This invention relates to smart batteries for information handling systems and, more particularly, to failure detection in such smart batteries.
As the value and use of information continues to increase, individuals and businesses seek additional ways to process and store information. One option available to users is information handling systems. An information handling system generally processes, compiles, stores, and/or communicates information or data for business, personal, or other purposes thereby allowing users to take advantage of the value of the information. Because technology and information handling needs and requirements vary between different users or applications, information handling systems may also vary regarding what information is handled, how the information is handled, how much information is processed, stored, or communicated, and how quickly and efficiently the information may be processed, stored, or communicated. The variations in information handling systems allow for information handling systems to be general or configured for a specific user or specific use such as financial transaction processing, airline reservations, enterprise data storage, or global communications. In addition, information handling systems may include a variety of hardware and software components that may be configured to process, store, and communicate information and may include one or more computer systems, data storage systems, and networking systems.
Some information handling systems, such as laptop computer systems, have the ability to utilize one or more batteries as a power source. In addition, these same systems can also often utilize power obtained through a power converter coupled to a power grid, such as an alternating-current-to-direct-current (AC/DC) converter plugged into a wall socket. When the system is plugged into the wall, the battery in the system can be charged at the same time. As battery technology has improved, batteries have become more intelligent in that they include circuitry to manage their operations and to report conditions about the battery operations to external circuitry, such as microprocessors. These intelligent batteries are often called “smart” batteries. Many smart batteries have the ability to monitor the charging process, and many batteries have failure detection mechanisms to determine when the battery is malfunctioning. To protect users, the smart batteries can be configured to deactivate themselves permanently if a dangerous malfunction has been detected.
Certain current battery packages rely upon a charge field-effect-transistor (C-FET) and a discharge FET (D-FET) to control the normal charge and discharge function of the battery. Battery protect is typically governed by the battery management unit (BMU). In the event of a battery system failure detection (such as over-voltage charging or overloading) or a battery cell failure detection, the BMU in prior these battery systems would either temporarily disable the C-FET and D-FET to disconnect the battery from the system or permanently disable the battery by blowing a disable fuse.
One significant problem associated with this BMU operation is the possibility that a battery will be disabled due to a false detection of a battery failure. This false detection can lead to significant numbers of field returns of operational batteries that have been disabled due to false failure detections. For example, a false detection of a battery failure can often be the result of temporary environmental events, such as strong electro-magnetic interference (EMI), radio-frequency (RF) signals and/or other electro-magnetic (EM) influences, that cause a small charging current to be detected when none is supposed to exist, such as when the battery is in sleep or discharge mode. When the BMU detects a charging current that was supposed to be zero in such circumstances, the BMU will often place the battery into permanent failure mode due to this non-zero condition being deemed a critical protection failure. A charging current when no charging current should exist is often associated with an internal battery failure that could cascade into a catastrophic event, such as a battery short or explosion. As such, the BMU will disable the battery to protect the user. However, if the current were due to a temporary EM event as described above, the disabling of the battery would be unnecessary.
To address this problem, prior battery systems have attempted various solutions. One solution is to increase the current protection threshold for when an improper charging current will be deemed to trigger a possibility for catastrophic failure. Another solution is to extend the response time from the time when battery initially detects this problem to the time battery BMU finally decides to put the battery to permanent failure mode. Both of these solutions reduce the chance that the battery will be disabled due to EM influences. However, although these solutions do improve battery performance, these solutions also sacrifice safety protections.
Another proposed solution is to add a switch in the battery charging and discharging path and to detect the amount of time an abnormal current lasts. With the added switch turned off, if an abnormal current goes away within a preset time limit, which can be BIOS controlled, the failure can be considered to be temporary. In this circumstance, the battery will not be permanently disabled, and the added switch will be turned on again. This solution, however, has cost and power disadvantages. In particular, this solution increases the cost of the battery pack by requiring an additional switch and increases power dissipation inside the battery thereby increasing internal pack temperatures and reducing the battery capacity available to the system.
The present invention provides a method for verifying charging failures for smart batteries by measuring input charging voltage and associated systems. In one embodiment, the present invention, as described in more detail below, determines whether or not a charging current is indicative of a battery failure by utilizing an analog-to-digital (A/D) port to measure the input charging voltage. As long as the measured input charging voltage is below the cell pack voltage or some set voltage value, whichever is higher, the BMU considers a charging current detection to be a false failure indication. If the measured charging voltage is above the cell pack voltage or a set voltage value, whichever is lower, the BMU considers the charging current detection to be a positive failure indication. The BMU can then disable the battery or implement other verification steps before disabling the battery, as desired.
It is noted that the appended drawings illustrate only exemplary embodiments of the invention and are, therefore, not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
For purposes of this disclosure, an information handling system may include any instrumentality or aggregate of instrumentalities operable to compute, classify, process, transmit, receive, retrieve, originate, switch, store, display, manifest, detect, record, reproduce, handle, or utilize any form of information, intelligence, or data for business, scientific, control, or other purposes. For example, an information handling system may be a personal computer, a server computer system, a network storage device, or any other suitable device and may vary in size, shape, performance, functionality, and price. The information handling system may include random access memory (RAM), one or more processing resources such as a central processing unit (CPU) or hardware or software control logic, ROM, and/or other types of nonvolatile memory. Additional components of the information handling system may include one or more disk drives, one or more network ports for communicating with external devices as well as various input and output (I/O) devices, such as a keyboard, a mouse, and a video display. The information handling system may also include one or more buses operable to transmit communications between the various hardware components.
The present invention provides a method for verifying charging failures for smart batteries by measuring input charging voltage and associated systems. In the embodiment described in more detail below, a determination is made whether or not a charging current is indicative of a battery failure utilizing an analog-to-digital (A/D) port to measure the input charging voltage. As long as the measured input charging voltage is below the cell pack voltage or some set voltage value, whichever is higher, the battery management unit (BMU) would consider a charging current detection to be a false failure indication. If the measured charging voltage is above the cell pack voltage or a set voltage value, whichever is lower, the BMU would consider the charging current detection a positive failure indication. The BMU could then disable the battery or could implement other verification steps before disabling the battery. It is noted that the set voltage level could be programmed, if desired, and could be 7.5 volts for 3-cell packs and 10 volts for 4-cell packs.
In AC power mode of operation, switches 124 and 126 are closed, and the load 106 is powered from the AC power source through plug 130. In addition, switch 122 is connected to the positive terminal 116A of charger 104 so that the battery 102 can be charged. If the battery 102 does need to be charged, the BMU for the battery 102 will initiate a charging mode of operation for the battery 102. In a battery mode of operation, switches 124 and 126 are open, and switch 122 is connected to the positive terminal 118A of load 106. Thus, load 106 is powered by the battery 102. In this mode of operation, the BMU for the battery 102 will initiate a discharging mode of operation for the battery 102.
The AFE circuitry 202 includes a current input ADC 204 and a voltage input ADC 100. The current input ADC 204 has inputs coupled to either side of the current sense resistor (RCURRENT) 210. The value for the current through the current sense resistor (RCURRENT) 210 can be determined, for example, by digitizing the voltage drop across the current sense resistor (RCURRENT) 210, and then dividing by the known value for the resistor (RCURRENT) 210. The voltage input ADC 100 has inputs coupled to the positive terminal 112A and the negative terminal 112B for the battery 102. As such, the voltage input ADC 100 can provide a digital value for the voltage at the input terminals to the battery 102. As indicated above, the voltage input ADC 100 can be used to detect the input charging voltage applied to the battery 102 as part of a failure detection verification procedure that is controlled by the micro-controller 205.
If the detected current in decision block 304 is above 10 mA, then flow proceeds to decision block 306. If the battery is in charge mode, flow then passes to block 318 where processing ends as indicated above. If the battery is not in charge mode, then a possible battery failure will be deemed to have been detected. In other words, a charging current was detected when none should have existed. Process flow then moves to block 308. It is noted that if desired, decision block 306 could be removed, and the charging failure verification steps of
Once a possible charging failure has been indicated, block 308 beings an initial failure verification step. In block 308, the D-FET is turned “off,” and the terminal voltage is measured through the voltage input ADC 100. Flow then proceeds to decision block 310. If the measured terminal voltage is greater than the cell pack voltage of cell pack 208 and greater than a set voltage level, such as 7.5 volts, then a charging failure would deemed to have been verified. Process flow would then move to decision block 312 for a second verification step. In decision block 310, if the measured terminal voltage is less than the cell pack voltage of cell pack 208 or less than a set voltage level, such as 7.5 volts, then the charging current detection would be deemed a false positive, and flow would pass to block 320 for a verification of the false positive. In block 320, a time delay would be initiated, after which the D-FET would be turned back “on.” Flow would then proceed back to decision block 304 to determine if a charging current above the threshold still existed. It is noted that the time delay for block 320 can be configured as desired.
With respect to the second verification step, when decision block 312 is reached from decision block 310, a time delay is initiated, after which the input charging current is again detected using current input ADC 204. If this charging current is above a threshold level, such as 10 mA, then a battery failure is deemed to exist for the embodiment depicted. Flow proceeds to block 314 where the battery is permanently disabled, for example, using the disable fuse 206. In decision block 312, if the charging current is below the threshold level, then flow proceeds to block 316, where the D-FET is turned “on.” Flow then proceeds to block 318 where the processing ends as indicated above.
In operation, therefore, there are three basic stages with respect to the embodiment 300 of
Further modifications and alternative embodiments of this invention will be apparent to those skilled in the art in view of this description. It will be recognized, therefore, that the present invention is not limited by these example arrangements. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the manner of carrying out the invention. It is to be understood that the forms of the invention herein shown and described are to be taken as the presently preferred embodiments. Various changes may be made in the implementations and architectures. For example, equivalent elements may be substituted for those illustrated and described herein and certain features of the invention may be utilized independently of the use of other features, all as would be apparent to one skilled in the art after having the benefit of this description of the invention.
This application is a divisional application of the following application: application Ser. No. 11/021,377 entitled “METHOD FOR VERIFYING SMART BATTERY FAILURES BY MEASURING INPUT CHARGING VOLTAGE AND ASSOCIATED SYSTEMS,” filed on Dec. 23, 2004, now U.S. Pat. No. 7,518,341 which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4746854 | Baker et al. | May 1988 | A |
5007027 | Shimoi | Apr 1991 | A |
5144218 | Bosscha | Sep 1992 | A |
5155428 | Kang | Oct 1992 | A |
5530336 | Eguchi et al. | Jun 1996 | A |
5581170 | Mammano et al. | Dec 1996 | A |
5652501 | McClure et al. | Jul 1997 | A |
5703463 | Smith | Dec 1997 | A |
5898234 | Kitagawa | Apr 1999 | A |
5986865 | Umeki et al. | Nov 1999 | A |
6031302 | Levesque | Feb 2000 | A |
6046575 | Demuro | Apr 2000 | A |
6051955 | Saeki et al. | Apr 2000 | A |
6060864 | Ito et al. | May 2000 | A |
6075344 | Kawai | Jun 2000 | A |
6097175 | Yoon | Aug 2000 | A |
6124700 | Nagai et al. | Sep 2000 | A |
6157171 | Smith | Dec 2000 | A |
6172485 | Fujita et al. | Jan 2001 | B1 |
6174617 | Hiratsuka et al. | Jan 2001 | B1 |
6204633 | Kitagawa | Mar 2001 | B1 |
6222346 | Mori | Apr 2001 | B1 |
6268713 | Thandiwe | Jul 2001 | B1 |
6388426 | Yokoo et al. | May 2002 | B1 |
6445164 | Kitagawa | Sep 2002 | B2 |
6492791 | Saeki et al. | Dec 2002 | B1 |
6495989 | Eguchi | Dec 2002 | B1 |
6531846 | Smith | Mar 2003 | B1 |
6571091 | Janssen et al. | May 2003 | B1 |
6636020 | Ronald | Oct 2003 | B1 |
6646422 | Hogari | Nov 2003 | B2 |
6683449 | Bell et al. | Jan 2004 | B1 |
6710992 | Pannwitz et al. | Mar 2004 | B2 |
6777915 | Yoshizawa et al. | Aug 2004 | B2 |
6804098 | Pannwitz | Oct 2004 | B2 |
6996734 | Fiebrich et al. | Feb 2006 | B2 |
7436151 | Wang et al. | Oct 2008 | B2 |
20010021092 | Astala | Sep 2001 | A1 |
20020195996 | Nakatsuji | Dec 2002 | A1 |
20030107347 | Yoshizawa et al. | Jun 2003 | A1 |
20030193318 | Ozawa et al. | Oct 2003 | A1 |
20040227490 | MacNair, Jr. et al. | Nov 2004 | A1 |
Number | Date | Country |
---|---|---|
0607041 | Jul 1994 | EP |
1594209 | Nov 2005 | EP |
1533881 | Sep 2007 | EP |
2000078760 | Aug 1998 | JP |
11-206025 | Jul 1999 | JP |
11234910 | Aug 1999 | JP |
1998-077419 | Nov 1998 | KR |
1999-017606 | Mar 1999 | KR |
0051219 | Aug 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20090167249 A1 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11021377 | Dec 2004 | US |
Child | 12380613 | US |