Method for using high capacity unsupported regenerable CO.sub.2 sorbent

Information

  • Patent Grant
  • 5427751
  • Patent Number
    5,427,751
  • Date Filed
    Monday, June 28, 1993
    31 years ago
  • Date Issued
    Tuesday, June 27, 1995
    29 years ago
Abstract
A technique for preparing an unsupported, high capacity CO.sub.2 sorbent. The sorbent is comprised of silver carbonate, alkali metal silicate and alkaline earth metal salt binders for structural integrity, and alkali metal carbonate for CO.sub.2 sorption promotion. The sorbent disclosed in this invention has a high silver oxide density, consumes minimum volume, exhibits high CO.sub.2 absorption rates, and resists dusting and degradation for at least 50 absorption/desorption cycles.
Description

TECHNICAL FIELD
This invention relates to the preparation of a sorbent, and especially to the preparation of an unsupported, high capacity, regenerable carbon dioxide sorbent.
BACKGROUND ART
Regenerable solid metal oxide carbon dioxide (CO.sub.2) sorbents can be produced via paste extrusions and pelletization methods. However, the cyclical life of these regenerable CO.sub.2 sorbents is limited. Cyclical absorption and desorption operations of solid metal oxide regenerable CO.sub.2 sorbents cause volume changes which result in particle deterioration and breakage; "dusting". This eventually leads to increased sorbent bed pressure drop; resulting in higher power requirements. It is common knowledge in the art that the cyclical life of many regenerable metal oxide sorbents can be increased by the addition of binders or by depositing the active ingredients of the sorbents on inactive supports, such as porous ceramics or carbons, to impart strength and provide high gas/solid contact areas. However, the use of supports and high binder concentrations is undesirable in applications where high CO.sub.2 loading densities, in addition to weight and power considerations, are crucial factors.
What is needed in the art is a regenerable CO.sub.2 sorbent which provides high loading densities, structural integrity, and high rates of CO.sub.2 sorption.
DISCLOSURE OF INVENTION
This invention discloses a regenerable carbon dioxide (CO.sub.2) sorbent, a process for producing said regenerable CO.sub.2 sorbent. The sorbent consists of pellets comprised of silver carbonate, binders, and a CO.sub.2 sorption promoter, and is prepared by mixing silver carbonate pellets with a alkali metal silicate and alkaline earth metal salt binders, and an alkali metal carbonate CO.sub.2 sorption promoter.
The foregoing and other features and advantages of the present invention will become more apparent from the following description and accompanying drawings.





BEST MODE FOR CARRYING OUT THE INVENTION
The preparation of the sorbent in the present invention consists of forming silver carbonate into pellets of varying shapes, which are held together by electrostatic forces, and contacting these pellets with an aqueous solution containing alkali metal silicate and alkali metal carbonate. The pellets are dried to remove excess solvent, and are contacted with a soluble alkaline earth metal salt which forms an additional external coating; further enhancing pellet strength. Note, heat and vacuum can be applied to accelerate drying.
An aqueous solution is prepared for contact with silver carbonate by dissolving alkali metal silicate and alkali metal carbonate in a solvent. The solution is intimately contacted with the silver carbonate, causing the alkali metal carbonate to impregnate the pellet, and the alkali metal silicate and silver carbonate to react forming a silicate coating. The intimate contact can be accomplished by any method which provides gentle tumbling of the pellets, such as a rotary tumbler, or other suitable mixing device known in the art. The pellets are then dried; any method which will insure uniform deposition of the alkali metal silicate and alkali metal carbonate can be utilized, such as a rotary evaporator. A solution of alkaline earth metal salt is prepared and intimately contacted with the dried pellets, as described above. The pellets are again dried, and sieved to remove dust and fines. Once this is complete, the pellets are heated to a temperature sufficient to convert the silver carbonate to silver oxide; liberating CO.sub.2.
The preferred solvent is water, although it is possible to utilize any solvent which is inert with relation to the components of the sorbent.
The silver carbonate pellets can either be purchased or fabricated from powder via techniques conventionally known in the art, such as utilizing pelletizers or tablet presses. The pellet size, limited by system pressure drop considerations, typically ranges from about 0.30 mm to about 3.00 mm, with a pellet, size between about 0.60 mm to about 1.50 mm preferred for closed system applications.
The preferred alkaline metal silicates include sodium and potassium silicate, and mixtures thereof, although it is feasible to utilize other alkali metal silicates, which are soluble in the selected solvent. The silicate forms a thin exterior coating which imparts strength to the pellet structure. The desirable amount of silicate is determined via a balance between the optimum structural integrity and maximum reaction rates. Large amounts of silicate impart strength, but also clog the pores reducing sorption rates. Approximately 3.0 wt % to about 8.0 wt % silicate is preferred, with about 5.0 wt % especially preferred.
Alkali metal carbonates, such as carbonated of cesium, potassium, and sodium, and mixtures thereof, distribute throughout the pellet's interior structure and serve as a CO.sub.2 sorption promoters. As is well known in the art, the high pH associated with alkali metal carbonates enhances the CO.sub.2 sorption rate. Since silver oxide has only a moderately alkaline pH, approximately 10.2, the addition of the alkali metal carbonate significantly increases the pellet's alkalinity; enhancing the rate of CO.sub.2 sorption. An alkali metal carbonate wt % of between about 8.0 wt % and about 20.0 wt % is preferred, with about 10.0 wt % especially preferred.
The alkaline earth metal salt binder concentration is preferably between about 2.0 wt % to about 5.0 wt %, with about 3.0 wt % especially preferred. As with the alkali metal silicate, factors such as structural integrity and sorption rates must be taken into consideration when determining the amount of alkaline earth metal salt binder to be utilized. Various alkaline earth metal salt binders can be utilized, with nitrates and chlorides of calcium, magnesium, and barium, and mixtures thereof preferred; such as calcium chloride, magnesium chloride, barium nitrate, calcium nitrate, among others.
The wt % of silver carbonate, alkali metal silicate, alkali metal carbonate, and alkaline earth metal salt to utilized are determined by the desired wt % of each in the final product. Any solvent used in the production process is evaporated.
The prepared sorbent, once having been screened to remove any dust and fines, can be loaded into a reactor for the removal of CO.sub.2 from a gaseous stream, typically air. The sorbent is then activated for CO.sub.2 sorption by heating it to temperatures sufficient of convert the silver carbonate to silver oxide. Typically these temperatures will be about 160.degree. C. to about 220.degree. C. Note, temperatures above about 250.degree. C. can irreversibly damage the silver oxide sorption abilities. After cooling to near ambient temperatures, the sorbent is capable of removing CO.sub.2. For example, air in a closed environment is passed through the reactor where the alkali metal carbonate reacts with the CO.sub.2 and water in the air to form the bicarbonate ion. The silver oxide then reacts with the bicarbonate ion to form silver carbonate, alkali metal carbonate, and water; leaving the alkali metal carbonate uninhibited from continuing to remove carbon dioxide from the air stream.
Once the silver oxide content is converted to the carbonate form, the reactor bed loses its CO.sub.2 sorption capabilities and is ready for regeneration. Regeneration consists of heating the sorbent bed to a temperature sufficient to cause CO.sub.2 liberation; converting the silver carbonate to silver oxide. Typically temperatures between about 160.degree. C. to about 0.degree. C. are sufficient for CO.sub.2 liberation.
Since the sorbent is unsupported, no inert support is utilized, it contains a higher silver oxide density than the prior art. Also, due to the binder coating, the sorbent resists dusting and degradation for at least 50 absorption/desorption cycles; while other regenerable metal oxide sorbents, known in the art, begin dusting in the very early cycles, if not immediately.
The following is a generic method which can be utilized to produce a carbon dioxide sorbent comprised of: 2.0 wt % to 5.0 wt % calcium nitrate, 3.0 wt % to 5.0 wt % sodium silicate, 10.0 wt % to 20.0 wt % potassium carbonate, and 70.0 wt % to 85.0 wt % silver carbonate.
1. The silver carbonate powder pelletized in a rotating disk agglomerator, and sieved to provide between 0.60 mm to 1.40 mm diameter pellets.
2. A sodium silicate/potassium carbonate solution is mixed with the pellets. To insure uniform coating, a rotating flask is utilized. The aqueous solution is added at a level that provides 3.0 to 5.0 wt % sodium silicate and 10.0 to 20.0 wt % of the potassium carbonate to the pellet. The silicate uniformly concentrates on the exterior surface of the gently tumbling pellets and serves to enhance the structural integrity of the pellet. The potassium carbonate is uniformly distributed within the pellet and serves to enhance the rate of CO.sub.2 sorption.
3. The excess aqueous solvent is evaporated from the solution/pellet mixture by using a rotating vacuum flash evaporator and applying heat to the mixture to a temperature level ranging from 50.degree. C. to 90.degree. C. Use of the rotating flash evaporator insures that the sodium silicate and potassium carbonate are uniformly deposited.
4. Calcium nitrate, to provide 2.0 wt % to 5.0 wt %, is then added as in step 2 to further enhance the structural integrity of the pellet. The wetted pellets are dried as in step 3.
5. The coated/impregnated pellets are sieved prior to use to remove fines and dust.
6. The pellets are packed within a reactor. The reactor is heated to a temperature level between 160.degree. C. to 220.degree. C. to convert the silver carbonate to silver oxide. An air purge flow through the bed assists in the removal of the CO.sub.2 and water released from the pellets. After cooling the beds to near ambient conditions, the sorbent is ready to remove CO.sub.2. This procedure is repeated when it is required to regenerate the CO.sub.2 sorption capabilities of the sorbent. Pellets prepared by this example have been shown to have CO.sub.2 loading densities ranging from about 12.0 to 15.0 lbs/ft.sup.3 ; between about 0.274 to about 0.340 moles/ft.sup.3.
This invention relates to the production of a regenerable CO.sub.2 sorbent capable of high CO.sub.2 loading densities, and relatively devoid of the low CO.sub.2 sorption rates and dusting problems which plague the art of regenerable metal oxide CO.sub.2 sorbents. Since this sorbent doesn't require a support, contains a relatively low binder content, and has a high metal oxide density, it consumes minimum volume; making it ideal for closed environmental applications.
Although this invention has been shown and described with respect to detailed embodiments thereof, it will be understood by those skilled in the art that various changes in form and detail thereof may be made without departing from the spirit and scope of the claimed invention.
Claims
  • 1. A method for utilizing a regenerable metal oxide CO.sub.2 sorbent, comprising the steps of:
  • (a) loading a sorbent in a reactor to form a sorbent bed, wherein the sorbent loaded in the reactor is produced by a process comprising the steps of:
  • (1) pelletizing silver carbonate, wherein pellets of silver carbonate are formed,
  • (2) preparing an aqueous solution of alkali metal silicate and alkali metal carbonate,
  • (3) contacting the silver carbonate pellets with the alkali metal silicate/alkali metal carbonate aqueous solution, thereby forming silicate coated, alkali metal impregnated silver carbonate pellets,
  • (4) drying the silicate coated, alkali metal carbonate impregnated silver carbonate pellets,
  • (5) preparing an aqueous solution of alkaline earth metal salt,
  • (6) contacting the silicate coated, alkali metal carbonate impregnated silver carbonate pellets with the alkaline earth metal salt aqueous solution, thereby forming an alkaline earth metal salt coating on the silicate coated, alkali metal carbonate impregnated silver carbonate pellets,
  • (7) drying the alkaline earth metal salt/silicate coated, alkali metal carbonate impregnated silver carbonate pellets, and
  • (8) heating the pellets from step 7 to a temperature sufficient to convert the silver carbonate to silver oxide to form a silver oxide containing sorbent bed;
  • (b) passing a gaseous stream containing CO.sub.2 and water over the silver oxide containing sorbent bed, under conditions sufficient to sorb CO.sub.2.
  • 2. The method of claim 1 wherein the sorbent bed is heated to between about 160.degree. C. to about 220.degree. C. in step 8.
  • 3. The method of claim 1 wherein the alkali metal silicate is selected from the group consisting of sodium silicate, potassium silicate, and mixtures thereof.
  • 4. The method of claim 1 wherein the alkali metal carbonate is selected from the group consisting of cesium carbonate, potassium carbonate, sodium carbonate, and mixtures thereof.
  • 5. The method of claim 1 wherein the alkaline earth metal salt is selected from the group consisting of calcium chloride, magnesium chloride, barium chloride, calcium nitrate, magnesium nitrate, barium nitrate and mixtures thereof.
Parent Case Info

This is a continuation of application Ser. No. 07/763,858 filed on Sep. 23, 1991, now abandoned, which was a divisional of application Ser. No. 07/490,016 filed Mar. 7, 1990 now U.S. Pat. No. 5,079,209.

US Referenced Citations (8)
Number Name Date Kind
1207273 Cadman Dec 1916
3232028 McDonald et al. Feb 1966
3489693 Bovard Jan 1970
3557011 Colombo et al. Jan 1971
4407723 MacGregor et al. Oct 1983
5045295 Tannous et al. Sep 1991
5079209 Nalette et al. Jan 1992
5214019 Nalette et al. May 1993
Non-Patent Literature Citations (2)
Entry
Colombo, G. V. "Study of CO.sub.2 Sorbents for Extravehicular Activity" NASA Paper CR114632, published Jul. 1973.
Nacheff, M. S., et al. "Metal Oxide Regenerable Carbon Dioxide Removal System for an Advanced Portable Life Support System", SAE Technical Paper Series Paper #891595, published 1989.
Divisions (1)
Number Date Country
Parent 490016 Mar 1990
Continuations (1)
Number Date Country
Parent 763858 Sep 1991