The present invention relates to a method for using an upper nozzle, and more particularly to a method for using an upper nozzle formed with a bore for allowing molten steel to flow therethrough and configured to be fitted into a well block attached to a bottom of a tundish, wherein the upper nozzle comprises a gas-permeable refractory member defining therein the bore, in order to suppress adhesion of inclusions and metals on a wall surface defining the bore.
When an upper nozzle formed with a bore for allowing molten steel to flow therethrough is used in a state in which it is fitted into a well block of a tundish, inclusions, such as alumina cluster, and metals are apt to adhere to a wall surface defining the bore. As a result, a flow passage in the bore is narrowed. In this case, it is necessary to remove the adhered substances by cleaning the inner hole using a bar or the like, or using an oxygen lance, thereby causing a hindrance to casting operation. In some cases, the bore is completely clogged by the adhered substances, thereby falling into a situation where it becomes impossible to continue the casting operation. Therefore, various techniques for preventing the occurrence of such adhesion have heretofore been invented and proposed.
For example, the following Patent Document 1 proposes an upper nozzle formed with a bore having a shape capable of creating a less energy loss or smooth (constant) molten steel flow to suppress the occurrence of the adhesion.
The following Patent Document 2 proposes a continuous casting insert nozzle (upper nozzle) formed with a bore for allowing molten steel to flow therethrough, wherein the insert nozzle comprises a porous refractory member (gas-permeable refractory member) defining the bore, thereby fulfilling a function of injecting inert gas into the bore.
The inventors of the present application who are also inventors of the upper nozzle disclosed in the Patent Document 1 tried to add a gas injection function as disclosed in the Patent Document 1 to the upper nozzle disclosed in the Patent Document 1, with a view to taking advantage of the excellent bore shape of the upper nozzle disclosed in the Patent Document 1 and further suppressing the occurrence of the adhesion.
However, even when the gas injection function was simply added to the upper nozzle disclosed in the Patent Document 1, the adhesion of inclusions and metals to a part of the bore-defining wall surface still occurred, supposedly due to variations in flow of molten steel and flow of injected gas, and kept growing, resulting in blocking of a molten metal flow passage, in some cases. Thus, there remains a need for further improvement, in regard to suppression of the occurrence of the adhesion.
Therefore, in an upper nozzle formed with a bore having a shape capable of creating a less energy loss or smooth (constant) molten steel flow to suppress the occurrence of adhesion of inclusions and metals in molten steel, and configured to additionally have a gas injection function, the present invention addresses a technical problem of providing a method of using the upper nozzle in such a manner as to allow the upper nozzle to further suppress the occurrence of the adhesion.
According to one aspect of the present invention, there is provided a method of using an upper nozzle formed with a bore for allowing molten steel to flow therethrough, and configured to be fitted into a well block attached to a bottom of a tundish and to satisfy the following condition (1), wherein the upper nozzle comprises a gas-permeable refractory member defining therein the bore. The method comprises using the upper nozzle in such a manner as to satisfy the following conditions (2) and (3): (1) a cross-sectional shape of a wall surface defining the bore, taken along an axis of the bore, comprises a curve defined to have continuous differential values of r (z) with respect to z, between two curves represented by the following respective formulas: log(r (z))=(1/1.5)×log((H+L)/(H+z))+log(r (L)); and log(r (z))=(1/6)×log((H+L)/(H+z))+log(r (L)), where: L is a length of the upper nozzle; H is a calculational hydrostatic head height; and r (z) is an inner radius of the bore at a position downwardly away from an upper edge of the bore by a distance z, wherein: the calculational hydrostatic head height H is represented by the following formula: H=((r (L)/r (0))n−L)/(1−(r (L)/r (0))n) (n=1.5 to 6); and the inner radius r (0) of the upper edge of the bore is equal to or greater than 1.5 times the inner radius r (L) of a lower edge of the bore; (2) RG≦4.3×VL, where RG is a gas rate defined as a volume ratio of a flow rate QG (Nl/s) of injection gas to a flow rate QL (l/s) of molten steel flowing through the bore (RG=(QG/QL)×100 (%)), and VL (m/s) is a flow speed of the molten steel at a lower edge of the upper nozzle; and (3) a gas injection amount from each of five regions of the bore-defining wall surface evenly divided in a height direction of the upper nozzle is equal to or less than 60% of a total gas injection amount.
The present invention will be described in detail below.
The upper nozzle of the present invention is premised on having the bore shape disclosed in the Patent Document 1, i.e., satisfying the above condition (1), so as to create a less energy loss or smooth (constant) molten steel flow. In the condition (1), the “curve defined between two curves represented by the following respective formulas: log(r (z))=(1/1.5)×log((H+L)/(H+z))+log (r (L)); and log(r (z))=(1/6)×log((H+L)/(H+z))+log (r (L))” is typically a curve represented by the following formula 1:
log(r(z))=(1/n)×log((H+L)/(H+z))+log(r(L))(n=1.5 to 6) Formula 1
With reference to
In the condition (1), the bore-defining wall surface 7 illustrated in
The cross-sectional shape of the bore-defining wall surface of the upper nozzle is based on an idea that a less energy loss or smooth (constant) molten steel flow is created by stabilizing a pressure distribution on the bore-defining wall surface in a height direction of the upper nozzle, as described below.
Although an amount of molten steel flowing through the bore of the upper nozzle is controlled by a sliding nozzle unit installed beneath the upper nozzle, energy for providing a flow speed of the molten steel is fundamentally a hydrostatic head of molten steel in the tundish. Thus, the flow speed v (z) of the molten steel at a position downwardly away from an upper edge of the bore (the upper edge of the upper nozzle) by a distance z is expressed as follows:
v(z)=k′(2g(H′+z))1/2 Formula 2,
where: g is a gravitational acceleration; H′ is a hydrostatic head height of molten steel; and k′ is a flow rate coefficient.
Meanwhile, during casting operation, an amount of molten steel in the tundish is kept approximately constant, i.e., the hydrostatic head height of molten steel is constant. However, it is known that molten steel located adjacent to a bottom surface of the tundish flows into the upper nozzle, instead of direct flow of molten steel located adjacent to a molten-steel level, into the upper nozzle. That is, it is effective to use, as the hydrostatic head height, a calculational hydrostatic head H having a large influence on a flow of molten steel from a vicinity of the bottom surface of the tundish adjacent to the upper edge of the upper nozzle, in place of an actual hydrostatic head H′ of molten steel.
Thus, the formula 2 can be converted as follows: v (z)=k(2 g (H+z))1/2, where k is a flow rate coefficient when using the calculational hydrostatic head H.
Then, a flow rate Q of molten steel flowing through the bore of the upper nozzle is a product of the flow speedy and a cross-sectional area A of the bore. Thus, the flow rate Q is expressed as follows:
Q=v(L)×A(L)=k(2g(H+L))1/2×A(L),
where: L is a length of the upper nozzle; v (L) is a flow speed of molten steel at a lower edge of the bore; and A (L) is a cross-sectional area of the lower edge of the bore.
The flow rate Q is constant in a cross section taken along a plane perpendicular to an axis of the bore at any position within the bore. Thus, a cross-sectional area A (z) at a position downwardly away from the upper edge of the bore by the distance z is expressed as follows:
A(z)=Q/v(z)=k(2g(H+L))1/2×A(L)/k(2g(H+z))1/2
Then, each of the right-hand and left-hand sides of this formula is divided by A (L) to obtain the following formula:
A(z)/A(L)=((H+L)/(H+z))1/2
In this formula, A (z) and A (L) are expressed as follows: A (z)=πr (z)2, and A (L)=πr (L)2, where n is a ratio of the circumference of a circle to its diameter. Thus, the above formula is transformed as follows:
A(z)/A(L)=πr(z)2/πr(L)2=((H+L)/(H+z))1/2
r(z)/r(L)=((H+L)/(H+z))1/4 Formula 3
Thus, the inner radius r (z) of the bore at an arbitrary position thereof is expressed as follows:
log(r(z))=(1/4)×log((H+L)/(H+z))+log(r(L)) Formula 4
The energy loss can be minimized by forming the bore-defining wall surface into a cross-sectional shape satisfying this condition (formula 4).
Meanwhile, an inner radius of the lower edge (small-diameter end edge) of the bore of the upper nozzle is determined by a required throughput. On the other hand, an inner radius of the upper edge (large-diameter end edge) of the bore can be set to be equal to or greater than 1.5 times the inner radius of the small-diameter end edge of the bore to thereby suppress a rapid pressure change which would otherwise occur in a vicinity of the upper edge of the bore. This is because, if the inner radius of the large-diameter end edge of the bore is less than 1.5 times the inner radius of the small-diameter end edge of the bore, a pressure (energy) occurring at the upper edge of the upper nozzle (large-diameter end edge of the bore) is highly fluctuated, causing generation of turbulence. Preferably, the inner radius of the large-diameter end edge of the bore is equal to or less than 2.5 times the inner radius of the small-diameter end edge of the bore. This is because, if the inner radius of the large-diameter end edge of the bore is increased beyond the lower limit, the upper end an opening (size) of a well block will be unrealistically increased.
On the other hand, in accordance with the formula 3, a ratio of the inner radius of the large-diameter end edge to the inner radius of the small-diameter end edge of the bore is expressed as follows:
r(0)/r(L)=((H+L)/(H+0))1/4=1.5 to 2.5 Formula 5
This means that, when respective inner radii of the large-diameter end edge and the small-diameter end edge of the bore are determined, the calculational hydrostatic head height H can be derived. That is, the calculational hydrostatic head height H is expressed as follows:
H=((r(L)/r(0))4×L)/(1−(r(L)/r(0))4)
The formula 4 may be converted to log(r (z))=(1/n)×log((H+L)/(H+z))+log(r (L)). In this formula, even if n is a number other than 4, a smoother molten steel flow than ever before can be formed, as long as the upper nozzle is formed with a bore defined by a wall surface having a cross-sectional shape obtained by changing a value of n. This has been verified in the Patent Document 1.
Further, as regards the calculational hydrostatic head height H, the parameter n can also be applied to convert the above formula as follows:
H=((r(L)/r(0))n×L)/(1−(r(L)/r(0))n)
This has also been verified in the Patent Document 1.
That is, the formula 5 is converted as follows:
r(0)/r(L)=((H+L)/(H+0))l/n=1.5 to 2.5 Formula 6
Thus, if respective inner radii of the large-diameter end edge and the small-diameter end edge of the bore, and a ratio between the two inner radii, are determined, the calculational hydrostatic head height H in each value of n can be derived.
The above are the details of the condition (1) as the premise of the present invention. As a result of various researches based on this premise, the inventors found that turbulence in molten steel flowing through the bore of the tundish upper nozzle has a large influence on adhesion of inclusions and others on the bore-defining wall surface, and deeply relates to a flow rate of the molten steel and a flow rate of injection gas.
Now, a falling force FL of molten steel is represented by the following formula 7:
F
L
=Q
L
×V
L Formula 7,
where QL is a flow rate (liter (l)/s) of the molten steel, and VL is a flow speed (m/s) of the molten steel at the lower edge (z=L) of the upper nozzle.
Similarly, a rising force FG of injection gas is represented by the following formula 8:
F
G
=Q
G
×V
G Formula 8,
where QG is a flow rate (Normal liter (Nl)/s) of the injection gas, and VG is a rising speed (m/s) of a gas bubble.
It is considered that, in relation to collision between the molten steel falling force FL and the injection gas rising force FG, turbulence occurs in the bore of the upper nozzle. From the formulas 7 and 8, a condition causing the turbulence is expressed in the following formula 9:
F
G
>α×F
L Formula 9,
where α is a constant.
That is, when the injection gas rising force FG becomes strong above a certain level in terms of a ratio with respect to the molten steel falling force FL, turbulence occurs.
From the formulas 7, 8 and 9, the formula 9 is converted to (QG×VG)>α×(QL×VL), and the following formula 10 is derived:
Q
G
/Q
L>(α×VL)/VG Formula 10
Assuming that (QG/QL)×100=RG, and (α/VG)×100=β, RG is a volume ratio (%) of the injection gas flow rate QG (Nl/s) to the molten steel flow rate QL (l/s), i.e., a gas rate (%), and β is substantially a constant because the gas bubble rising speed VG is deemed to be approximately constant (VG=about 0.4 m/s) although it slightly changes depending on conditions such as a difference in bubble diameter of the injected gas. Thus, the formula 10 can be altered to the following formula 11:
R
G
>β×V
L Formula 11
The formula 11 represents the condition causing turbulence in the bore of the upper nozzle, and, conversely, the following formula 12 represents a condition for avoiding turbulence in the bore of the upper nozzle:
R
G
≦β×V
L Formula 12
In accordance with this theory, a tundish upper nozzle was subjected to a fluid analysis based on a computer simulation under various conditions. The computer simulation was carried out on an assumption that gas is evenly injected from the entire bore-defining wall surface in a height direction of the upper nozzle, and the injected gas undergoes an expansion to six times its original volume.
The computer simulation-based fluid analysis was performed using fluid analysis software (trade name “Fluent Ver. 6.3.26 produced by ANSYS, Inc.). Input parameters for the fluid analysis software are as follows:
In the same manner as that in
As with the CFD flow state in
As with the notation in Table 1, in
R
G(%)≦4.3×VL(m/s) Formula 13
This is the condition (2) in the present invention.
Preferably, a gas injection pressure is set to 0.05 MPa or more. If the gas injection pressure is less than 0.05 MPa, it becomes difficult to obtain a stable gas outflow state, and a gas-curtain effect based on injected gas becomes weaker, so that the effect of suppressing the occurrence of the adhesion is deteriorated.
A balanced distribution of a gas injection amount in a height direction of the bore of the upper nozzle will be described below.
On the other hand, the models (c), (d) and (e) in
Each of the models (a) to (e) in
Each of the models (a) to (e) in
In
Thus, it is assumed that no turbulence occurred as a result of avoiding local or intensive gas injection by setting the gas flow rate in each region to 60% or less.
The above analysis result shows that the gas injection amount from the bore-defining wall surface of the upper nozzle is preferably evenly set in the height direction of the upper nozzle, and, at least, a gas injection amount from each of five regions of the bore-defining wall surface evenly divided in the height direction of the upper nozzle is required to be equal to or less than 60% of the total gas injection amount. This is the condition (3) in the present invention.
In the present invention, as long as the above conditions (2) and (3) are satisfied, the gas-permeable refractory member may be configured to define the entire bore in the height direction as in the above models, or may be configured to define a part of the bore in the height direction. In either case, the tundish upper nozzle having the gas injection function can be produced by a well-known production method.
The present invention makes it possible to suppress adhesion of inclusions, such as alumina cluster, and metals, to the bore-defining wall surface of the upper nozzle. In addition, the present invention makes it possible to maintain a stable continuous casting operation without clogging of the bore of the upper nozzle to thereby avoid interruption of the casting operation and allow cast slab to ensure good quality with few defects so as to contribute to improvement in productivity, and others. Thus, the present invention has such great effects.
The present invention will be described below, based on Examples.
The present invention was applied to an actual tundish in a continuous casting facility. A result of the application will be described below. It should be noted that the following Inventive Examples are shown only by way of specific examples of the present invention, but the present invention is not limited thereto.
Table 2 presents a result of a test performed by using, in an actual tundish, an upper nozzle under conditions, in each of Inventive Examples and Comparative Examples.
The nozzle shape in each of Inventive Examples 1 to 4 and Comparative Examples 3 and 4 is the inventive shape illustrated in
In Inventive Examples 1 to 4, the nozzle shape is the inventive shape satisfying the condition (1), and each upper nozzle is used in such a manner as to satisfy the condition (2): RG≦4.3×VL (RG/VL≦4.3). Almost no or slight adhesion of inclusions and others was observed, and each upper nozzle had sufficient usable life.
On the other hand, in Comparative Example 1, the nozzle shape is the conventional shape which does not satisfy the condition (1), although the upper nozzle is used in such a manner as to satisfy the condition (2). In Comparative Example 2, the conditions (1) and (2) are not satisfied. In Comparative Examples 3 and 4, the condition (2) is not satisfied, although the condition (1) is satisfied. In all of Comparative Examples, significant adhesion of inclusions and others was observed, and each upper nozzle had short usable life.
As above, in Inventive Examples, the adhesion of inclusions and others could be suppressed, and the usable life can be increased 1.5 to 2 times or more.
Number | Date | Country | Kind |
---|---|---|---|
2012-157860 | Jul 2012 | JP | national |
2012-224458 | Oct 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2012/082181 | 12/12/2012 | WO | 00 |