miR-155; hsa-miR-206; hsa-miR-99a; and hsa-miR-146b-5p; andnormalizing said expression level to obtain a normalized expression level;wherein a normalized expression level of hsa-miR-93; hsa-miR-106b; hsa-miR-21; hsa-miR-449a; hsa-miR-182; hsa-miR-27a; hsa-miR-103; hsa-miR-141; hsa-miR-92a; hsa-miR-22; hsa-miR-29b; hsa-miR-210; hsa-miR-331; hsa-miR-191; hsa-miR-425; and hsa-miR-200c is positively associated with an increased risk of recurrence; andwherein a normalized expression level of hsa-miR-30e-5p; hsa-miR-133a; hsa-miR-30a; hsa-miR-222; hsa-miR-1; hsa-miR-145; hsa-miR-486-5p; hsa-miR-19b; hsa-miR-205; hsa-miR-31; hsa-miR-155; hsa-miR-206; hsa-miR-99a; and hsa-miR-146b-5p is negatively associated with an increased risk of recurrence.
  • 19. The method of claim 18, further comprising measuring an expression level of at least one gene in said biological sample.
  • 20. The method of claim 19, wherein the at least one gene is a gene selected from Tables 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B, 7A, 7B, 8A, 8B, 10A, or 10B, or genes that co-express with the at least one gene; wherein an expression level of any gene in Tables 3A, 4A, 5A, 6A, 7A, 8A, and 10A is positively associated with an increased risk of recurrence, andwherein an expression level of any gene in Tables 3B, 4B, 5B, 6B, 7B 8B, and 10B is negatively associated with a increased risk of recurrence.
Parent Case Info

This application claims the benefit of priority to U.S. Provisional Application Nos. 61/368,217, filed Jul. 27, 2010; 61/414,310, filed Nov. 16, 2010; and 61/485,536, filed May 12, 2011, all of which are hereby incorporated by reference.

Provisional Applications (3)
Number Date Country
61368217 Jul 2010 US
61414310 Nov 2010 US
61485536 May 2011 US