Claims
- 1. A method for vaporizing a liquefied natural gas, recovering natural gas liquids from the liquefied natural gas, and conditioning the liquefied natural gas for delivery to a pipeline or for commercial use, the method comprising:a) vaporizing at least a major portion of a stream of the liquefied natural gas to produce an at least partially vaporized natural gas stream; b) fractionating the at least partially vaporized natural gas stream to produce a gas stream and a natural gas liquids stream; c) compressing the gas stream to increase the pressure of the gas stream by about 50 to about 150 psi to produce a compressed gas stream and cooling the vaporized stream by heat exchange with the stream of liquefied natural gas to produce a liquid stream; d) pumping the liquid stream to produce a high-pressure liquid stream at a pressure from about 800 to about 1200 psig; e) vaporizing the high-pressure liquid stream to produce a conditioned natural gas suitable for delivery to a pipeline or for commercial use; and f) recovering at least a portion of the natural gas liquids.
- 2. The method of claim 1 wherein the natural gas liquids comprise C2+ hydrocarbons.
- 3. A method for vaporizing a liquefied natural gas, recovering natural gas liquids from the liquefied natural gas, conditioning the liquefied natural gas for delivery to a pipeline or for commercial use and producing power, the method comprising:a) vaporizing at least a major portion of a stream of the liquefied natural gas to produce an at least partially vaporized natural gas stream; b) fractionating the at least partially vaporized natural gas stream to produce a gas stream and a natural gas liquids stream; c) compressing the gas stream to increase the pressure of the gas stream by about 50 to about 150 psi to produce a compressed gas stream and cooling the compressed gas stream by heat exchange with the stream of liquefied natural gas to produce a liquid stream; d) pumping the liquid stream to produce a high-pressure liquid stream at a pressure from about 800 to about 1200 psig; e) vaporizing the high-pressure liquid stream to produce a conditioned natural gas suitable for delivery to a pipeline or for commercial use; f) recovering at least a portion of the natural gas liquids; g) passing at least a one of a first portion and a second portion of a gas heat exchange fluid in heat exchange contact with at least one of the stream of liquefied natural gas and the high-pressure liquid stream to produce a liquid heat exchange fluid; h) pumping the liquid heat exchange fluid to produce a higher-pressure liquid heat exchange fluid; i) heating the higher-pressure liquid heat exchange fluid to vaporize the higher-pressure liquid heat exchange fluid to produce a higher-pressure gas heat exchange fluid; j) driving an expander and electric power generator with the higher-pressure gas heat exchange fluid to produce electric power and the gas heat exchange fluid; and k) recycling the gas heat exchange fluid to heat exchange with the at least one of the stream of liquefied natural gas and the high-pressure liquid stream.
- 4. The method of claim 3 wherein the first portion of the gas heat exchange fluid is passed in heat exchange contact with the liquefied natural gas and wherein the second portion of the gas heat exchange fluid is passed in heat exchange contact with the high pressure liquid stream.
- 5. The method of claim 3 wherein the higher-pressure liquid heat exchange fluid is at a pressure from about 250 to about 400 psig.
- 6. The method of claim 3 wherein the gas heat exchange fluid is at a temperature from about −70 to about −100° F.
- 7. A method for vaporizing a liquefied natural gas, recovering natural gas liquids from the liquefied natural gas and conditioning the liquefied natural gas for delivery to a pipeline or for commercial use, the method comprising:a) vaporizing at least a major portion of a stream of the liquefied natural gas to produce an at least partially vaporized natural gas stream; b) separating the at least partially vaporized natural gas stream into a gas stream and a liquid stream; c) compressing the gas stream to increase the pressure of the gas stream by about 50 to about 150 psi to produce a compressed gas stream; d) fractionating the liquid stream at a pressure greater than the pressure of the compressed gas stream to produce an overhead gas stream and a natural gas liquids stream; e) recovering at least a portion of the natural gas liquids; f) combining the overhead gas stream with the compressed gas stream to produce a combined gas stream; g) cooling the combined gas stream by heat exchange with the stream of liquefied natural gas to produce a liquid combined gas stream; h) pumping the liquid combined gas stream to produce a high-pressure liquid stream at a pressure from about 800 to about 1200 psig; and, i) vaporizing the high-pressure liquid stream to produce a conditioned natural gas suitable for delivery to a pipeline or for commercial use.
- 8. The method of claim 7 wherein the natural gas liquids are C2+ hydrocarbons.
- 9. The method of claim 7 wherein the conditioned natural gas stream is at a temperature from about 30 to about 50° F.
- 10. A method for vaporizing a liquefied natural gas, recovering natural gas liquids from the liquefied natural gas and conditioning the liquefied natural gas for delivery to a pipeline or for commercial use and electric producing power, the method comprising:a) vaporizing at least a major portion of a stream of the liquefied natural gas to produce an at least partially vaporized natural gas stream; b) separating the at least partially vaporized natural gas stream into a gas stream and a liquid stream; c) compressing the gas stream to increase the pressure of the gas stream by about 50 to about 150 psi to produce a compressed gas stream; d) fractionating the liquid stream at a pressure greater than the pressure of the compressed gas stream to produce an overhead gas stream and a natural gas liquid stream; e) recovering natural gas liquids; f) combining the overhead gas stream with the compressed gas stream to produce a combined gas stream; g) cooling the combined gas stream by heat exchange with the stream of liquefied natural gas to produce a liquid combined gas stream; h) pumping the liquid stream to produce a high-pressure liquid stream at a pressure from about 800 to about 1200 psig; i) vaporizing the high-pressure liquid stream to produce a conditioned natural gas suitable for delivery to a pipeline or for commercial use; j) passing at least one of a first portion and a second portion of a gas heat exchange fluid in heat exchange contact with at least one of the liquefied natural gas stream and the high-pressure liquid stream to produce a liquid heat exchange fluid; k) pumping the liquid heat exchange fluid to produce a high-pressure liquid heat exchange fluid; l) heating the higher-pressure liquid heat exchange fluid to a temperature to vaporize the higher-pressure liquid heat exchange fluid to produce a higher pressure gas heat exchange fluid; m) driving an expander and electric power generator with the higher-pressure heat exchange fluid to produce electric power and the gas heat exchange fluid; and, n) recycling the gas heat exchange fluid to heat exchange with the at least one of the liquefied natural gas stream and the high-pressure liquid stream.
- 11. The method of claim 10 wherein the first portion of the gas heat exchange in heat exchange contact with the liquefied natural gas and wherein the second portion of the gas heat exchange fluid is passed in heat exchange contact with the high-pressure liquid stream.
- 12. The method of claim 10 wherein the heat exchange fluid is ethane.
- 13. A system for vaporizing a liquefied natural gas stream, recovering natural gas liquids from the liquefied natural gas and conditioning the liquefied natural gas for delivery to a pipeline or for commercial use, the system comprising:a) a liquefied natural gas inlet line in fluid communication with a liquefied natural gas source and a first heat exchanger; b) a distillation column in fluid communication with the first heat exchanger and having a gas outlet and a natural gas liquids outlet; c) a compressor in fluid communication with the gas outlet and a compressed gas outlet; d) a line in fluid communication with the compressed gas outlet and the first heat exchanger; and e) a pump in fluid communication with the first heat exchanger and a second heat exchanger.
- 14. The system of claim 13 wherein the system further compresses a closed loop system in heat exchange contact with at least one of the second heat exchanger and a third heat exchanger in heat exchange contact with the liquefied natural gas stream and adapted to heat natural gas streams in the at least one of the second and third heat exchangers and produce electrical power.
- 15. The system of claim 14 wherein the closed loop system comprises a first closed loop system line in fluid communication with at least one of the second heat exchanger and the third heat exchanger and a closed loop system pump, a second closed loop system line in fluid communication with the closed loop system pump and a closed loop system heat exchanger adapted to heat a closed loop system heat exchange fluid, a third closed loop system line in fluid communication with the closed loop system heat exchanger and a turbo-expander, the turbo-expander being operatively connected to an electric power generator, and having an outlet, the outlet being in fluid communication with the first closed system line.
- 16. The system of claim 15 wherein the first closed loop system line is in fluid communication with both the second heat exchanger and the third heat exchanger.
- 17. A system for vaporizing a liquefied natural gas stream, recovering natural gas liquids from the liquefied natural gas and conditioning the liquefied natural gas for delivery to a pipeline or for commercial use, the system comprising:a) a liquefied natural gas inlet line in fluid communication with a liquefied natural gas source and a first heat exchanger having a heated liquefied natural gas outlet; b) a separator vessel in fluid communication with the first heat exchanger and having a separator gas outlet and a liquids outlet; c) a pump in fluid communication with the liquids outlet and having a high-pressure liquid outlet; d) a distillation column in fluid communication with the high-pressure liquid outlet from the pump and having an overhead gas outlet natural gas liquids outlet; e) a compressor in fluid communication with the separator gas outlet and a compressed gas outlet; f) a line in fluid communication with the compressed gas outlet and the overhead gas outlet to combine the compressed gas and the overhead gas to produce a combined stream and to pass the combined stream to the first heat exchanger to produce a high-pressure combined gas liquids stream; and having a high-pressure combined gas liquids outlet; and, g) a pump in fluid communication with the high-pressure combined gas liquids outlet and a second heat exchanger the second heat exchanger being adapted to at least partially vaporize the high-pressure combined gas liquids stream.
- 18. The system of claim 17 wherein the system further comprises a closed loop system in heat exchange contact with at least one of the second exchanger and a third heat exchanger in heat exchange contact with the liquefied natural gas stream and adapted to heat a natural gas stream in at least one of the second heat exchanger and third heat exchanger and produce electrical power.
- 19. The system of claim 18 wherein the closed loop system comprises a first closed loop system line in fluid communication with the second heat exchanger and a closed loop system pump, a second closed loop system line in fluid communication with the closed loop system pump and a closed loop system heat exchanger adapted to heat a closed loop system heat exchanger fluid, a third closed loop system line in fluid communication with the closed loop system heat exchanger and a turbo-expander, the turbo-expander being operatively connected to an electric power generator, and having an outlet, the outlet being in fluid communication with the first closed loop system line.
- 20. The system of claim 19 wherein the system further comprises a third heat exchanger in fluid communication with the second heat exchanger to vaporize the high-pressure combined gas liquid stream.
RELATED APPLICATIONS
This application is entitled to and hereby claims the benefit of the filing date of U.S. Provisional Application No. 60/379,687 filed May 13, 2002 entitled “Revaporization of LNG in a Receiving Terminal While Conditioning Gas Quality and Recovering Power” by Daniel G. McCartney.
US Referenced Citations (3)
Number |
Name |
Date |
Kind |
3282060 |
Hays |
Nov 1966 |
A |
3420068 |
Petit |
Jan 1969 |
A |
4753667 |
O'Connell et al. |
Jun 1988 |
A |
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/379687 |
May 2002 |
US |