The present invention relates generally to geostatistical modeling and more particularly to geostatistical modeling using clustering techniques.
Geostatistical modeling of permeability may utilize geostatistical methods that are based on porosity and permeability data, and particularly the joint distribution of porosity vs. permeability. However, frequently the data are sparse and therefore the joint distribution is underdetermined. Where data are sparse, the distribution will not be smooth, and a resulting model will exhibit sawtooth fluctuations. Smoothing algorithms have been suggested in order to reduce the problem of sawtooth fluctuations, but where the smoothing algorithm is not carefully selected, the statistics of the underlying data may not be reproduced in the smoothed data, or other constraints may be violated, as described for example by Xu and Journel, “Histogram and Scattergram Smoothing Using Convex Quadratic Programming,” Mathematical Geology, vol. 27, No. 1, 1995, 83-103.
An aspect of an embodiment of the present invention includes a method for modeling a pair of related properties of a subsurface region including obtaining data representative of the properties of the subsurface region, applying weights to the data, selecting parameters for the modeling, the parameters including a maximum number of clusters, a random seed and a number of points in an output cloud, solving for a number and location of cluster centers, covariances and probabilities for each cluster by use of a maximum-likelihood algorithm to produce a maximum-likelihood model, and sampling from the maximum-likelihood model with a probability given by a joint multi-variate Gaussian distribution.
An aspect of an embodiment of the invention further includes modeling the porosity axis as one of a variable density and a uniform density, the selected density depending on a binning method to be applied to the cloud transformation.
An aspect of an embodiment may include a system for performing any of the foregoing methods.
An aspect of an embodiment of the present invention includes a system including a data storage device and a processor, the processor being configured to perform the foregoing method.
Aspects of embodiments of the present invention include computer readable media encoded with computer executable instructions for performing any of the foregoing methods and/or for controlling any of the foregoing systems.
Other features described herein will be more readily apparent to those skilled in the art when reading the following detailed description in connection with the accompanying drawings, wherein:
a and 2b are a pair of porosity-permeability plots having a logarithmic vertical scale, wherein
a and 3b are a pair of porosity-permeability plots having a logarithmic vertical scale, wherein
a and 4b are a pair of porosity-permeability plots having a logarithmic vertical scale, wherein
a and 5b are a pair of porosity-NPHI plots, wherein
a and 6b are a pair of porosity-permeability plots having a logarithmic vertical scale, wherein
a and 7b are a pair of porosity permeability plots having a logarithmic vertical scale, wherein
A method of modeling related properties of a subsurface region, for example porosity and permeability, includes modeling a sparse data set as a mixture of Gaussian distributions, each with a cluster center in permeability-porosity space using permeability-porosity covariance. A number and location of cluster centers as well as covariances and probabilities of each cluster are derived using an interative maximum-likelihood algorithm.
In one embodiment, porosity-permeability points are randomly sampled from the maximum-likelihood model with a probability given by the joint multi-variate Gaussian distribution.
In another embodiment, a porosity axis is modeled as having a variable density. This approach may be useful in the case where a cloud transform simulation is to be applied in which a specified number of data points are to be contained in each bin. In another embodiment, a post-processing step may be applied to create a cloud having a uniform density along the porosity axis. This approach may be useful where the number of bins is to be specified and each bin is to be equally sized.
Six examples of transformed data in accordance with embodiments of the invention are illustrated in the paired
a shows an initial data set represented in a plot in which the permeability is log plotted while the porosity is plotted linearly. As will be appreciated, it may be useful to use a log-log plot where porosity has a larger variation, and it may be appropriate not to transform either porosity or permeability. In the case represented in
b illustrates an extrapolated conditional probability distribution for the data of
Similar results are illustrated in
a uses neutron permeability (NPHI) rather than permeability data. Because the variation in NPHI data as measured for field four is relatively small (range between 0-0.4), it is not log transformed as was done in
As will be appreciated, the method as described herein may be performed using a computing system having machine executable instructions stored on a tangible medium. The instructions are executable to perform each portion of the method, either autonomously, or with the assistance of input from an operator.
In an embodiment, a system for modeling a pair of related properties of a subsurface region includes a data storage device having machine readable data representative of the properties of the subsurface region, and a processor in communication with the data storage device. The processor is configured and arranged to: apply weights to the data; select parameters for the modeling, the parameters including a maximum number of clusters, a random seed and a number of points in an output cloud; solve for number and location of cluster centers, covariances and probabilities for each cluster by use of a maximum-likelihood algorithm to produce a maximum-likelihood model; and sample from the maximum-likelihood model with a probability given by a joint multi-variate Gaussian distribution.
In an embodiment, the system includes structures for allowing input and output of data, and a display that is configured and arranged to display the intermediate and/or final products of the process steps. A method in accordance with an embodiment may include an automated selection of a location for exploitation and/or exploratory drilling for hydrocarbon resources. Where the term processor is used, it should be understood to be applicable to multi-processor systems and/or distributed computing systems.
Those skilled in the art will appreciate that the disclosed embodiments described herein are by way of example only, and that numerous variations will exist. The invention is limited only by the claims, which encompass the embodiments described herein as well as variants apparent to those skilled in the art. In addition, it should be appreciated that structural features or method steps shown or described in any one embodiment herein can be used in other embodiments as well.
This Application is based upon and claims the benefit of U.S. Provisional Application 61/560,233 filed Nov. 15, 2011, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61560233 | Nov 2011 | US |